
Mapping Toolbox™

Reference

R2012b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Mapping Toolbox™ Reference

© COPYRIGHT 1997–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
May 1997 First printing New for Version 1.0
October 1998 Second printing Version 1.1
November 2000 Third printing Version 1.2 (Release 12)
July 2002 Online only Revised for Version 1.3 (Release 13)
September 2003 Online only Revised for Version 1.3.1 (Release 13SP1)
January 2004 Online only Revised for Version 2.0 (Release 13SP1+)
April 2004 Online only Revised for Version 2.0.1 (Release 13SP1+)
June 2004 Fourth printing Revised for Version 2.0.2 (Release 14)
October 2004 Online only Revised for Version 2.0.3 (Release 14SP1)
March 2005 Fifth printing Revised for Version 2.1 (Release 14SP2)
August 2005 Sixth printing Minor revision for Version 2.1
September 2005 Online only Revised for Version 2.2 (Release 14SP3)
March 2006 Online only Revised for Version 2.3 (Release 2006a)
September 2006 Seventh printing Revised for Version 2.4 (Release 2006b)
March 2007 Online only Revised for Version 2.5 (Release 2007a)
September 2007 Eighth printing Revised for Version 2.6 (Release 2007b)
March 2008 Online only Revised for Version 2.7 (Release 2008a)
October 2008 Online only Revised for Version 2.7.1 (Release 2008b)
March 2009 Online only Revised for Version 2.7.2 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.2 (Release 2010b)
April 2011 Online only Revised for Version 3.3 (Release 2011a)
September 2011 Online only Revised for Version 3.4 (Release 2011b)
March 2012 Online only Revised for Version 3.5 (Release 2012a)
September 2012 Online only Revised for Version 3.6 (Release 2012b)

Contents

Function Reference

1
Geospatial Data Import and Access 1-2
Standard File Formats . 1-2
Gridded Terrain and Bathymetry Products 1-3
Vector Map Products . 1-4
Miscellaneous Data Sets . 1-5
GUIs for Data Import . 1-5
File Reading Utilities . 1-5

Web Map Service . 1-6
WMS Server and Layer Information 1-6
WMS Capabilities Information . 1-6
WMS Map Rendering . 1-7

Vector Map Data and Geographic Data Structures 1-8
Geographic Data Representation . 1-8
Data Manipulation . 1-9
Utilities for NaN-Separated Polygons and Lines 1-10

Georeferenced Images and Data Grids 1-11
Spatial Referencing . 1-11
Spatial Referencing Objects . 1-12
Terrain Analysis . 1-14
Other Analysis/Access . 1-15
Construction and Modification . 1-15
Initialization . 1-16

Map Projections and Coordinates 1-17
Available Map Projections . 1-17
Map Projection Transformations . 1-18
Map Trimming . 1-18
Angles, Scales, and Distortions . 1-18
Visualizing Map Distortions . 1-19
UTM System . 1-19
Coordinate Rotation on the Sphere 1-19

v

Trimming and Clipping . 1-19

Map Display and Interaction . 1-20
Map Creation and High-Level Display 1-21
Vector Symbolization . 1-21
Lines and Contours . 1-21
Patch Data . 1-22
Data Grids . 1-22
Light Objects and Lighted Surfaces 1-23
Thematic Maps . 1-23
Map Annotation . 1-23
Colormaps for Map Displays . 1-24
Interactive Map Positions . 1-24
Interactive Track and Circle Definition 1-25
GUIs . 1-25
Map Object and Projection Properties 1-26
Map Appearance . 1-27
Display Clearing . 1-27

Geographic Calculations . 1-29
Geometry of Sphere and Ellipsoid . 1-29
3-D Coordinates . 1-30
Reference Ellipsoids and Spheroids 1-31
Geometric Object Overlay . 1-32
Geographic Statistics . 1-32
Navigation . 1-33
Spherical Distance Conversions . 1-34

Utilities . 1-35
Angle Unit Conversions . 1-35
Conversion Factors for Angles and Lengths 1-36
Data Precision . 1-36
Length Unit Conversions . 1-36
Image Conversion . 1-36
String Formatters . 1-37
Longitude or Azimuth Wrapping . 1-37
Validation . 1-37

GUIs . 1-38
Map Definition Tools . 1-38
Mapping Tools . 1-39
Display Manipulation Tools . 1-39

vi Contents

Object Property Tools . 1-39
Track Tools . 1-40
Map Data Construction Tools . 1-40

Class Reference

2
Reference Spheroids . 2-2
oblateSpheroid . 2-2
referenceSphere . 2-2
referenceEllipsoid . 2-2

Spatial Referencing . 2-3
spatialref.GeoRasterReference . 2-3
spatialref.MapRasterReference . 2-4

Vector Geographic Data . 2-5
geopoint . 2-5

Web Map Service . 2-6
WebMapServer . 2-6
WMSCapabilities . 2-6
WMSLayer . 2-6
WMSMapRequest . 2-7

Functions — Alphabetical List

3

Index

vii

viii Contents

1

Function Reference

Geospatial Data Import and Access
(p. 1-2)

Readers, writers and associated
utilities for geospatial file and data
product formats

Web Map Service (p. 1-6) Finding layers in internal database;
retrieving maps from WMS servers

Vector Map Data and Geographic
Data Structures (p. 1-8)

Manipulating polygons, geographic
data structures and other vector
geodata

Georeferenced Images and Data
Grids (p. 1-11)

Constructing, georeferencing,
analyzing, and manipulating raster
geodata

Map Projections and Coordinates
(p. 1-17)

Specifying, using, and analyzing
map projections and geospatial
coordinate transformations

Map Display and Interaction
(p. 1-20)

Displaying geographic objects on
maps and interacting with them

Geographic Calculations (p. 1-29) Plane, spherical and ellipsoidal
geometry

Utilities (p. 1-35) Basic tasks, including angle and
distance conversions

GUIs (p. 1-38) GUI tools for selecting data and
directly manipulating the content
and appearance of maps

1 Function Reference

Geospatial Data Import and Access

Standard File Formats (p. 1-2) Reading and writing vector and
raster geodata in widely used
exchange formats

Gridded Terrain and Bathymetry
Products (p. 1-3)

For reading raster data products
distributed in special file formats

Vector Map Products (p. 1-4) For reading vector data products
distributed in special file formats

Miscellaneous Data Sets (p. 1-5) For reading other data products
distributed in special file formats

GUIs for Data Import (p. 1-5) GUIs for browsing data products
and selecting areas and objects of
interest

File Reading Utilities (p. 1-5) Low-level access functions for text
and other data files

Standard File Formats

arcgridread Read gridded data set in Arc ASCII
Grid Format

geotiffinfo Information about GeoTIFF file

geotiffread Read GeoTIFF file

geotiffwrite Write GeoTIFF file

getworldfilename Derive worldfile name from image
filename

gpxread Read GPX file

kmlwrite Write geographic data to KML file

makeattribspec Attribute specification from
geographic data structure

sdtsdemread Read data from SDTS raster/DEM
data set

1-2

Geospatial Data Import and Access

sdtsinfo Information about SDTS data set

shapeinfo Information about shapefile

shaperead Read vector features and attributes
from shapefile

shapewrite Write geographic data structure to
shapefile

worldfileread Read world file and return
referencing object or matrix

worldfilewrite Write world file from referencing
object or matrix

Gridded Terrain and Bathymetry Products

dted Read U.S. Department of Defense
Digital Terrain Elevation Data
(DTED)

dteds DTED filenames for
latitude-longitude quadrangle

etopo Read gridded global relief data
(ETOPO products)

globedem Read Global Land One-km Base
Elevation (GLOBE) data

globedems GLOBE data filenames for
latitude-longitude quadrangle

gtopo30 Read 30-arc-second global digital
elevation data (GTOPO30)

gtopo30s GTOPO30 data filenames for
latitude-longitude quadrangle

satbath Read 2-minute terrain/bathymetry
from Smith and Sandwell

tbase Read 5-minute global terrain
elevations from TerrainBase

1-3

1 Function Reference

usgs24kdem Read USGS 7.5-minute (30-m or
10-m) Digital Elevation Models

usgsdem Read USGS 1-degree (3-arc-second)
Digital Elevation Model

usgsdems USGS 1-degree (3-arc-sec) DEM
filenames for latitude-longitude
quadrangle

Vector Map Products

dcwdata Read selected DCW worldwide
basemap data

dcwgaz Search DCW worldwide basemap
gazette file

dcwread Read DCW worldwide basemap file

dcwrhead Read DCW worldwide basemap file
headers

fipsname Read Federal Information Processing
Standard (FIPS) name file used with
TIGER thinned boundary files

gshhs Read Global Self-Consistent
Hierarchical High-Resolution
Shoreline

tgrline Read TIGER/Line data

vmap0data Read selected data from Vector Map
Level 0

vmap0read Read Vector Map Level 0 file

vmap0rhead Read Vector Map Level 0 file headers

1-4

Geospatial Data Import and Access

Miscellaneous Data Sets

avhrrgoode Read AVHRR data product stored in
Goode Projection

avhrrlambert Read AVHRR data product stored in
eqaazim projection

egm96geoid Read 15-minute gridded geoid
heights from EGM96

readfk5 Read Fifth Fundamental Catalog of
Stars

GUIs for Data Import

demdataui UI for selecting digital elevation data

vmap0ui UI for selecting data from Vector
Map Level 0

File Reading Utilities

grepfields Identify matching fields in fixed
record length files

readfields Read fields or records from
fixed-format files

readmtx Read matrix stored in file

spcread Read columns of data from ASCII
text file

1-5

1 Function Reference

Web Map Service

WMS Server and Layer Information
(p. 1-6)

For searching local database for
relevant layers and servers

WMS Capabilities Information
(p. 1-6)

For retrieving capabilities
information from WMS server

WMS Map Rendering (p. 1-7) For rendering WMS map

WMS Server and Layer Information

disp (WMSLayer) Display properties

refine (WMSLayer) Refine search

refineLimits (WMSLayer) Refine search based on geographic
limits

servers (WMSLayer) Return URLs of unique servers

serverTitles (WMSLayer) Return titles of unique servers

updateLayers (WebMapServer) Update layer properties

WebMapServer Web map server object

WMSCapabilities Web Map Service capabilities object

wmsfind Search local database for Web map
servers and layers

WMSLayer Web Map Service layer object

wmsupdate Synchronize WMSLayer object with
server

WMS Capabilities Information

disp (WMSCapabilities) Display properties

getCapabilities (WebMapServer) Get capabilities document from
server

WebMapServer Web map server object

1-6

Web Map Service

WMSCapabilities Web Map Service capabilities object

wmsinfo Information about WMS server from
capabilities document

WMS Map Rendering

boundImageSize (WMSMapRequest) Bound size of raster map

getMap (WebMapServer) Get raster map from server

WebMapServer Web map server object

WMSMapRequest Web Map Service map request object

wmsread Retrieve WMS map from server

1-7

1 Function Reference

Vector Map Data and Geographic Data Structures

Geographic Data Representation
(p. 1-8)

For updating and obtaining fields
from data structures

Data Manipulation (p. 1-9) For altering, combining, and
analyzing polygon and line data

Utilities for NaN-Separated
Polygons and Lines (p. 1-10)

For structuring vectors defining
multiple line or polygon objects

Geographic Data Representation

extractfield Field values from structure array

extractm Coordinate data from line or patch
display structure

geopoint Geographic point vector

updategeostruct Convert line or patch display
structure to geostruct

geopoint Class

append (geopoint) Append features to geopoint vector

cat (geopoint) Concatenate geopoint vectors

disp (geopoint) Display geopoint vector

fieldnames (geopoint) Dynamic properties of geopoint
vector

isempty (geopoint) True if geopoint vector is empty

isfield (geopoint) Returns true if dynamic property
exists

isprop (geopoint) Returns true if property exists

length (geopoint) Number of elements in geopoint
vector

1-8

Vector Map Data and Geographic Data Structures

properties (geopoint) Properties of a geopoint vector

rmfield (geopoint) Remove dynamic property from
geopoint vector

rmprop (geopoint) Remove properties from geopoint
vector

size (geopoint) Size of geopoint vector

struct (geopoint) Convert geopoint vector to scalar
structure

vertcat (geopoint) Vertical concatenation for geopoint
vectors

Data Manipulation

bufferm Buffer zones for latitude-longitude
polygons

flatearthpoly Insert points along date line to pole

interpm Densify latitude-longitude sampling
in lines or polygons

intrplat Interpolate latitude at given
longitude

intrplon Interpolate longitude at given
latitude

ispolycw True if polygon vertices are in
clockwise order

nanclip Clip vector data with NaNs at
specified pen-down locations

poly2ccw Convert polygon contour to
counterclockwise vertex ordering

poly2cw Convert polygon contour to clockwise
vertex ordering

poly2fv Convert polygonal region to patch
faces and vertices

1-9

1 Function Reference

polycut Polygon branch cuts for holes

polymerge Merge line segments with matching
endpoints

reducem Reduce density of points in vector
data

Utilities for NaN-Separated Polygons and Lines

closePolygonParts Close all rings in multipart polygon

isShapeMultipart True if polygon or line has multiple
parts

polyjoin Convert line or polygon parts from
cell arrays to vector form

polysplit Convert line or polygon parts from
vector form to cell arrays

removeExtraNanSeparators Clean up NaN separators in polygons
and lines

1-10

Georeferenced Images and Data Grids

Georeferenced Images and Data Grids

Spatial Referencing (p. 1-11) Computing bounds and converting
between geographic and raster
coordinates for spatially referenced
images and grids

Spatial Referencing Objects (p. 1-12) Constructing and converting objects
to reference rasters to geographic or
map coordinates

Terrain Analysis (p. 1-14) Computing slope, aspect, lines of
sight, and terrain visibility

Other Analysis/Access (p. 1-15) Computing areas and profiles, and
selecting subsets of values from data
grids

Construction and Modification
(p. 1-15)

Constructing, encoding, seeding,
reorienting, and converting data
grids

Initialization (p. 1-16) Generating data grids containing
uniform values

Spatial Referencing

latlon2pix Convert latitude-longitude
coordinates to pixel coordinates

limitm Determine latitude and longitude
limits of regular data grid

makerefmat Construct affine spatial-referencing
matrix

map2pix Convert map coordinates to pixel
coordinates

mapbbox Compute bounding box of
georeferenced image or data
grid

1-11

1 Function Reference

mapoutline Compute outline of georeferenced
image or data grid

meshgrat Construct map graticule for surface
object display

pix2map Convert pixel coordinates to map
coordinates

pixcenters Compute pixel centers for
georeferenced image or data
grid

refmat2vec Convert referencing matrix to
referencing vector

refmatToWorldFileMatrix Convert referencing matrix to world
file matrix

refvec2mat Convert referencing vector to
referencing matrix

setltln Convert data grid rows and columns
to latitude-longitude

setpostn Convert latitude-longitude to data
grid rows and columns

worldFileMatrixToRefmat Convert world file matrix to
referencing matrix

Spatial Referencing Objects

georasterref Construct
spatialref.GeoRasterReference
object

maprasterref Construct
spatialref.MapRasterReference
object

refmatToGeoRasterReference Referencing matrix to
GeoRasterReference object

1-12

Georeferenced Images and Data Grids

refmatToMapRasterReference Referencing matrix to
MapRasterReference object

refvecToGeoRasterReference Referencing vector to
GeoRasterReference object

GeoRasterReference Class

contains
(spatialref.GeoRasterReference)

True if raster contains
latitude-longitude points

geographicToIntrinsic
(spatialref.GeoRasterReference)

Convert from geographic to intrinsic
coordinates

geographicToSub
(spatialref.GeoRasterReference)

Geographic coordinates to row and
column subscripts

intrinsicToGeographic
(spatialref.GeoRasterReference)

Convert from intrinsic to geographic
coordinates

intrinsicXToLongitude
(spatialref.GeoRasterReference)

Convert from intrinsic x to longitude

intrinsicYToLatitude
(spatialref.GeoRasterReference)

Convert from intrinsic y to latitude

latitudeToIntrinsicY
(spatialref.GeoRasterReference)

Convert from latitude to intrinsic y

longitudeToIntrinsicX
(spatialref.GeoRasterReference)

Convert from longitude to intrinsic x

sizesMatch
(spatialref.GeoRasterReference)

True if object and raster or image
are size compatible

spatialref.GeoRasterReference Reference raster to geographic
coordinates

worldFileMatrix
(spatialref.GeoRasterReference)

World file parameters for
transformation

1-13

1 Function Reference

MapRasterReference Class

contains
(spatialref.MapRasterReference)

True if raster contains points in
world coordinate system

firstCornerX
(spatialref.MapRasterReference)

World x coordinate of the (1,1) corner
of the raster

firstCornerY
(spatialref.MapRasterReference)

World y coordinate of the (1,1) corner
of the raster

intrinsicToWorld
(spatialref.MapRasterReference)

Convert from intrinsic to world
coordinates

sizesMatch
(spatialref.MapRasterReference)

True if object and raster or image
are size compatible

spatialref.MapRasterReference Reference raster to map coordinates

worldFileMatrix
(spatialref.MapRasterReference)

World file parameters for
transformation

worldToIntrinsic
(spatialref.MapRasterReference)

Convert from world to intrinsic
coordinates

worldToSub
(spatialref.MapRasterReference)

World coordinates to row and column
subscripts

Terrain Analysis

gradientm Calculate gradient, slope and aspect
of data grid

los2 Line-of-sight visibility between two
points in terrain

viewshed Areas visible from point on terrain
elevation grid

1-14

Georeferenced Images and Data Grids

Other Analysis/Access

areamat Surface area covered by nonzero
values in binary data grid

filterm Filter latitudes and longitudes based
on underlying data grid

findm Latitudes and longitudes of nonzero
data grid elements

ltln2val Extract data grid values for specified
locations

mapprofile Interpolate between waypoints on
regular data grid

Construction and Modification

changem Substitute values in data array

encodem Fill in regular data grid from seed
values and locations

geoloc2grid Convert geolocated data array to
regular data grid

imbedm Encode data points into regular data
grid

neworig Orient regular data grid to oblique
aspect

resizem Resize regular data grid

sizem Row and column dimensions needed
for regular data grid

vec2mtx Convert latitude-longitude vectors to
regular data grid

1-15

1 Function Reference

Initialization

nanm Construct regular data grid of NaNs

onem Construct regular data grid of 1s

spzerom Construct sparse regular data grid
of 0s

zerom Construct regular data grid of 0s

1-16

Map Projections and Coordinates

Map Projections and Coordinates

Available Map Projections (p. 1-17) Lists of map projections and
characteristics

Map Projection Transformations
(p. 1-18)

Forward and inverse map projection
functions

Map Trimming (p. 1-18) For trimming lines, polygons, and
data grids to latitude-longitude
quadrangles

Angles, Scales, and Distortions
(p. 1-18)

Computing directions, angles, and
distortions on projected maps

Visualizing Map Distortions (p. 1-19) Generating displays of distortion
statistics and Tissot ellipses

UTM System (p. 1-19) Selecting zones and ellipsoids for
the Universal Transverse Mercator
system

Coordinate Rotation on the Sphere
(p. 1-19)

Reorienting map data by solid-body
rotations on the sphere

Trimming and Clipping (p. 1-19) Removing and replacing data that
extends outside a map frame

For specific map projections, see “Supported Map Projections”.

Available Map Projections

maplist Available Mapping Toolbox™ map
projections

maps List available map projections and
verify names

projlist Map projections supported by
projfwd and projinv

1-17

1 Function Reference

Map Projection Transformations

mfwdtran Project geographic features to map
coordinates

minvtran Unproject features from map to
geographic coordinates

projfwd Forward map projection using
PROJ.4 map projection library

projinv Inverse map projection using PROJ.4
map projection library

Map Trimming

maptriml Trim lines to latitude-longitude
quadrangle

maptrimp Trim polygons to latitude-longitude
quadrangle

maptrims Trim regular data grid to
latitude-longitude quadrangle

Angles, Scales, and Distortions

distortcalc Distortion parameters for map
projections

vfwdtran Direction angle in map plane from
azimuth on ellipsoid

vinvtran Azimuth on ellipsoid from direction
angle in map plane

1-18

Map Projections and Coordinates

Visualizing Map Distortions

mdistort Display contours of constant map
distortion

tissot Project Tissot indicatrices on map
axes

UTM System

utmgeoid Select ellipsoids for given UTM zone

utmzone Select UTM zone given latitude and
longitude

Coordinate Rotation on the Sphere

newpole Origin vector to place specific point
at pole

org2pol Location of north pole in rotated map

putpole Origin vector to place north pole at
specified point

Trimming and Clipping

clipdata Clip data at +/-pi in longitude,
+/-pi in latitude

trimcart Trim graphic objects to map frame

trimdata Trim map data exceeding projection
limits

undoclip Remove object clips introduced by
clipdata

undotrim Remove object trims introduced by
trimdata

1-19

1 Function Reference

Map Display and Interaction

Map Creation and High-Level
Display (p. 1-21)

Top-level functions that create map
axes, project map data onto them,
and control symbolization

Vector Symbolization (p. 1-21) Functions that draw symbols
for points, lines, and polygons
(coordinate lists and geostructs)

Lines and Contours (p. 1-21) Lower level line plotting and higher
level contour plotting functions

Patch Data (p. 1-22) Lower-level functions for plotting
polygons as patches on map axes

Data Grids (p. 1-22) For mapping regular and geolocated
data grids in 2-D and 3-D

Light Objects and Lighted Surfaces
(p. 1-23)

For mapping regular and geolocated
data grids using lighting and
shading

Thematic Maps (p. 1-23) For making scatter, quiver, comet,
and stem maps

Map Annotation (p. 1-23) For adding north arrows, graphic
scales, text and other annotations to
maps

Colormaps for Map Displays (p. 1-24) For constructing colormaps
appropriate for map displays

Interactive Map Positions (p. 1-24) For graphic interaction with data in
map axes

Interactive Track and Circle
Definition (p. 1-25)

For constructing great and small
circles, rhumb lines and other
geographic tracks

GUIs (p. 1-25) GUIs for specific functions and
general GUIs for interactive
mapping

MapObject and Projection Properties
(p. 1-26)

For querying, setting, and modifying
map axes objects and properties

1-20

Map Display and Interaction

Map Appearance (p. 1-27) For controlling the view and map
scale

Display Clearing (p. 1-27) For showing, hiding, and removing
objects from map axes

Map Creation and High-Level Display

axesm Define map axes and set map
properties

displaym Display geographic data from display
structure

geoshow Display map latitude and longitude
data

grid2image Display regular data grid as image

mapshow Display map data without projection

mapview Interactive map viewer

usamap Construct map axes for United
States of America

worldmap Construct map axes for given region
of world

Vector Symbolization

makesymbolspec Construct vector layer symbolization
specification

Lines and Contours

contour3m Project 3-D contour plot of map data

contourfm Project filled 2-D contour plot of map
data

1-21

1 Function Reference

contourm Project 2-D contour plot of map data

linem Project line object on map axes

plot3m Project 3-D lines and points on map
axes

plotm Project 2-D lines and points on map
axes

Patch Data

fill3m Project filled 3-D patch objects on
map axes

fillm Project filled 2-D patch objects on
map axes

patchesm Project patches on map axes as
individual objects

patchm Project patch objects on map axes

Data Grids

meshm Project regular data grid on map
axes

pcolorm Project regular data grid on map
axes in z = 0 plane

surfacem Project and add geolocated data grid
to current map axes

surfm Project geolocated data grid on map
axes

1-22

Map Display and Interaction

Light Objects and Lighted Surfaces

lightm Project light objects on map axes

meshlsrm 3-D lighted shaded relief of regular
data grid

shaderel Construct cdata and colormap for
shaded relief

surflm 3-D shaded surface with lighting on
map axes

surflsrm 3-D lighted shaded relief of
geolocated data grid

Thematic Maps

comet3m Project 3-D comet plot on map axes

cometm Project 2-D comet plot on map axes

quiverm Project 2-D quiver plot on map axes

scatterm Project point markers with variable
color and area

stem3m Project stem plot map on map axes

symbolm Project point markers with variable
size

Map Annotation

clabelm Add contour labels to map contour
display

clegendm Add legend labels to map contour
display

contourcbar Color bar for filled contour map
display

1-23

1 Function Reference

framem Toggle and control display of map
frame

gridm Toggle and control display of
graticule lines

lcolorbar Colorbar with text labels

mlabel Toggle and control display of
meridian labels

mlabelzero22pi Convert meridian labels to 0-360
degree range

northarrow Add graphic element pointing to
geographic North Pole

plabel Toggle and control display of parallel
labels

rotatetext Rotate text to projected graticule

scaleruler Add or modify graphic scale on map
axes

textm Project text annotation on map axes

Colormaps for Map Displays

contourcmap Contour colormap and colorbar for
current axes

polcmap Colormaps appropriate to political
regions

Interactive Map Positions

gcpmap Current mouse point from map axes

gtextm Place text on map using mouse

inputm Latitudes and longitudes of
mouse-click locations

1-24

Map Display and Interaction

Interactive Track and Circle Definition

scircleg Small circle defined via mouse input

sectorg Sector of small circle defined via
mouse input

trackg Great circle or rhumb line defined
via mouse input

GUIs

clrmenu Add colormap menu to figure window

colorm Create index map colormaps

colorui Interactively define RGB color

getseeds Interactively assign seeds for data
grid encoding

lightmui Control position of lights on globe or
3-D map

maptool Add menu-activated tools to map
figure

maptrim Interactively trim and convert map
data from vector to raster format

mlayers GUI to control plotting of display
structure elements

mobjects Manipulate object sets displayed on
map axes

originui Interactively modify map origin

panzoom Pan and zoom on map axes

parallelui Interactively modify map parallels

qrydata GUI to interactively perform data
queries

1-25

1 Function Reference

rootlayr Construct cell array of workspace
variables for mlayers tool

seedm GUI to fill data grids with seeded
values

surfdist Interactive distance, azimuth, and
reckoning calculations

uimaptbx Handle buttondown callbacks for
mapped objects

utmzoneui Choose or identify UTM zone by
clicking map

Map Object and Projection Properties

cart2grn Transform projected coordinates to
Greenwich system

defaultm Initialize or reset map projection
structure

gcm Current map projection structure

geotiff2mstruct Convert GeoTIFF information to
map projection structure

getm Map object properties

handlem Handles of displayed map objects

ismap True for axes with map projection

ismapped True, if object is projected on map
axes

makemapped Convert ordinary graphics object to
mapped object

namem Determine names of valid graphics
objects

project Project displayed map graphics
object

1-26

Map Display and Interaction

restack Restack objects within map axes

rotatem Transform vector map data to new
origin and orientation

setm Set properties of map axes and
graphics objects

tagm Set property of map graphics object

zdatam Adjust z-plane of displayed map
objects

Map Appearance

axesscale Resize axes for equivalent scale

camposm Set camera position using geographic
coordinates

camtargm Set camera target using geographic
coordinates

camupm Set camera up vector using
geographic coordinates

daspectm Control vertical exaggeration in map
display

paperscale Set figure properties for printing at
specified map scale

previewmap View map at printed size

tightmap Remove white space around map

Display Clearing

clma Clear current map axes

clmo Clear specified graphics objects from
map axes

1-27

1 Function Reference

hidem Hide specified graphic objects on
map axes

showaxes Toggle display of map coordinate
axes

showm Specify graphic objects to display on
map axes

1-28

Geographic Calculations

Geographic Calculations

Geometry of Sphere and Ellipsoid
(p. 1-29)

Distances, deviations, areas, and
curves on the sphere or ellipsoid

3-D Coordinates (p. 1-30) For converting between different 3-D
coordinate systems

Reference Ellipsoids and Spheroids
(p. 1-31)

For converting ellipsoid parameters
and auxiliary latitudes

Geometric Object Overlay (p. 1-32) For determining if, how, and where
points, lines, circles, and areas
intersect

Geographic Statistics (p. 1-32) For computing geographic means,
standard deviations, and histograms

Navigation (p. 1-33) For determining positions, headings,
drift, and navigational fixes and way
points

Spherical Distance Conversions
(p. 1-34)

For converting distances along the
surface of the Earth, approximated
as a sphere

Geometry of Sphere and Ellipsoid

antipode Point on opposite side of globe

areaint Surface area of polygon on sphere or
ellipsoid

areaquad Surface area of latitude-longitude
quadrangle

azimuth Azimuth between points on sphere
or ellipsoid

departure Departure of longitudes at specified
latitudes

distance Distance between points on sphere
or ellipsoid

1-29

1 Function Reference

ellipse1 Geographic ellipse from center,
semimajor axes, eccentricity, and
azimuth

gc2sc Center and radius of great circle

meridianarc Ellipsoidal distance along meridian

meridianfwd Reckon position along meridian

reckon Point at specified azimuth, range on
sphere or ellipsoid

scircle1 Small circles from center, range, and
azimuth

scircle2 Small circles from center and
perimeter

track1 Geographic tracks from starting
point, azimuth, and range

track2 Geographic tracks from starting and
ending points

3-D Coordinates

ecef2geodetic Convert geocentric (ECEF) to
geodetic coordinates

ecef2lv Convert geocentric (ECEF) to local
vertical coordinates

elevation Local vertical elevation angle, range,
and azimuth

geodetic2ecef Convert geodetic to geocentric
(ECEF) coordinates

lv2ecef Convert local vertical to geocentric
(ECEF) coordinates

1-30

Geographic Calculations

Reference Ellipsoids and Spheroids

almanac Parameters for Earth, planets, Sun,
and Moon

axes2ecc Eccentricity of ellipse from axes
lengths

convertlat Convert between geodetic and
auxiliary latitudes

earthRadius Mean radius of planet Earth

ecc2flat Flattening of ellipse from eccentricity

ecc2n Third flattening of ellipse from
eccentricity

flat2ecc Eccentricity of ellipse from flattening

geocentric2geodeticLat Convert geocentric to geodetic
latitude

geodetic2geocentricLat Convert geodetic to geocentric
latitude

majaxis Semimajor axis of ellipse

minaxis Semiminor axis of ellipse

n2ecc Eccentricity of ellipse from third
flattening

oblateSpheroid Oblate ellipsoid of revolution

rcurve Ellipsoidal radii of curvature

referenceEllipsoid Reference ellipsoid

referenceSphere Reference sphere

rsphere Radii of auxiliary spheres

wgs84Ellipsoid Reference ellipsoid for World
Geodetic System 1984

1-31

1 Function Reference

Geometric Object Overlay

circcirc Intersections of circles in Cartesian
plane

gcxgc Intersection points for pairs of great
circles

gcxsc Intersection points for great and
small circle pairs

ingeoquad True for points inside or on lat-lon
quadrangle

intersectgeoquad Intersection of two latitude-longitude
quadrangles

linecirc Intersections of circles and lines in
Cartesian plane

outlinegeoquad Polygon outlining geographic
quadrangle

polybool Set operations on polygonal regions

polyxpoly Intersection points for lines or
polygon edges

rhxrh Intersection points for pairs of
rhumb lines

scxsc Intersection points for pairs of small
circles

Geographic Statistics

combntns All possible combinations of set of
values

eqa2grn Convert from equal area to
Greenwich coordinates

grn2eqa Convert from Greenwich to equal
area coordinates

1-32

Geographic Calculations

hista Histogram for geographic points
with equal-area bins

meanm Mean location of geographic
coordinates

stdist Standard distance for geographic
points

stdm Standard deviation for geographic
points

Navigation

crossfix Cross-fix positions from bearings
and ranges

dreckon Dead reckoning positions for track

driftcorr Heading to correct for wind or
current drift

driftvel Wind or current from heading,
course, and speeds

gcwaypts Equally spaced waypoints along
great circle

legs Courses and distances between
navigational waypoints

navfix Mercator-based navigational fix

timezone Time zone based on longitude

track Track segments to connect
navigational waypoints

1-33

1 Function Reference

Spherical Distance Conversions

deg2km Convert distance from degrees to
kilometers

deg2nm Convert distance from degrees to
nautical miles

deg2sm Convert distance from degrees to
statute miles

km2deg Convert distance from kilometers to
degrees

km2rad Convert distance from kilometers to
radians

nm2deg Convert distance from nautical miles
to degrees

nm2rad Convert distance from nautical miles
to radians

rad2km Convert distance from radians to
kilometers

rad2nm Convert distance from radians to
nautical miles

rad2sm Convert distance from radians to
statute miles

sm2deg Convert distance from statute miles
to degrees

sm2rad Convert distance from statute miles
to radians

1-34

Utilities

Utilities

Angle Unit Conversions (p. 1-35) For converting angles between
different units and encodings

Conversion Factors for Angles and
Lengths (p. 1-36)

Function to compute factor for
converting between units of angle or
length

Data Precision (p. 1-36) For managing data precision

Length Unit Conversions (p. 1-36) For converting between different
units of length

Image Conversion (p. 1-36) Function for changing indexed
images to uint8 true-color images

String Formatters (p. 1-37) For formatting angles and lengths
or distances as text suitable for
annotations

Longitude or Azimuth Wrapping
(p. 1-37)

For forcing angles to lie within
specified intervals

Validation (p. 1-37)

Angle Unit Conversions

degrees2dm Convert degrees to degrees-minutes

degrees2dms Convert degrees to
degrees-minutes-seconds

degtorad Convert angles from degrees to
radians

dm2degrees Convert degrees-minutes to degrees

dms2degrees Convert degrees-minutes-seconds to
degrees

fromDegrees Convert angles from degrees

fromRadians Convert angles from radians

1-35

1 Function Reference

radtodeg Convert angles from radians to
degrees

str2angle Convert strings to angles in degrees

toDegrees Convert angles to degrees

toRadians Convert angles to radians

Conversion Factors for Angles and Lengths

unitsratio Unit conversion factors

Data Precision

epsm Accuracy in angle units for certain
map computations

roundn Round to multiple of 10

Length Unit Conversions

km2nm Convert kilometers to nautical miles

km2sm Convert kilometers to statute miles

nm2km Convert nautical miles to kilometers

nm2sm Convert nautical to statute miles

sm2km Convert statute miles to kilometers

sm2nm Convert statute to nautical miles

Image Conversion

ind2rgb8 Convert indexed image to uint8 RGB
image

1-36

Utilities

String Formatters

angl2str Format angle strings

dist2str Format distance strings

Longitude or Azimuth Wrapping

unwrapMultipart Unwrap vector of angles with
NaN-delimited parts

wrapTo180 Wrap angle in degrees to [-180 180]

wrapTo2Pi Wrap angle in radians to [0 2*pi]

wrapTo360 Wrap angle in degrees to [0 360]

wrapToPi Wrap angle in radians to [−pi pi]

Validation

validateLengthUnit Validate and standardize length unit
string

1-37

1 Function Reference

GUIs

Map Definition Tools (p. 1-38) Selecting vector and raster data,
defining map axes, and projection
parameters

Mapping Tools (p. 1-39) Displaying maps, manipulating
layers, and querying map objects

Display Manipulation Tools (p. 1-39) Controlling zoom levels, colormaps,
and lighting

Object Property Tools (p. 1-39) Showing, hiding, tagging, and
clearing objects, and customizing
colormaps

Track Tools (p. 1-40) Plotting small and great circles,
rhumb lines, and other navigational
tracks

Map Data Construction Tools
(p. 1-40)

Setting limits, trimming maps, and
seeding grid values

Map Definition Tools

axesmui Define map axes and modify map
projection and display properties

demdataui UI for selecting digital elevation data

originui Interactively modify map origin

parallelui Interactively modify map parallels

utmzoneui Choose or identify UTM zone by
clicking map

vmap0ui UI for selecting data from Vector
Map Level 0

1-38

GUIs

Mapping Tools

maptool Add menu-activated tools to map
figure

maptrim Interactively trim and convert map
data from vector to raster format

mapview Interactive map viewer

mlayers GUI to control plotting of display
structure elements

mobjects Manipulate object sets displayed on
map axes

qrydata GUI to interactively perform data
queries

Display Manipulation Tools

clrmenu Add colormap menu to figure window

hidem-ui Hide specified mapped objects

lightmui Control position of lights on globe or
3-D map

panzoom Pan and zoom on map axes

Object Property Tools

clmo Clear specified graphics objects from
map axes

colorui Interactively define RGB color

handlem Handles of displayed map objects

handlem-ui GUI for handles of specified mapped
objects

hidem Hide specified graphic objects on
map axes

1-39

1 Function Reference

property editors GUIs to edit properties of mapped
objects

showm Specify graphic objects to display on
map axes

tagm Set property of map graphics object

zdatam Adjust z-plane of displayed map
objects

Track Tools

scircleg Small circle defined via mouse input

scirclui GUI to display small circles on map
axes

sectorg Sector of small circle defined via
mouse input

surfdist Interactive distance, azimuth, and
reckoning calculations

trackg Great circle or rhumb line defined
via mouse input

trackui GUI to display great circles and
rhumb lines on map axes

Map Data Construction Tools

colorm Create index map colormaps

seedm GUI to fill data grids with seeded
values

1-40

2

Class Reference

• “Reference Spheroids” on page 2-2

• “Spatial Referencing” on page 2-3

• “Vector Geographic Data” on page 2-5

• “Web Map Service” on page 2-6

2 Class Reference

Reference Spheroids

In this section...

“oblateSpheroid” on page 2-2

“referenceSphere” on page 2-2

“referenceEllipsoid ” on page 2-2

oblateSpheroid

oblateSpheroid Oblate ellipsoid of revolution

referenceSphere

referenceSphere Reference sphere

referenceEllipsoid

referenceEllipsoid Reference ellipsoid

2-2

Spatial Referencing

Spatial Referencing

In this section...

“spatialref.GeoRasterReference” on page 2-3

“spatialref.MapRasterReference” on page 2-4

spatialref.GeoRasterReference

contains True if raster contains
latitude-longitude points

geographicToIntrinsic Convert from geographic to intrinsic
coordinates

geographicToSub Geographic coordinates to row and
column subscripts

intrinsicToGeographic Convert from intrinsic to geographic
coordinates

intrinsicXToLongitude Convert from intrinsic x to longitude

intrinsicYToLatitude Convert from intrinsic y to latitude

latitudeToIntrinsicY Convert from latitude to intrinsic y

longitudeToIntrinsicX Convert from longitude to intrinsic x

sizesMatch True if object and raster or image
are size compatible

spatialref.GeoRasterReference Reference raster to geographic
coordinates

worldFileMatrix World file parameters for
transformation

2-3

2 Class Reference

spatialref.MapRasterReference

contains True if raster contains points in
world coordinate system

firstCornerX World x coordinate of the (1,1) corner
of the raster

firstCornerY World y coordinate of the (1,1) corner
of the raster

intrinsicToWorld Convert from intrinsic to world
coordinates

sizesMatch True if object and raster or image
are size compatible

spatialref.MapRasterReference Reference raster to map coordinates

worldFileMatrix World file parameters for
transformation

worldToIntrinsic Convert from world to intrinsic
coordinates

worldToSub World coordinates to row and column
subscripts

2-4

Vector Geographic Data

Vector Geographic Data

geopoint

append Append features to geopoint vector

cat Concatenate geopoint vectors

disp Display geopoint vector

fieldnames Dynamic properties of geopoint
vector

isempty True if geopoint vector is empty

isfield Returns true if dynamic property
exists

isprop Returns true if property exists

length Number of elements in geopoint
vector

properties Properties of a geopoint vector

rmfield Remove dynamic property from
geopoint vector

rmprop Remove properties from geopoint
vector

size Size of geopoint vector

struct Convert geopoint vector to scalar
structure

vertcat Vertical concatenation for geopoint
vectors

2-5

2 Class Reference

Web Map Service

In this section...

“WebMapServer” on page 2-6

“WMSCapabilities” on page 2-6

“WMSLayer” on page 2-6

“WMSMapRequest” on page 2-7

WebMapServer

getCapabilities Get capabilities document from
server

getMap Get raster map from server

updateLayers Update layer properties

WebMapServer Web map server object

WMSCapabilities

disp Display properties

WMSCapabilities Web Map Service capabilities object

WMSLayer

disp Display properties

refine Refine search

refineLimits Refine search based on geographic
limits

servers Return URLs of unique servers

serverTitles Return titles of unique servers

WMSLayer Web Map Service layer object

2-6

Web Map Service

WMSMapRequest

boundImageSize Bound size of raster map

WMSMapRequest Web Map Service map request object

2-7

2 Class Reference

2-8

3

Functions — Alphabetical
List

aer2ecef

Purpose Local spherical AER to geocentric ECEF

Syntax [X,Y,Z] =
aer2ecef(az,elev,slantRange,lat0,lon0,h0,spheroid)
[___] = aer2ecef(___ ,angleUnit)

Description [X,Y,Z] =
aer2ecef(az,elev,slantRange,lat0,lon0,h0,spheroid) returns
Earth-Centered Earth-Fixed (ECEF) spheroid-centric Cartesian
coordinates corresponding to coordinates az, elev, slantRange in a
local spherical system having the same origin. Any of the first six
numerical input arguments can be scalar, even when the others are
nonscalar; but all nonscalar numeric arguments must match in size.

[___] = aer2ecef(___ ,angleUnit) adds angleUnit which specifies
the units of inputs az, elev, lat0, and lon0.

Input
Arguments

az - Azimuth angles
scalar value | vector | matrix | N-D array

Azimuth angles in the local spherical system, specified as a scalar,
vector, matrix, or N-D array. Azimuths are measured clockwise
from north. Values must be in units that match the input argument
angleUnit, if supplied, and in degrees, otherwise.

Data Types
single | double

elev - Elevation angles
scalar value | vector | matrix | N-D array

Elevation angles in the local spherical system, specified as a scalar,
vector, matrix, or N-D array. Elevations are with respect to a plane
perpendicular to the spheroid surface normal. Values must be in units
that match the input argument angleUnit, if supplied, and in degrees,
otherwise.

3-2

aer2ecef

Data Types
single | double

slantRange - Distances from local origin
scalar value | vector | matrix | N-D array

Distances from origin in the local spherical system, returned as a
scalar, vector, matrix, or N-D array. The straight-line, 3-D Cartesian
distance is used. Units are determined by the LengthUnit property of
the spheroid input.

Data Types
single | double

lat0 - Geodetic latitude of local origin
scalar value | vector | matrix | N-D array

Geodetic latitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lat0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

lon0 - Longitude of local origin
scalar value | vector | matrix | N-D array

Longitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lon0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

3-3

aer2ecef

h0 - Ellipsoidal height of local origin
scalar value | vector | matrix | N-D array

Ellipsoidal height of local origin (reference) point(s), specified as a
scalar value, vector, matrix, or N-D array. In many cases there is one
origin (reference) point, and the value of h0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

X - ECEF x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the spheroid-centric ECEF
system, specified as a scalar value, vector, matrix, or N-D array. Values
must be in units that match the LengthUnit property of the spheroid
object.

Data Types
single | double

Y - ECEF y-coordinates
scalar value | vector | matrix | N-D array

3-4

aer2ecef

y-coordinates of one or more points in the spheroid-centric ECEF
system, specified as a scalar value, vector, matrix, or N-D array. Values
must be in units that match the LengthUnit property of the spheroid
object.

Data Types
single | double

Z - ECEF z-coordinates
scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the spheroid-centric ECEF system,
specified as a scalar value, vector, matrix, or N-D array. Values must be
in units that match the LengthUnit property of the spheroid object.

Data Types
single | double

See Also aer2geodetic | ecef2aer | enu2ecef | ned2ecef

3-5

aer2enu

Purpose Local spherical AER to local Cartesian ENU

Syntax [xEast,yNorth,zUp] = aer2enu(az,elev,slantRange)
[___] = aer2enu(___ ,angleUnit)

Description [xEast,yNorth,zUp] = aer2enu(az,elev,slantRange) returns
coordinates in a local east-north-up (ENU) Cartesian system
corresponding to coordinates az, elev, slantRange in a local spherical
system having the same origin. Any of the three numerical input
arguments can be scalar, even when the others are nonscalar; but all
nonscalar numeric arguments must match in size.

[___] = aer2enu(___ ,angleUnit) adds angleUnit which specifies
the units of inputs az and elev..

Input
Arguments

az - Azimuth angles
scalar value | vector | matrix | N-D array

Azimuth angles in the local spherical system, specified as a scalar,
vector, matrix, or N-D array. Azimuths are measured clockwise
from north. Values must be in units that match the input argument
angleUnit, if supplied, and in degrees, otherwise.

Data Types
single | double

elev - Elevation angles
scalar value | vector | matrix | N-D array

Elevation angles in the local spherical system, specified as a scalar,
vector, matrix, or N-D array. Elevations are with respect to a plane
perpendicular to the spheroid surface normal. Values must be in units
that match the input argument angleUnit, if supplied, and in degrees,
otherwise.

Data Types
single | double

3-6

aer2enu

slantRange - Distances from local origin
scalar value | vector | matrix | N-D array

Distances from origin in the local spherical system, returned as a
scalar, vector, matrix, or N-D array. The straight-line, 3-D Cartesian
distance is used. Units are determined by the LengthUnit property of
the spheroid input.

Data Types
single | double

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

xEast - Local ENU x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the local ENU system, returned
as a scalar value, vector, matrix, or N-D array.

yNorth - Local ENU y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the local ENU system, returned
as a scalar value, vector, matrix, or N-D array.

zUp - Local ENU z-coordinates
scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the local ENU system, returned
as a scalar value, vector, matrix, or N-D array.

See Also aer2ned | enu2aer

3-7

aer2geodetic

Purpose Local spherical AER to geodetic

Syntax [lat,lon,h] = aer2geodetic(az,elev,slantRange,lat0,lon0,h0,
spheroid)

[___] = aer2geodetic(___ ,angleUnits)

Description [lat,lon,h] =
aer2geodetic(az,elev,slantRange,lat0,lon0,h0,spheroid))
returns geodetic coordinates corresponding to coordinates az, elev,
slantRange in a local spherical system. Any of the first six numeric
input arguments can be scalar, even when the others are nonscalar; but
all nonscalar numeric arguments must match in size.

[___] = aer2geodetic(___ ,angleUnits) adds angleUnit which
specifies the units of inputs az, elev, lat0, lon0, and outputs lat,
lon.

Input
Arguments

az - Azimuth angles
scalar value | vector | matrix | N-D array

Azimuth angles in the local spherical system, specified as a scalar,
vector, matrix, or N-D array. Azimuths are measured clockwise
from north. Values must be in units that match the input argument
angleUnit, if supplied, and in degrees, otherwise.

Data Types
single | double

elev - Elevation angles
scalar value | vector | matrix | N-D array

Elevation angles in the local spherical system, specified as a scalar,
vector, matrix, or N-D array. Elevations are with respect to a plane
perpendicular to the spheroid surface normal. Values must be in units
that match the input argument angleUnit, if supplied, and in degrees,
otherwise.

3-8

aer2geodetic

Data Types
single | double

slantRange - Distances from local origin
scalar value | vector | matrix | N-D array

Distances from origin in the local spherical system, returned as a
scalar, vector, matrix, or N-D array. The straight-line, 3-D Cartesian
distance is used. Units are determined by the LengthUnit property of
the spheroid input.

Data Types
single | double

lat0 - Geodetic latitude of local origin
scalar value | vector | matrix | N-D array

Geodetic latitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lat0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

lon0 - Longitude of local origin
scalar value | vector | matrix | N-D array

Longitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lon0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

3-9

aer2geodetic

h0 - Ellipsoidal height of local origin
scalar value | vector | matrix | N-D array

Ellipsoidal height of local origin (reference) point(s), specified as a
scalar value, vector, matrix, or N-D array. In many cases there is one
origin (reference) point, and the value of h0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

lat - Geodetic latitudes
scalar value | vector | matrix | N-D array

Geodetic latitudes of one or more points, returned as a scalar value,
vector, matrix, or N-D array. Units are determined by the input
argument angleUnit, if supplied; values are in degrees, otherwise.
When in degrees, they lie in the closed interval [-90 90].

lon - Longitudes
scalar value | vector | matrix | N-D array

Longitudes of one or more points, returned as a scalar value, vector,
matrix, or N-D array. Units are determined by the input argument

3-10

aer2geodetic

angleUnit, if supplied; values are in degrees, otherwise. When in
degrees, they lie in the interval [-180 180].

h - Ellipsoidal heights
scalar value | vector | matrix | N-D array

Ellipsoidal heights of one or more points, returned as a scalar value,
vector, matrix, or N-D array. Units are determined by the LengthUnit
property of the spheroid object

Examples Zermatt to the Matterhorn

Compute the latitude, longitude and orthometric height of the summit
of the Matterhorn (Monte Cervino) from its azimuth, elevation and
(slant) range relative to Zermatt, Switzerland. All distances and lengths
are in meters.

Origin (reference point): Zermatt.

fmt = get(0,'Format');
format short g

lat0 = dm2degrees([46 1]) % convert degree-minutes to degrees
lon0 = dm2degrees([7 45])
hOrthometric0 = 1620;
hGeoid = 53;
h0 = hOrthometric0 + hGeoid

lat0 =

46.017

lon0 =

7.75

3-11

aer2geodetic

h0 =

1673

Azimuth, elevation, and slant range to Matterhorn summit.

az = 237.8;
elev = 18.755;
slantRange = 8871.7;

Latitude, longitude, and ellipsoidal height of summit.

[lat, lon, hEllipsoidal] = aer2geodetic(...
az, elev, slantRange, lat0, lon0, h0, wgs84Ellipsoid)

lat =

45.976

lon =

7.6583

hEllipsoidal =

4531

Orthometric height of summit.

hGeoid = 53;
hOrthometric = hEllipsoidal - hGeoid
format(fmt)

hOrthometric =

4478

3-12

aer2geodetic

See Also aer2ecef | enu2geodetic | geodetic2aer | ned2geodetic

3-13

aer2ned

Purpose Local spherical AER to local Cartesian NED

Syntax [xNorth,yEast,zDown] = aer2ned(az,elev,slantRange)
[___] = aer2ned(___ ,angleUnit)

Description [xNorth,yEast,zDown] = aer2ned(az,elev,slantRange) returns
coordinates in a local north—east—down (NED) Cartesian system
corresponding to coordinates az, elev, slantRange in a local spherical
system having the same origin. Any of the three numerical input
arguments can be scalar, even when the others are nonscalar; but all
nonscalar numeric arguments must match in size.

[___] = aer2ned(___ ,angleUnit) adds angleUnit which specifies
the units of inputs az and elev..

Input
Arguments

az - Azimuth angles
scalar value | vector | matrix | N-D array

Azimuth angles in the local spherical system, specified as a scalar,
vector, matrix, or N-D array. Azimuths are measured clockwise
from north. Values must be in units that match the input argument
angleUnit, if supplied, and in degrees, otherwise.

Data Types
single | double

elev - Elevation angles
scalar value | vector | matrix | N-D array

Elevation angles in the local spherical system, specified as a scalar,
vector, matrix, or N-D array. Elevations are with respect to a plane
perpendicular to the spheroid surface normal. Values must be in units
that match the input argument angleUnit, if supplied, and in degrees,
otherwise.

Data Types
single | double

3-14

aer2ned

slantRange - Distances from local origin
scalar value | vector | matrix | N-D array

Distances from origin in the local spherical system, returned as a
scalar, vector, matrix, or N-D array. The straight-line, 3-D Cartesian
distance is used. Units are determined by the LengthUnit property of
the spheroid input.

Data Types
single | double

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

xNorth - Local NED x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the local NED system, returned
as a scalar value, vector, matrix, or N-D array.

yEast - Local NED y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the local NED system, returned
as a scalar value, vector, matrix, or N-D array.

zDown - Local NED z-coordinates
scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the local NED system, returned
as a scalar value, vector, matrix, or N-D array.

See Also aer2enu | ned2aer

3-15

almanac

Purpose Parameters for Earth, planets, Sun, and Moon

Syntax almanac
almanac(body)
data = almanac(body,parameter)
data = almanac(body,parameter,units)
data = almanac(parameter,units,referencebody)

Description almanac is not recommended. Use earthRadius, referenceEllipsoid,
referenceSphere, or wgs84Ellipsoid instead.

almanac displays the names of the celestial objects available in the
almanac.

almanac(body) lists the options, or parameters, available for each
celestial body. Valid body strings are

'earth' 'pluto'
'jupiter' 'saturn'
'mars' 'sun'
'mercury' 'uranus'
'moon' 'venus'
'neptune'

data = almanac(body,parameter) returns the value of the requested
parameter for the celestial body specified by body.

Valid parameter strings are 'radius' for the planetary radius,
'ellipsoid' or 'geoid' for the two-element ellipsoid vector,
'surfarea' for the surface area, and 'volume' for the planetary
volume.

For the Earth, parameter can also be any valid predefined ellipsoid
string. In this case, the two-element ellipsoid vector for that ellipsoid
model is returned. Valid ellipsoid definition strings for the Earth are

'everest' 1830 Everest ellipsoid

'bessel' 1841 Bessel ellipsoid

3-16

almanac

'airy' 1830 Airy ellipsoid

'clarke66' 1866 Clarke ellipsoid

'clarke80' 1880 Clarke ellipsoid

'international' 1924 International ellipsoid

'krasovsky' 1940 Krasovsky ellipsoid

'wgs60' 1960 World Geodetic System ellipsoid

’iau65’ 1965 International Astronomical Union ellipsoid

'wgs66' 1966 World Geodetic System ellipsoid

'iau68' 1968 International Astronomical Union ellipsoid

'wgs72' 1972 World Geodetic System ellipsoid

'grs80' 1980 Geodetic Reference System ellipsoid

'wgs84' 1984 World Geodetic System ellipsoid

For the Earth, the parameter strings 'ellipsoid' and 'geoid' are
equivalent to'grs80'.

data = almanac(body,parameter,units) specifies the units to be
used for the output measurement, where units is any valid distance
units string. Note that these are linear units, but the result for surface
area is in square units, and for volume is in cubic units. The default
units are 'kilometers'.

data = almanac(parameter,units,referencebody) specifies the
source of the information. This sets the assumptions about the shape of
the celestial body used in the calculation of volumes and surface areas.
A referencebody string of 'actual' returns a tabulated value rather
than one dependent upon a ellipsoid model assumption. Other possible
referencebody strings are 'sphere' for a spherical assumption and
'ellipsoid' for the default ellipsoid model. The default reference body
is 'sphere'.

For the Earth, any of the preceding predefined ellipsoid definition
strings can also be entered as a reference body.

3-17

almanac

For Mercury, Pluto, Venus, the Sun, and the Moon, the eccentricity of
the ellipsoid model is zero, that is, the 'ellipsoid' reference body
is actually a sphere.

Tips Take care when using angular arc length units for distance
measurements. All planets have a radius of 1 radian, for example, and
an area unit of square degrees indicates unit squares, 1 degree of arc
length on a side, not 1-degree-by-1-degree quadrangles.

See Also distance | earthRadius | referenceEllipsoid | referenceSphere
| wgs84Ellipsoid

3-18

angl2str

Purpose Format angle strings

Syntax str = angl2str(angle)
str = angl2str(angle,signcode)
str = angl2str(angle,signcode,units)
str = angl2str(angle,signcode,units,n)

Description str = angl2str(angle) converts a numerical vector of angles in
degrees to a string matrix.

str = angl2str(angle,signcode) uses the string signcode to specify
the method for indicating that a given angle is positive or negative.
signcode may be one of the following:

'ew' east/west notation; trailing ’e’ (positive longitudes) or ’w’
(negative longitudes)

'ns' north/south notation; trailing ’n’ (positive latitudes) or
’s’ (negative latitudes)

'pm' plus/minus notation; leading ’+’ (positive angles) or ’-’
(negative angles)

'none' blank/minus notation; leading ’-’ for negative angles or
sign omitted for positive angles (the default value)

str = angl2str(angle,signcode,units) uses the string units to
indicate both the units in which angle is provided and to control the
output format. units can be 'degrees' (the default value), 'radians',
'degrees2dm', or 'degrees2dms'. units may be abbreviated and is
case-insensitive. The interpretations of units are as follows:

Units Units of Angle Output Format

'degrees' degrees decimal degrees

'degrees2dm' degrees degrees + decimal
minutes

3-19

angl2str

Units Units of Angle Output Format

'degrees2dms' degrees degrees + minutes +
decimal seconds

'radians' radians decimal radians

str = angl2str(angle,signcode,units,n) uses the integer n to
control the number of significant digits provided in the output. n is the
power of 10 representing the last place of significance in the number
of degrees, minutes, seconds, or radians -- for units of 'degrees’,
'degrees2dm', 'degrees2dms', and 'radians', respectively. For
example, if n = -2 (the default), angl2str rounds to the nearest
hundredth. If n = -0, angl2str rounds to the nearest integer. And if
n = 1, angl2str rounds to the tens place, although positive values
of n are of little practical use. In all cases, the interpretation of the
parameter n is consistent between angl2str and roundn.

Tips The purpose of this function is to make angular-valued variables into
strings suitable for map display. In general, the interpretation of the
parameter n by angl2str is consistent with that of roundn.

Examples Create a string matrix to represent a series of values in DMS units,
using the north-south format:

a = -3:1.5:3;
str = angl2str(a,'ns','degrees2dms',-3)

str =
3^{\circ} 00' 00.000" S
1^{\circ} 30' 00.000" S
0^{\circ} 00' 00.000"
1^{\circ} 30' 00.000" N
3^{\circ} 00' 00.000" N

These LaTeX strings are displayed (using either text or textm) as

3-20

angl2str

3” 00' 00.000" S
1” 30' 00.000" S
0” 00' 00.000"
1” 30' 00.000" N
3” 00' 00.000" N

See Also str2angle | dist2str

3-21

angledim

Purpose Convert angles units

Note The angledim function has been replaced by four, more specific,
functions: fromRadians, fromDegrees, toRadians, and toDegrees.
However, angledim will be maintained for backward compatibility.
The functions degtorad, radtodeg, and unitsratio provide additional
alternatives.

Syntax angleOut = angledim(angleIn,from,to)

Description angleOut = angledim(angleIn,from,to) returns the value of the
input angle angleIn, which is in units specified by the valid angle
units string from, in the desired units given by the valid angle units
string to. Angle units strings are 'degrees' for “decimal” degrees or
'radians' for radians

Examples Convert from degrees to radians:

angledim(23.45134,'degrees','radians')

ans =
0.4093

See Also degrees2dms | degtorad | fromDegrees | fromRadians | toDegrees |
toRadians | radtodeg | unitsratio

3-22

antipode

Purpose Point on opposite side of globe

Syntax [newlat,newlon] = antipode(lat,lon)
[newlat,newlon] = antipode(lat,lon,angleunits)

Description [newlat,newlon] = antipode(lat,lon) returns the geographic
coordinates of the points exactly opposite on the globe from the input
points given by lat and lon. All angles are in degrees.

[newlat,newlon] = antipode(lat,lon,angleunits) specifies
the input and output units with the string angleunits. The string
angleunits can be either 'degrees' or 'radians'. It can be
abbreviated and is case-insensitive.

Examples Example 1

Given a point (43ºN, 15ºE), find its antipode:

[newlat,newlong] = antipode(43,15)
newlat =

-43
newlong =

-165

or (43ºS, 165ºW).

Example 2

Perhaps the most obvious antipodal points are the North and South
Poles. The function antipode demonstrates this:

[newlat,newlong] = antipode(90,0,'degrees')
newlat =

-90
newlong =

180

Note that in this case longitudes are irrelevant because all meridians
converge at the poles.

3-23

antipode

Example 3

Find the antipode of the location of the MathWorks corporate
headquarters in Natick, Massachusetts. Map the headquarters location
and its antipode in an orthographic projection. Begin by specifying
latitude and longitude as degree-minutes-seconds and then convert
to decimal degrees.

mwlat = dms2degrees([42 18 2.5])
mwlon = dms2degrees([-71 21 7.9])

mwlat =
42.3007

mwlon =
-71.3522

[amwlat amwlon] = antipode(mwlat,mwlon)

amwlat =
-42.3007

amwlon =
108.6478

Prove that these points are antipodes:

dist = distance(mwlat,mwlon,amwlat,amwlon)

dist =
180.0000

The distance function shows them to be 180 degrees apart.

Generate a map centered on the original point:

subplot(1,2,1)
axesm ('MapProjection','ortho','origin',[mwlat mwlon],...

'frame','on','grid','on')
load coast
geoshow(lat,long,'displaytype','polygon')

3-24

antipode

geoshow(mwlat,mwlon,'Marker','o','Color','red')
s = ['Looking down at (' angl2str(mwlat,'ns') ...

',' angl2str(mwlon,'ew') ')'];
title(s)

Add a second map centered on the computed antipodal point:

subplot(1,2,2)
axesm ('MapProjection','ortho','origin',[amwlat amwlon],...

'frame','on','grid','on')
geoshow(lat,long,'displaytype','polygon')
geoshow(amwlat,amwlon,'Marker','o','Color','red')
t = ['Looking down at (' angl2str(amwlat,'ns') ...

',' angl2str(amwlon,'ew') ')'];
title(t)

3-25

arcgridread

Purpose Read gridded data set in Arc ASCII Grid Format

Syntax [Z,R] = arcgridread(filename)

Description [Z,R] = arcgridread(filename) reads a grid from a file in Arc
ASCII Grid format. Z is a 2-D array containing the data values. R is a
referencing matrix (see makrefmat). NaN is assigned to elements of V
corresponding to null data values in the grid file.

Examples [Z,R] = arcgridread('MtWashington-ft.grd');
mapshow(Z,R,'DisplayType','surface');
xlabel('x (easting in meters)'); ylabel('y (northing in meters)')
demcmap(Z)

% View the terrain in 3-D
axis normal; view(3); axis equal; grid on
zlabel('elevation in feet')

3-26

arcgridread

See Also makerefmat | mapshow | sdtsdemread

3-27

areaint

Purpose Surface area of polygon on sphere or ellipsoid

Syntax area = areaint(lat,lon)
area = areaint(lat,lon,ellipsoid)
area = areaint(lat,lon,units)
area = areaint(lat,lon,ellipsoid,units)

Description area = areaint(lat,lon) calculates the spherical surface area of the
polygon specified by the input vectors lat and lon. The calculation uses
a line integral approach. The output, area, is the fraction of surface
area covered by the polygon on a unit sphere. To supply multiple
polygons, separate the polygons by NaNs in the input vectors. Accuracy
of the integration method is inversely proportional to the distance
between lat/lon points.

area = areaint(lat,lon,ellipsoid) calculates the surface
area of the polygon on the ellipsoid or sphere defined by the input
ellipsoid, which can be a referenceSphere, referenceEllipsoid,
or oblateSpheroid object, or a vector of the form [semimajor_axis
eccentricity]. The output, area, is in squares units corresponding
to the units of ellipsoid.

area = areaint(lat,lon,units) uses the units defined by the input
string units. If omitted, default units of degrees are assumed.

area = areaint(lat,lon,ellipsoid,units) uses both the inputs
ellipsoid and units in the calculation.

Examples Consider the area enclosed by a 30º lune from pole to pole and bounded
by the prime meridian and 30ºE. You can use the function areaquad to
get an exact solution:

area = areaquad(90,0,-90,30)
area =

0.0833

3-28

areaint

This is 1/12 the spherical area. The more points used to define this
polygon, the more integration steps areaint takes, improving the
estimate. This first attempt takes a point every 30º of latitude:

lats = [-90:30:90,60:-30:-60]';
lons = [zeros(1,7), 30*ones(1,5)]';
area = areaint(lats,lons)
area =

0.0792

Now, calculate a better estimate, with one point every 1º of latitude:

lats = [-90:1:90,89:-1:-89]';
lons = [zeros(1,181), 30*ones(1,179)]';
area = areaint(lats,lons)
area =

0.0833

Algorithms This function enables the measurement of areas enclosed by arbitrary
polygons. This is a numerical estimate, using a line integral based on
Green’s Theorem. As such, it is limited by the accuracy and resolution
of the input data.

3-29

areaint

�����������	
������	������������	���	���	�����������	���	��������

��������������������	���������������������	���	�

Given sufficient data, the areaint function is the best method for
determining the areas of complex polygons, such as continents, cloud
cover, and other natural or derived features. The calculations in this
function employ a spherical Earth assumption. For nonspherical
ellipsoids, the latitude data is converted to the auxiliary authalic sphere.

See Also almanac | areamat | areaquad

3-30

areamat

Purpose Surface area covered by nonzero values in binary data grid

Syntax A = areamat(BW,R)
A = areamat(BW,refvec,ellipsoid)
[A, cellarea] = areamat(...)

Description A = areamat(BW,R) returns the surface area covered by the elements
of the binary regular data grid BW, which contain the value 1 (true). BW
can be the result of a logical expression such as BW = (topo > 0). R
can be a spatialref.GeoRasterReference object, a referencing vector,
or a referencing matrix.

If R is a spatialref.GeoRasterReference object, its
RasterSize property must be consistent with size(BW) and its
RasterInterpretation must be 'cells'.

If R is a referencing vector, it must be a 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to or from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel. Nearest-neighbor
interpolation is used by default. NaN is returned for points outside
the grid limits or for which lat or lon contain NaN. All angles are in
units of degrees.

The output A expresses surface area as a fraction of the surface area of
the unit sphere (4*pi), so the result ranges from 0 to 1.

A = areamat(BW,refvec,ellipsoid) calculates the surface area on
the ellipsoid or sphere defined by the input ellipsoid, which can
be a referenceSphere, referenceEllipsoid, or oblateSpheroid
object, or a vector of the form [semimajor_axis eccentricity]. The

3-31

areamat

units of the output, A, are the square of the length units in which the
semimajor axis is provided. For example, if ellipsoid is replaced with
wgs84Ellipsoid('kilometers'), then A is in square kilometers.

[A, cellarea] = areamat(...) returns a vector, cellarea,
describing the area covered by the data cells in BW. Because all the cells
in a given row are exactly the same size, only one value is needed per
row. Therefore cellarea has size M-by-1, where M = size(BW,1) is
the number of rows in BW.

Tips Given a regular data grid that is a logical 0-1 matrix, the areamat
function returns the area corresponding to the true, or 1, elements. The
input data grid can be a logical statement, such as (topo>0), which is 1
everywhere that topo is greater than 0 meters, and 0 everywhere else.
This is an illustration of that matrix:

This calculation is based on the areaquad function and is therefore
limited only by the granularity of the cellular data.

Examples load topo
area = areamat((topo>127),topolegend)

area =
0.2411

Approximately 24% of the Earth has an altitude greater than 127
meters. The surface area of this portion of the Earth in square
kilometers if a spherical ellipsoid is:

3-32

areamat

earth = referenceSphere('earth', 'km');
area = areamat((topo>127),topolegend,earth)

area =
1.2299e+08

To illustrate the cellarea output, consider a smaller map:

BW = ones(9,18);
refvec = [.05 90 0] % each cell 20x20 degrees
[area,cellarea] = areamat(BW,refvec)

area =
1.0000

cellarea =
0.0017
0.0048
0.0074
0.0091
0.0096
0.0091
0.0074
0.0048
0.0017

Each entry of cellarea represents the portion of the unit sphere’s total
area a cell in that row of BW would contribute. Since the column extends
from pole to pole in this case, it is symmetric.

See Also areaint | areaquad

3-33

areaquad

Purpose Surface area of latitude-longitude quadrangle

Syntax area = areaquad(lat1,lon1,lat2,lon2)
area = areaquad(lat1,lon1,lat2,lon2,ellipsoid)
area = areaquad(lat1,lon1,lat2,lon2,ellipsoid,units)

Description area = areaquad(lat1,lon1,lat2,lon2) returns the surface area
bounded by the parallels lat1 and lat2 and the meridians lon1 and
lon2. The output area is a fraction of the unit sphere’s area of 4π, so
the result ranges from 0 to 1.

area = areaquad(lat1,lon1,lat2,lon2,ellipsoid) allows the
specification of the ellipsoid model with ellipsoid. ellipsoid
is a referenceSphere, referenceEllipsoid, or oblateSpheroid
object, or a vector of the form [semimajor_axis eccentricity].
When ellipsoid is input, the resulting area is given in terms of
the (squared) units of the ellipsoid. For example, if the ellipsoid
referenceEllipsoid('grs80','kilometers') is used, the resulting
area is in km2.

area = areaquad(lat1,lon1,lat2,lon2,ellipsoid,units) specifies
the units of the inputs. The default is 'degrees'.

Definitions A latitude-longitude quadrangle is a region bounded by two meridians
and two parallels. In spherical geometry, it is the intersection of a lune
(a section bounded by two meridians) and a zone (a section bounded by
two parallels).

3-34

areaquad

Examples Find the fraction of the Earth’s surface that lies between 30ºN and 45ºN,
and also between 25ºW and 60ºE:

area = areaquad(30,-25,45,60)

area =
0.0245

Assuming a spherical ellipsoid, find the surface area of the Earth in
square kilometers.

earthellipsoid = referenceSphere('earth','km');
area = areaquad(-90,-180,90,180,earthellipsoid)

area =
5.1006e+08

For comparison,

earthellipsoid.SurfaceArea

3-35

areaquad

ans =
5.1006e+08

Algorithms The areaquad calculation is exact, being based on simple spherical
geometry. For nonspherical ellipsoids, the data is converted to the
auxiliary authalic sphere.

See Also almanac | areaint | areamat

3-36

avhrrgoode

Purpose Read AVHRR data product stored in Goode Projection

Syntax [latgrat,longrat,z] = avhrrgoode(region,filename)
[...] = avhrrgoode(region,filename,scalefactor)
[...] = avhrrgoode(region,filename,scalefactor,latlim,lonlim)
[...] = avhrrgoode(region,filename,scalefactor,latlim,lonlim,

gsize)
[...] = avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize,...
nrows,ncols)
[...] = avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize,...
nrows,ncols,resolution)
[...] = avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize,...
nrows,ncols,resolution,precision)

Description [latgrat,longrat,z] = avhrrgoode(region,filename) reads data
from an Advanced Very High Resolution Radiometer (AVHRR) data set
with a nominal resolution of 1 km that is stored in the Goode projection.
Data in this format includes a nondimensional vegetation index (NDVI)
and Global Land Cover Characteristics (GLCC) data sets. region is a
string that specifies the geographic coverage of the file. Valid region
strings are:

• 'g' or 'global'

• 'af' or 'africa'

• 'ap' or 'australia/pacific'

• 'ea' or 'eurasia'

• 'na' or 'north america'

• 'sa' or 'south america'

filename is a string specifying the name of the data file. Output Z is
a geolocated data grid with coordinates latgrat and longrat in units
of degrees. Z, latgrat, and longrat are of class double. Projected
coordinates that lie within the interrupted areas of the projection are
set to NaN. A scale factor of 100 is applied to the original data set, so
that Z contains every 100th point in both X and Y directions.

3-37

avhrrgoode

[...] = avhrrgoode(region,filename,scalefactor) uses the
integer scalefactor to downsample the data. A scale factor of 1
returns every point. A scale factor of 10 returns every 10th point. The
default value is 100.

[...] =
avhrrgoode(region,filename,scalefactor,latlim,lonlim) returns
data for the specified region. The returned data can extend somewhat
beyond the requested area. Limits are two-element vectors in units of
degrees, with latlim in the range [-90 90] and lonlim in the range
[-180 180]. latlim and lonlim must be ascending. If latlim and
lonlim are empty, the entire area covered by the data file is returned.
If the quadrangle defined by latlim and lonlim (when projected to
form a polygon in the appropriate Goode projection) fails to intersect
the bounding box of the data in the projected coordinates, then Z,
latgrat, and longrat are returned as empty.

[...] =
avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize)
controls the size of the graticule matrices. gsize is a two-element
vector containing the number of rows and columns desired. By default,
latgrat, and longrat have the same size as Z.

[...] =
avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize,...
nrows,ncols) overrides the dimensions for the standard file format for
the selected region. This syntax is useful for data stored on
CD-ROM, which may have been truncated to fit. Some global data
sets were distributed with 16347 rows and 40031 columns
of data on CD-ROMs. The default size for global data sets is
17347 rows and 40031 columns of data.

[...] =
avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize,...
nrows,ncols,resolution)reads a data set with the spatial resolution
specified in meters. Specify resolution as either 1000 or 8000
(meters). If empty, the full resolution of 1000 meters is assumed. Data
is also available at 8000-meter resolution. Nondimensional vegetation
index data at 8-km spatial resolution has 2168 rows and 5004 columns.

3-38

avhrrgoode

[...] =
avhrrgoode(region,filename,scalefactor,latlim,lonlim,gsize,...
nrows,ncols,resolution,precision) reads a data set expecting the
integer precision specified. If empty, 'uint8' is assumed. 'uint16'
is appropriate for some files. Check the metadata (.txt or README) file
in the GLCC ftp folder for specification of the file format and contents.
In either case, Z is converted to class double.

Background The United States maintains a family of satellite-based sensors to
measure climate change under the Earth Observing System (EOS)
program. The precursors to the EOS data are the data sets produced
by NOAA and NASA under the Pathfinder program. These are data
derived from the Advanced High Resolution Radiometer sensor flown
on the NOAA Polar Orbiter satellites, NOAA-7, -9, and -11, and have
spatial resolutions of about 1 km. The data from the AVHRR sensor is
processed into separate land, sea, and atmospheric indices. Land area
data is processed to a nondimensional vegetation index (NDVI) or land
cover classification and stored in binary files in the Plate Carrée, Goode,
and Lambert projections. Sea data is processed to surface temperatures
and stored in HDF formats. avhrrgoode reads land data saved in the
Goode projection with global and continental coverage at 1 km. It can
also read 8 km data with global coverage.

Tips This function reads the binary files as is. You should not use
byte-swapping software on these files.

The AVHRR project and data sets are described in and provided by
various U.S. Government Web sites. See the entry for Global Land
Cover Characteristics (GLCC) in the tech note referred to below.

Note For details on locating map data for download over the Internet,
see the following documentation at the MathWorks Web site:
http://www.mathworks.com/help/map/finding-geospatial-data.html
.

3-39

http://www.mathworks.com/help/map/finding-geospatial-data.html
http://www.mathworks.com/help/map/finding-geospatial-data.html

avhrrgoode

Limitations Most files store the data in scaled integers. Though this function returns
the data as double, the scaling from integer to float is not performed.
Check the data’s README file for the appropriate scaling parameters.

Examples Example 1 — Downsampled Classified Global GLCC
Coverage

Read and display every 50th point from the Global Land Cover
Characteristics (GLCC) file covering the entire globe with the USGS
classification scheme, named gusgs2_0g.img. (To run the example,
you must first download the file.)

[latgrat, longrat, Z] = avhrrgoode('global', ...
'gusgs2_0g.img',50);

% Convert the geolocated data grid to an geolocated image.
uniqueClasses = unique(Z);
RGB = ind2rgb8(uint8(Z), jet(numel(uniqueClasses)));

% Display the data as an image using the Goode projection.
origin = [0 0 0];
ellipsoid = [6370997 0];
figure('Renderer','zbuffer')
axesm('MapProjection', 'goode', 'Origin', origin, ...

'Geoid', ellipsoid)
geoshow(latgrat, longrat, RGB, 'DisplayType', 'image');
axis image off

% Plot the coastlines.
hold on
load coast
plotm(lat,long)

3-40

avhrrgoode

Example 2 — Classified GLCC Data for California

Read and display every point from the Global Land Cover
Characteristics (GLCC) file covering California with the USGS
classification scheme, named nausgs1_2g.img. You must first download
the file to run this example.

figure
usamap california
mstruct = gcm;
latlim = mstruct.maplatlimit;
lonlim = mstruct.maplonlimit;
scalefactor = 1;
[latgrat, longrat, Z] = ...

avhrrgoode('na', 'nausgs1_2g.img', scalefactor, latlim, lonlim);
geoshow(latgrat, longrat, Z, 'DisplayType', 'texturemap');

% Overlay vector data from usastatehi.shp.
california = shaperead('usastatehi', 'UseGeoCoords', true,...

'BoundingBox', [lonlim;latlim]);
geoshow([california.Lat], [california.Lon], 'Color', 'black');

3-41

avhrrgoode

See Also avhrrlambert

3-42

avhrrlambert

Purpose Read AVHRR data product stored in eqaazim projection

Syntax [latgrat,longrat,Z] = avhrrlambert(region,filename)
[...] = avhrrlambert(region,filename, scalefactor)
[...] = avhrrlambert(region,filename, scalefactor, latlim,

lonlim)
[...] = avhrrlambert(region,filename, scalefactor, latlim,

lonlim, gsize)
[...] = avhrrlambert(region,filename, scalefactor, latlim,

lonlim, gsize,precision)

Description [latgrat,longrat,Z] = avhrrlambert(region,filename) reads
data from an Advanced Very High Resolution Radiometer (AVHRR)
data set with a nominal resolution of 1 km that is stored in the Lambert
Equal Area Azimuthal projection. Data of this type includes the Global
Land Cover Characteristics (GLCC). region specifies the coverage of
the file. Valid regions are listed in the following table. filename is
a string specifying the name of the data file. Z is a geolocated data
grid with coordinates latgrat and longrat in units of degrees. A scale
factor of 100 is applied to the original data set such that Z contains
every 100th point in both X and Y.

Region Specifiers

'a' or 'asia'

'af' or 'africa'

'ap' or 'australia/pacific'

'e' or 'europe'

'na' or 'north america'

'sa' or 'south america'

[...] = avhrrlambert(region,filename, scalefactor) uses
the integer scalefactor to downsample the data. A scale factor of 1
returns every point. A scale factor of 10 returns every 10th point. The
default value is 100.

3-43

avhrrlambert

[...] = avhrrlambert(region,filename, scalefactor, latlim,
lonlim) returns data for the specified region. The result may extend
somewhat beyond the requested area. The limits are two-element
vectors in units of degrees, with latlim in the range [-90 90] and
lonlim in the range [-180 180]. If latlim and lonlim are empty,
the entire area covered by the data file is returned. If the quadrangle
defined by latlim and lonlim (when projected to form a polygon in the
appropriate Lambert Equal Area Azimuthal projection) fails to intersect
the bounding box of the data in the projected coordinates, then latgrat,
longrat, and Z are empty.

[...] = avhrrlambert(region,filename, scalefactor, latlim,
lonlim, gsize) controls the size of the graticule matrices. gsize is a
two-element vector containing the number of rows and columns desired.
If omitted or empty, a graticule the size of the grid is returned.

[...] = avhrrlambert(region,filename, scalefactor, latlim,
lonlim, gsize,precision) reads a data set with the integer
precision specified. If omitted, 'uint8' is assumed. 'uint16' is
appropriate for some files. Check the metadata (.txt or README) file
in the ftp folder for specification of the file format and contents.

Background The United States plans to build a family of satellite-based sensors
to measure climate change under the Earth Observing System (EOS)
program. Early precursors to the EOS data are the data sets produced
by NOAA and NASA under the Pathfinder program. These are data
derived from the Advanced High Resolution Radiometer sensor flown
on the NOAA Polar Orbiter satellites, NOAA-7, -9, and -11 with a
spatial resolution of about 1 km. The data from the AVHRR sensor is
processed into separate land, sea, and atmospheric indices. Land area
data is processed to a nondimensional vegetation index or land cover
classification and stored in binary files in the Plate Carrée, Goode, and
Lambert Equal Area Azimuthal projections. Sea data is processed to
surface temperatures and stored in HDF formats. This function reads
land cover data for the continents saved in the Lambert Equal Area
Azimuthal projection at 1 km.

3-44

avhrrlambert

Tips This function reads the binary files as is. You should not use
byte-swapping software on these files.

The AVHRR project and data sets are described in and provided by
various U.S. Government Web sites.

Note For details on locating map data for download over the
Internet, see the following documentation at the MathWorks Web site:
http://www.mathworks.com/help/map/finding-geospatial-data.html .

Examples Example 1

Read and display every 100th point from the Global Land Cover
Characteristics (GLCC) file covering North America with the USGS
classification scheme, named nausgs1_2l.img.

[latgrat, longrat, Z] = avhrrlambert('na','nausgs1_2l.img');

Display the data using the Lambert Equal Area Azimuthal projection.

origin = [50 -100 0];
ellipsoid = [6370997 0];
figure
axesm('MapProjection', 'eqaazim', 'Origin', ...

origin, 'Geoid', ellipsoid)
geoshow(latgrat, longrat, Z, 'DisplayType', 'texturemap');

3-45

http://www.mathworks.com/help/map/finding-geospatial-data.html

avhrrlambert

Example 2

Read and display every other point from the Global Land Cover
Characteristics (GLCC) file covering Europe with the USGS
classification scheme, named eausgs1_2le.img.

figure
worldmap france
mstruct = gcm;
latlim = mstruct.maplatlimit;
lonlim = mstruct.maplonlimit;
scalefactor = 2;
[latgrat, longrat, Z] = avhrrlambert('e', 'eausgs1_2le.img', ...

scalefactor, latlim, lonlim);
geoshow(latgrat, longrat, Z, 'DisplayType', 'texturemap');
geoshow('landareas.shp','FaceColor','none','EdgeColor','black')

3-46

avhrrlambert

See Also avhrrgoode

3-47

axes2ecc

Purpose Eccentricity of ellipse from axes lengths

Syntax ecc = axes2ecc(semimajor,semiminor)
ecc = axes2ecc(vec)

Description ecc = axes2ecc(semimajor,semiminor) computes the eccentricity of
an ellipse (or ellipsoid of revolution) given the semimajor and semiminor
axes. The input data can be scalar or matrices of equal dimensions.

ecc = axes2ecc(vec) assumes a 2 element vector (vec) is supplied,
where vec = [semimajor semiminor].

See Also ecc2flat | ecc2n | majaxis | minaxis

3-48

axesm

Purpose Define map axes and set map properties

Syntax axesm
axesm(PropertyName,PropertyValue,...)
axesm(projid,PropertyName,PropertyValue,...)

Description axesm with no input arguments, initiates the axesmui map axes
graphical user interface, which can be used to set map axes properties.
This is detailed on the axesmui reference page.

axesm(PropertyName,PropertyValue,...) creates a map axes using
the specified properties. Properties may be specified in any order, but
the MapProjection property must be included.

axesm(projid,PropertyName,PropertyValue,...) uses the string
projid to designate which map projection to use. projid should match
one of the entries in the last column displayed by the maps function.
You can also find a list of these strings in the User’s Guide section
“Summary and Guide to Projections”.

The axesm function creates a map axes into which both vector and
raster geographic data can be projected using functions such as plotm
and geoshow. Properties specific to map axes can be assigned upon
creation with axesm, and for an existing map axes they can be queried
and changed using getm and setm. Use the standard get and set
methods to query and control the standard MATLAB® axes properties
of a map axes.

Axes
Definition

Map axes are standard MATLAB axes with different default settings
for some properties and a MATLAB structure for storing projection
parameters and other data. The main differences in default settings are

• Axes properties XGrid, YGrid, XTick, YTick are set to 'off'.

• The properties XColor, YColor, and ZColor are set to the background
color.

• The hold mode is 'on'.

3-49

axesm

The map projection structure stores the map axes properties, which, in
addition to the special standard axes settings described here, allow
Mapping Toolbox functions to recognize an axes or an opened FIG-file
as a map axes. See “Map Axes Object Properties” on page 3-51, below,
for descriptions of the map axes properties.

Note In general, after re-opening a saved figure that contains a map
axes, you should not attempt to modify the projection properties of
that map axes.

Note When you create a map axes with axesm and right click in
the axes, a context menu appears. If you do not need the menu or it
interferes with your application, you can disable it by resetting the
'ButtonDownFcn' property of the axes:

ax = axesm('mercator'); % Right-clicking brings up context menu.
set(ax,'ButtonDownFcn',[]) % Context menu has been disabled.

Examples Create map axes for a Mercator projection, with selected latitude limits:

axesm('MapProjection','mercator','MapLatLimit',[-70 80])

In the preceding example, all properties not explicitly addressed in the
call are set to either fixed or calculated defaults. The file mercator.m
defines a projection function, so the same result could have been
achieved with the function

axesm('mercator','MapLatLimit',[-70 80])

Each projection function includes default values for all properties. Any
following property name/property value pairs are treated as overrides.

3-50

axesm

In either of the above examples, data displayed in the given map axes
is in a Mercator projection. Any data falling outside the prescribed
limits is not displayed.

Note The names of projection files are case sensitive. The projection
files included in Mapping Toolbox software use only lowercase letters
and Arabic numerals.

Map Axes
Object
Properties

• “Properties That Control the Map Projection” on page 3-51

• “Properties That Control the Frame” on page 3-56

• “Properties That Control the Grid” on page 3-59

• “Properties That Control Grid Labeling” on page 3-62

Properties That Control the Map Projection

AngleUnits
{degrees} | radians

Angular unit of measure — Controls the units of measure used
for angles (including latitudes and longitudes) in the map axes.
All input data are assumed to be in the given units; 'degrees' is
the default. For more information on angle units, see “Working
with Angles: Units and Representations” in the Mapping Toolbox
User’s Guide.

Aspect
{normal} | transverse

Display aspect — Controls the orientation of the base projection
of the map. When the aspect is 'normal' (the default), north in
the base projection is up. In a transverse aspect, north is to the
right. A cylindrical projection of the whole world would look like
a landscape display under a 'normal' aspect, and like a portrait
under a 'transverse' aspect. Note that this property is not

3-51

axesm

the same as projection aspect, which is controlled by the Origin
property vector discussed later.

FalseEasting
scalar {0}

Coordinate shift for projection calculations — Modifies the
position of the map within the axes. The projected coordinates are
shifted in the x-direction by the amount of FalseEasting. The
FalseEasting is in the same units as the projected coordinates,
that is, the units of the first element of the Geoid map axes
property. False eastings and northings are sometimes used to
ensure nonnegative values of the projected coordinates. For
example, the Universal Transverse Mercator uses a false easting
of 500,000 meters.

FalseNorthing
scalar {0}

Coordinate shift for projection calculations — Modifies the
position of the map within the axes. The projected coordinates are
shifted in the y-direction by the amount of FalseNorthing. The
FalseNorthing is in the same units as the projected coordinates,
that is, the units of the first element of the Geoid map axes
property. False eastings and northings are sometimes used to
ensure nonnegative values of the projected coordinates. For
example, the Universal Transverse Mercator uses a false northing
of 0 in the northern hemisphere and 10,000,000 meters in the
southern.

FixedOrient
scalar {[]} (read-only)

Projection-based orientation— This read-only property fixes the
orientation of certain projections (such as the Cassini and Wetch).
When empty, which is true for most projections, the user can alter
the orientation of the projection using the third element of the
Origin property. When fixed, the fixed orientation is always used.

3-52

axesm

Geoid
[semimajor_axis eccentricity] or spheroid object

Reference spheroid definition — The spheroid (ellipsoid or
sphere) for calculating the projections of any displayed map
objects. It can be an referenceSphere, referenceEllipsoid, or
oblateSpheroid object, or a vector of the form [semimajor_axis
eccentricity]. The default value is an ellipsoid vector representing
the unit sphere: [1 0].

MapLatLimit
[southern_limit northern_limit]

Geographic latitude limits of the display area — Expressed
as a two element vector of the form [southern_limit
northern_limit]. This property can be set for many typical
projections and geometries, but cannot be used with oblique
projections or with globe, for example. When applicable, the
MapLatLimit property may affect the origin latitude if the
Origin property is not set explicitly when calling axesm. It may
also determine the value used for FLatLimit. See “Accessing
and Manipulating Map Axes Properties” for a more complete
description of the applicability of MapLatLimit and its interaction
with the origin, frame limits, and other properties.

MapLonLimit
[western_limit eastern_limit]

Geographic longitude limits of the display area— Expressed as a
two element vector of the form [western_limit eastern_limit].
This property can be set for many typical projections and
geometries, but cannot be used with oblique projections or with
globe, for example. When applicable, the MapLonLimit property
may affect the origin longitude if the Origin property is not set
explicitly when calling axesm. It may also determine the value
used for FLonLimit. See “Accessing and Manipulating Map Axes
Properties” for a more complete description of the applicability of

3-53

axesm

MapLonLimit and its interaction with the origin, frame limits,
and other properties.

MapParallels
[lat] | [lat1 lat2]

Projection standard parallels — Sets the standard parallels
of projection. It can be an empty, one-, or two-element vector,
depending upon the projection. The elements are in the same
units as the map axes AngleUnits. Many projections have
specific, defining standard parallels. When a map axes object is
based upon one of these projections, the parallels are set to the
appropriate defaults. For conic projections, the default standard
parallels are set to 15ºN and 75ºN, which biases the projection
toward the northern hemisphere.

For projections with one defined standard parallel, setting the
parallels to an empty vector forces recalculation of the parallel to
the middle of the map latitude limits. For projections requiring
two standard parallels, setting the parallels to an empty vector
forces recalculation of the parallels to one-sixth the distance from
the latitude limits (e.g., if the map latitude limits correspond to
the northern hemisphere [0 90], the standard parallels for a
conic projection are set to [15 75]). For azimuthal projections,
the MapParallels property always contains an empty vector and
cannot be altered.

See the Mapping Toolbox User’s Guide for more information on
standard parallels.

MapProjection
projection_name {no default}

Map projection—Sets the projection, and hence all transformation
calculations, for the map axes object. It is required in the creation
of map axes. It must be a member of the recognized projection set,
which you can list by typing getm('MapProjection') or maps.
For more information on projections, see the Mapping Toolbox

3-54

axesm

User’s Guide. Some projections set their own defaults for other
properties, such as parallels and trim limits.

Origin
[latitude longitude orientation]

Origin and orientation for projection calculations— Sets the map
origin for all projection calculations. The latitude, longitude, and
orientation should be in the map axes AngleUnits. Latitude and
longitude refer to the coordinates of the map origin; orientation
refers to an angle of skewness or rotation about the axis running
through the origin point and the center of the earth. The default
origin is 0º latitude and a longitude centered between the map
longitude limits. If a scalar is entered, it is assumed to refer
to the longitude; if a two-element vector is entered, the default
orientation is 0º, a normal projection. If an empty origin vector is
entered, the origin is centered on the map longitude limits. For
more information on the origin, see the Mapping Toolbox User’s
Guide.

Parallels
0, 1, or 2 (read-only, projection-dependent)

Number of standard parallels— This read-only property contains
the number of standard parallels associated with the projection.
See the Mapping Toolbox User’s Guide for more information on
standard parallels.

ScaleFactor
scalar {1}

Scale factor for projection calculations — Modifies the size of
the map in projected coordinates. The geographic coordinates
are transformed to Cartesian coordinates by the map projection
equations and multiplied by the scale factor. Scale factors
are sometimes used to minimize the scale distortion in a map
projection. For example, the Universal Transverse Mercator uses

3-55

axesm

a scale factor of 0.996 to shift the line of zero scale distortion to
two lines on either side of the central meridian.

Zone
ZoneSpec | {[] or 31N}

Zone for certain projections — Specifies the zone for certain
projections. A zone is a region on the globe that has a special
set of projection parameters. In the Universal Transverse
Mercator Projection, the world is divided into quadrangles that
are generally 6 degrees wide and 8 degrees tall. The number
in the zone designation refers to the longitude range, while the
letter refers to the latitude range. Most projections use the same
parameters for the entire globe, and do not require a zone.

Properties That Control the Frame

Frame
on | {off}

Frame visibility— Controls the visibility of the display frame box.
When the frame is 'off' (the default), the frame is not displayed.
When the frame is 'on', an enclosing frame is visible. The
frame is a patch that is plotted as the lowest layer of displayed
map objects. Regardless of its display status, the frame always
operates in terms of trimming map data.

FFill
scalar plotting point density {100}

Frame plotting precision— Sets the number of points to be used
in plotting the frame for display. The default value is 100, which
for a rectangular frame results in a plot with 100 points for each
side, or a total of 400 points. The number of points required
for a reasonable display varies with the projection. Cylindrical
projections such as the Miller require very few. Projections
resulting in more complex frames, such as the Werner, look better
with higher densities. The default value is generally sufficient.

3-56

axesm

FEdgeColor
ColorSpec | {[0 0 0]}

Color of the displayed frame edge — Specifies the color used for
the displayed frame. You can specify a color using a vector of RGB
values or a MATLAB colorspec name. By default, the frame
edge is displayed in black ([0 0 0]).

FFaceColor
ColorSpec | {none}

Color of the displayed frame face — Specifies the color used for
the displayed frame face. You can specify a color using a vector
of RGB values or a MATLAB colorspec name. By default, the
frame face is 'none', meaning no face color is filled in. Another
useful color is 'cyan' ([0 1 1]), which looks like water.

FLatLimit
[southern_limit northern_limit]

Latitude limits of map frame relative to projection origin — The
map frame encloses the area in which data and graticule lines
are plotted and beyond which they are trimmed. For non-oblique
and non-azimuthal projections, which have quadrangular frames,
this property controls the north-south extent of the frame. If a
projection is made oblique by the inclusion of a non-zero rotation
angle (the third element of the Origin vector), FLatLimit still
applies, but in the rotated latitude-longitude system rather than
in the geographic system. In the case of azimuthal projections,
which have circular frames, FLatLimit takes the special form
[-Inf radius] where radius is the spherical distance (in
degrees or radians, depending on the AngleUnits property of the
projection) from the projection origin to the edge of the frame.

3-57

axesm

Note In most common situations, including non-oblique
cylindrical and conic projections and polar azimuthal projections,
there is no need to set FLatLimit; use MapLatLimit instead.

FLineWidth
scalar {2}

Frame edge line width — Sets the line width of the displayed
frame edge. The value is a scalar representing points, which is 2
by default.

FLonLimit
[western_limit eastern_limit]

Latitude limits of map frame relative to projection origin — The
map frame encloses the area in which data and graticule lines
are plotted and beyond which they are trimmed. For non-oblique
and non-azimuthal projections, which have quadrangular frames,
this property controls the east-west extent of the frame. If a
projection is made oblique by the inclusion of a non-zero rotation
angle (the third element of the Origin vector), FLonLimit still
applies, but in the rotated latitude-longitude system rather than
in the geographic system. The FLonLimit property is ignored
for azimuthal projections.

Note In most common situations, including non-oblique
cylindrical and conic projections, there is no need to set
FLonLimit; use MapLonLimit instead.

TrimLat
[southern_limit northern_limit]
(read-only, projection-dependent)

3-58

axesm

Bounds on FLatLimit— This read-only property sets bounds on
the values that axesm and setm will accept for the MapLatLimit
and FLatLimit properties, which is necessary because some map
projections cannot display the entire globe without extending to
infinity. For example, TrimLat is [-90 90] degrees for most
cylindrical projections and [-86 86] degrees for the Mercator
projection because the north-south scale becomes infinite as one
approaches either pole.

TrimLon
[western_limit eastern_limit]
(read-only, projection-dependent)

Bounds on FLonLimit— This read-only property sets bounds on
the values that axesm and setm will accept for the MapLonLimit
and FLonLimit properties, which is necessary because some map
projections cannot display the entire globe without extending to
infinity. For example, TrimLon is [-135 135] degrees for most
conic projections.

Properties That Control the Grid

Grid
on | {off}

Grid visibility— Controls the visibility of the display grid. When
the grid is 'off' (the default), the grid is not displayed. When
the grid is 'on', meridians and parallels are visible. The grid is
plotted as a set of line objects.

GAltitude
scalar z-axis value {Inf}

Grid z-axis setting — Sets the z-axis location for the grid when
displayed. Its default value is infinity, which is displayed above
all other map objects. However, you can set this to some other
value for stacking objects above the grid, if desired.

3-59

axesm

GColor
ColorSpec | {[0 0 0]}

Color of the displayed grid — Specifies the color used for the
displayed grid. You can specify a color using a vector of RGB
values or one of the MATLAB colorspec names. By default, the
map grid is displayed in black ([0 0 0]).

GLineStyle
LineStyle {:}

Grid line style— Determines the style of line used when the grid
is displayed. You can specify any line style supported by the
MATLAB line function. The default line style is a dotted line
(that is, ':').

GLineWidth
scalar {0.5}

Grid line width — Sets the line width of the displayed grid. The
value is a scalar representing points, which is 0.5 by default.

MLineException
vector of longitudes {[]}

Exceptions to grid meridian limits— Allows specific meridians of
the displayed grid to extend beyond the grid meridian limits to the
poles. The value must be a vector of longitudes in the appropriate
angle units. For longitudes so specified, grid lines extend from
pole to pole regardless of the existence of any grid meridian limits.
This vector is empty by default.

MLineFill
scalar plotting point density {100}

Grid meridian plotting precision— Sets the number of points to
be used in plotting the grid meridians. The default value is 100
points. The number of points required for a reasonable display
varies with the projection. Cylindrical projections such as the

3-60

axesm

Miller require very few. Projections resulting in more complex
shapes, such as the Werner, look better with higher densities.
The default value is generally sufficient.

MLineLimit
[north south] | [south north] {[]}

Grid meridian limits — Establishes latitudes beyond which
displayed grid meridians do not extend. By default, this property
is empty, so the meridians extend to the poles. There are two
exceptions to the meridian limits. No meridian extends beyond
the map latitude limits, and exceptions to the meridian limits for
selected meridians are allowed (see above).

MLineLocation
scalar interval or specific vector {30º}

Grid meridian interval or specific locations — Establishes the
interval between displayed grid meridians. When a scalar
interval is entered in the map axes MLineLocation, meridians are
displayed, starting at 0º longitude and repeating every interval
in both directions, which by default is 30º. Alternatively, you can
enter a vector of longitudes, in which case a meridian is displayed
for each element of the vector.

PLineException
vector of latitudes {[]}

Exceptions to grid parallel limits— Allows specific parallels of the
displayed grid to extend beyond the grid parallel limits to the
International Date Line. The value must be a vector of latitudes
in the appropriate angle units. For latitudes so specified, grid
lines extend from the western to the eastern map limit, regardless
of the existence of any grid parallel limits. This vector is empty
by default.

PLineFill
scalar plotting point density {100}

3-61

axesm

Grid parallel plotting precision— Sets the number of points to be
used in plotting the grid parallels. The default value is 100. The
number of points required for a reasonable display varies with
the projection. Cylindrical projections such as the Miller require
very few. Projections resulting in more complex shapes, such as
the Bonne, look better with higher densities. The default value is
generally sufficient.

PLineLimit
[east west] | [west east] {[]}

Grid parallel limits — Establishes longitudes beyond which
displayed grid parallels do not extend. By default, this property
is empty, so the parallels extend to the date line. There are two
exceptions to the parallel limits. No parallel extends beyond the
map longitude limits, and exceptions to the parallel limits for
selected parallels are allowed (see above).

PLineLocation
scalar interval or specific vector {15º}

Grid parallel interval or specific locations — Establishes the
interval between displayed grid parallels. When a scalar
interval is entered in the map axes PLineLocation, parallels are
displayed, starting at 0º latitude and repeating every interval in
both directions, which by default is 15º. Alternatively, you can
enter a vector of latitudes, in which case a parallel is displayed
for each element of the vector.

Properties That Control Grid Labeling

FontAngle
{normal} | italic | oblique

Select italic or normal font for all grid labels — Selects the
character slant for all displayed grid labels. 'normal' specifies
nonitalic font. 'italic' and 'oblique' specify italic font.

3-62

axesm

FontColor
ColorSpec | {black}

Text color for all grid labels— Sets the color of all displayed grid
labels. ColorSpec is a three-element vector specifying an RGB
triple or a predefined MATLAB color string (colorspec).

FontName
courier | {helvetica} | symbol | times

Font family name for all grid labels — Sets the font for all
displayed grid labels. To display and print properly, FontName
must be a font that your system supports.

FontSize
scalar in units specified in FontUnits {9}

Font size — An integer specifying the font size to use for all
displayed grid labels, in units specified by the FontUnits
property. The default point size is 9.

FontUnits
{points} | normalized | inches | centimeters | pixels

Units used to interpret the FontSize property — When set to
normalized, the toolbox interprets the value of FontSize as a
fraction of the height of the axes. For example, a normalized
FontSize of 0.1 sets the text characters to a font whose height
is one-tenth of the axes’ height. The default units (points) are
equal to 1/72 of an inch.

FontWeight
bold | {normal}

Select bold or normal font — The character weight for all
displayed grid labels.

LabelFormat
{compass} | signed | none

3-63

axesm

Labeling format for grid— Specifies the format of the grid labels.
If 'compass' is employed (the default), meridian labels are
suffixed with an “E” for east and a “W” for west, and parallel
labels are suffixed with an “N” for north and an “S” for south.
If 'signed' is used, meridian labels are prefixed with a “+” for
east and a “-” for west, and parallel labels are suffixed with a
“+” for north and a “-” for south. If 'none' is selected, straight
latitude and longitude numerical values are employed, so western
meridian labels and southern parallel labels will have a “-”, but no
symbol precedes eastern and northern (positive) labels.

LabelRotation
on | {off}

Label Rotation— Determines whether the meridian and parallel
labels are displayed without rotation (the default) or rotated to
align to the graticule. This option is not available for the Globe
display.

LabelUnits
{degrees} | dm | dms | radians

Specify units and formatting for grid labels — The display of
meridian and parallel labels is controlled by the map axes
LabelUnits property, as described in the following table.

LabelUnits value Label format

'degrees' decimal degrees

'dm' degrees/decimal minutes

'dms' degrees/minutes/decimal seconds

'radians' decimal radians

LabelUnits does not have a default of its own; instead it
defaults to the value of AngleUnits at the time the map axes is
constructed, which itself defaults to degrees. Although you can
specify 'dm' and 'dms' for LabelUnits, these values are not
accepted when setting AngleUnits.

3-64

axesm

MeridianLabel
on | {off}

Toggle display of meridian labels — Specifies whether the
meridian labels are visible or not.

MLabelLocation
scalar interval or vector of longitudes

Specify meridians for labeling — Meridian labels need not
coincide with the displayed meridian lines. Labels are displayed
at intervals if a scalar in the map axes MLabelLocation is
entered, starting at the prime meridian and repeating at every
interval in both directions. If a vector of longitudes is entered,
labels are displayed at those meridians. The default locations
coincide with the displayed meridian lines, as specified in the
MLineLocation property.

MLabelParallel
{north} | south | equator | scalar latitude

Specify parallel for meridian label placement — Specifies the
latitude location of the displayed meridian labels. If a latitude is
specified, all meridian labels are displayed at that latitude. If
'north' is specified, the maximum of the MapLatLimit is used; if
'south' is specified, the minimum of the MapLatLimit is used. If
'equator' is specified, a latitude of 0º is used.

MLabelRound
integer scalar {0}

Specify significant digits for meridian labels— Specifies to which
power of ten the displayed labels are rounded. For example, if
MLabelRound is -1, labels are displayed down to the tenths. The
default value of MLabelRound is 0; that is, displayed labels have
no decimal places, being rounded to the ones column (100).

ParallelLabel
on | {off}

3-65

axesm

Toggle display of parallel labels— Specifies whether the parallel
labels are visible or not.

PLabelLocation
scalar interval or vector of latitudes

Specify parallels for labeling— Parallel labels need not coincide
with the displayed parallel lines. Labels are displayed at intervals
if a scalar in the map axes PLabelLocation is entered, starting
at the equator and repeating at every interval in both directions.
If a vector of latitudes is entered, labels are displayed at those
parallels. The default locations coincide with the displayed
parallel lines, as specified in the PLineLocation property.

PLabelMeridian
east | {west} | prime | scalar longitude

Specify meridian for parallel label placement — Specifies the
longitude location of the displayed parallel labels. If a longitude
is specified, all parallel labels are displayed at that longitude. If
'east' is specified, the maximum of the MapLonLimit is used; if
'west' is specified, the minimum of the MapLonLimit is used. If
'prime' is specified, a longitude of 0º is used.

PLabelRound
integer scalar {0}

Specify significant digits for parallel labels — Specifies to which
power of ten the displayed labels are rounded. For example, if
PLabelRound is -1, labels are displayed down to the tenths. The
default value of PLabelRound is 0; that is, displayed labels have
no decimal places, being rounded to the ones column (100).

See Also axes | gcm | getm | setm

3-66

axesscale

Purpose Resize axes for equivalent scale

Syntax axesscale
axesscale(hbase)
axesscale(hbase,hother)

Description axesscale resizes all axes in the current figure to have the same scale
as the current axes (gca). In this context, scale means the relationship
between axes x- and y-coordinates and figure and paper coordinates.
When axesscale is used, a unit of length in x and y is printed and
displayed at the same size in all the affected axes. The XLimMode and
YLimMode of the axes are set to 'manual' to prevent autoscaling from
changing the scale.

axesscale(hbase) uses the axes hbase as the reference axes, and
rescales the other axes in the current figure.

axesscale(hbase,hother) uses the axes hbase as the base axes, and
rescales only the axes in hother.

Examples Display the conterminous United States, Alaska, and Hawaii in
separate axes in the same figure, with a common scale.

% Read state names and coordinates, extract Alaska and Hawaii
states = shaperead('usastatehi', 'UseGeoCoords', true);
statenames = {states.Name};
alaska = states(strcmp('Alaska', statenames));
hawaii = states(strcmp('Hawaii', statenames));

% Create a figure for the conterminous states
f1 = figure; hconus = usamap('conus'); tightmap
geoshow(states, 'FaceColor', [0.5 1 0.5]);
framem off; gridm off; mlabel off; plabel off
load conus gtlakelat gtlakelon
geoshow(gtlakelat, gtlakelon,...

'DisplayType', 'polygon', 'FaceColor', 'cyan')
gridm off;

3-67

axesscale

% Working figure for additional calls to usamap
f2 = figure('Visible','off');

halaska = axes; usamap('alaska'); tightmap;
geoshow(alaska, 'FaceColor', [0.5 1 0.5]);
gridm off;
framem off; mlabel off; plabel off; gridm off;
set(halaska,'Parent',f1)

hhawaii = axes; usamap('hawaii'); tightmap;
geoshow(hawaii, 'FaceColor', [0.5 1 0.5]);
gridm off;
framem off; mlabel off; plabel off; gridm off;
set(hhawaii,'Parent',f1)

close(f2)

% Arrange the axes as desired
set(hconus,'Position',[0.1 0.25 0.85 0.6])
set(halaska,'Position',[0.019531 -0.020833 0.2 0.2])
set(hhawaii,'Position',[0.5 0 .2 .2])

% Resize alaska and hawaii axes
axesscale(hconus)
hidem([halaska hhawaii])

3-68

axesscale

Limitations The equivalence of scales holds only as long as no commands are issued
that can change the scale of one of the axes. For example, changing
the units of the ellipsoid or the scale factor in one of the axes would
change the scale.

Tips To ensure the same map scale between axes, use the same ellipsoid
and scale factors.

See Also paperscale

3-69

azimuth

Purpose Azimuth between points on sphere or ellipsoid

Syntax az = azimuth(lat1,lon1,lat2,lon2)
az = azimuth(lat1,lon1,lat2,lon2,ellipsoid)
az = azimuth(lat1,lon1,lat2,lon2,units)
az = azimuth(lat1,lon1,lat2,lon2,ellipsoid,units)
az = azimuth(track,...)

Description az = azimuth(lat1,lon1,lat2,lon2) calculates the great circle
azimuth from point 1 to point 2, for pairs of points on the surface of a
sphere. The input latitudes and longitudes can be scalars or arrays of
matching size. If you use a combination of scalar and array inputs,
the scalar inputs will be automatically expanded to match the size of
the arrays. The function measures azimuths clockwise from north and
expresses them in degrees or radians.

az = azimuth(lat1,lon1,lat2,lon2,ellipsoid) computes the
azimuth assuming that the points lie on the ellipsoid defined
by the input ellipsoid. ellipsoid is a referenceSphere,
referenceEllipsoid, or oblateSpheroid object, or a vector of the
form [semimajor_axis eccentricity]. The default ellipsoid is a unit
sphere.

az = azimuth(lat1,lon1,lat2,lon2,units) uses the input string
units to define the angle units of az and the latitude-longitude
coordinates. Use 'degrees' (the default value), in the range from 0 to
360, or 'radians', in the range from 0 to 2*pi.

az = azimuth(lat1,lon1,lat2,lon2,ellipsoid,units) specifies
both the ellipsoid vector and the units of az.

az = azimuth(track,...) uses the input string track to specify
either a great circle or a rhumb line azimuth calculation. Enter 'gc' for
the track string (the default value), to obtain great circle azimuths for
a sphere or geodesic azimuths for an ellipsoid. (Hint to remember string
name: the letters “g” and “c” are in both great circle and geodesic.)
Enter 'rh' for the track string to obtain rhumb line azimuths for
either a sphere or an ellipsoid.

3-70

azimuth

Definitions Azimuth

An azimuth is the angle at which a smooth curve crosses a meridian,
taken clockwise from north. The North Pole has an azimuth of 0º from
every other point on the globe. You can calculate azimuths for great
circles or rhumb lines.

Geodesic

A geodesic is the shortest distance between two points on a curved
surface, such as an ellipsoid.

Great Circle

A great circle is a type of geodesic that lies on a sphere. It is the
intersection of the surface of a sphere with a plane passing through the
center of the sphere. For great circles, the azimuth is calculated at the
starting point of the great circle path, where it crosses the meridian. In
general, the azimuth along a great circle is not constant.

Rhumb Line

A rhumb line is a curve that crosses each meridian at the same angle.
For rhumb lines, the azimuth is the constant angle between true north
and the entire rhumb line passing through the two points.

For more information on the distinction between great circles and
rhumb lines, see “Great Circles, Rhumb Lines, and Small Circles” in the
Mapping Toolbox documentation.

Examples Find the azimuth between two points on the same parallel, for example,
(10ºN, 10ºE) and (10ºN, 40ºE). The azimuth between two points depends
on the track string selected.

% Try the 'gc' track string.
az = azimuth('gc',10,10,10,40)

% Compare to the result obtained from the 'rh' track string.
az = azimuth('rh',10,10,10,40)

3-71

azimuth

Find the azimuth between two points on the same meridian, say (10ºN,
10ºE) and (40ºN, 10ºE):

% Try the 'gc' track string.
az = azimuth(10,10,40,10)

% Compare to the 'rh' track string.
az = azimuth('rh',10,10,40,10)

Rhumb lines and great circles coincide along meridians and the
Equator. The azimuths are the same because the paths coincide.

Algorithms Azimuths over Long Geodesics

Azimuth calculations for geodesics degrade slowly with increasing
distance and can break down for points that are nearly antipodal or for
points close to the Equator. In addition, for calculations on an ellipsoid,
there is a small but finite input space. This space consists of pairs of
locations in which both points are nearly antipodal and both points
fall close to (but not precisely on) the Equator. In such cases, you will
receive a warning and az will be set to NaN for the “problem pairs.”

Eccentricity

Geodesic azimuths on an ellipsoid are valid only for small eccentricities
typical of the Earth (for example, 0.08 or less).

Alternatives If you are calculating both the distance and the azimuth, you can call
just the distance function. The function returns the azimuth as the
second output argument. It is unnecessary to call azimuth separately.

See Also distance | elevation | reckon | track | track1 | track2

3-72

bufferm

Purpose Buffer zones for latitude-longitude polygons

Syntax [latb,lonb] = bufferm(lat,lon,bufwidth)
[latb,lonb] = bufferm(lat,lon,bufwidth,direction)
[latb,lonb] = bufferm(lat,lon,dist,direction,npts)

Description [latb,lonb] = bufferm(lat,lon,bufwidth) computes the buffer
zone around a line or polygon. If the vectors lat and lon, in units
of degrees, define a line, then latb and lonb define a polygon that
contains all the points that fall within a certain distance, bufwidth,
of the line. bufwidth is a scalar specified in degrees of arc along the
surface. If the vectors lat and lon define a polygon, then latb and lonb
define a region that contains all the points exterior to the polygon that
fall within bufwidth of the polygon.

[latb,lonb] = bufferm(lat,lon,bufwidth,direction) uses the
optional string direction to specify whether the buffer zone is inside
'in'or 'out' of the polygon. A third option, 'outPlusInterior',
returns the union of an exterior buffer (as would be computed using
'out') with the interior of the polygon. If you do not supply a direction
string, bufferm uses 'out' as the default and returns a buffer zone
outside the polygon. If you supply 'in' as the direction string,
bufferm returns a buffer zone inside the polygon. If you are finding the
buffer zone around a line, 'out' is the only valid option.

[latb,lonb] = bufferm(lat,lon,dist,direction,npts) controls
the number of points used to construct circles about the vertices of the
polygon. A larger number of points produces smoother buffers, but
requires more time. If npts is omitted, 13 points per circle are used.

Tips Close all polygons before processing them with bufferm. If a polygon is
not closed, bufferm assumes it is a line.

Examples Display buffer zones inside and outside the Great Lakes:

% Display a simplified version of the five polygons that
% represent the Great Lakes.

3-73

bufferm

load conus
tol = 0.05;
[latr, lonr] = reducem(gtlakelat, gtlakelon, tol);
figure('Color','w')
ax = usamap({'MN','NY'});
setm(ax,'MLabelLocation',5)
geoshow(latr, lonr, 'DisplayType', 'polygon', ...

'FaceColor', 'blue')
title('Great Lakes')

% Set the buffer width and display a buffer zone outside
% the lakes.
figure;
bufwidth = 1;
[latb, lonb] = bufferm(latr, lonr, bufwidth);
geoshow(latb, lonb, 'DisplayType', 'polygon', ...

3-74

bufferm

'FaceColor', 'yellow')
title('Exterior Buffer Zone')

% Display a buffer zone inside the polygon.
figure;
[lati, loni] = bufferm(latr, lonr, 0.3*bufwidth, 'in');
geoshow(lati, loni, 'DisplayType', 'polygon', ...

'FaceColor', 'magenta')
title('Interior Buffer Zone')

3-75

bufferm

% Display the Great Lakes with interior and exterior
% buffer zones on a backdrop of neighboring states.
figure('Color','w')
ax = usamap({'MN','NY'});
setm(ax,'MLabelLocation',5)
geoshow(latb, lonb, 'DisplayType', 'polygon', 'FaceColor', 'yellow')
geoshow(latr, lonr, 'DisplayType', 'polygon', 'FaceColor', 'blue')
geoshow(lati, loni, 'DisplayType', 'polygon', 'FaceColor', 'magenta')
geoshow(uslat, uslon)
geoshow(statelat, statelon)
title('Great Lakes and Buffer Zones with Neighboring States')

3-76

bufferm

% Example using 'outPlusInterior' option:
bufWidth = 0.5;
[latz, lonz] = bufferm(latr, lonr, bufWidth,'outPlusInterior');
figure
geoshow(latz,lonz,'DisplayType','polygon','FaceColor','yellow')
title('Exterior Buffer Zone including Polygon Interior');

3-77

bufferm

See Also polybool

3-78

bufgeoquad

Purpose Expand limits of geographic quadrangle

Syntax [latlim,lonlim] = bufgeoquad(latlim,lonlim,buflat,buflon)

Description [latlim,lonlim] = bufgeoquad(latlim,lonlim,buflat,buflon)
returns an expanded version of the geographic quadrangle defined by
latlim and lonlim.

Input
Arguments

latlim - Latitude limits
1-by-2 vector

Latitude limits of a geographic quadrangle, specified as a 1-by-2 vector
of the form [southern_limit northern_limit], with latitudes in
degrees. The two elements must be in ascending order, and lie in the
closed interval [-90 90].

Data Types
single | double

lonlim - Latitude limits
1-by-2 vector

Longitude limits of a geographic quadrangle, specified as a 1-by-2
vector of the form [western_limit eastern_limit], with longitudes
in degrees. The two limits need not be in numerical ascending order.

Data Types
single | double

buflat - Latitude buffer size
nonnegative scalar

Latitude buffer size, specified as a nonnegative scalar, in units of
degrees.

Data Types
double

buflon - Longitude buffer size

3-79

bufgeoquad

nonnegative scalar

Longitude buffer size, specified as a nonnegative scalar, in units of
degrees.

Data Types
double

Output
Arguments

latlim - Latitude limits
1–by-2 vector

Latitude limits of a geographic quadrangle, returned as a 1-by-2 vector
of the form [southern_limit northern_limit], in units of degrees.
The elements are in ascending order, and both lie in the closed interval
[-90 90].

lonlim - Latitude limits
1–by-2 vector

Longitude limits of a geographic quadrangle, returned as a 1-by-2 vector
of the form [western_limit eastern_limit], in units of degrees. The
limits are wrapped to the interval [-180 180]. They are not necessarily
in numerical ascending order.

Examples Bounding Quadrangle for U.S.

Bounding quadrangle for the Conterminous United States, buffered 2
degrees to the north and south and 3 degrees to the east and west.

conus = load('conus.mat');
[latlim, lonlim] = geoquadline(conus.uslat,conus.uslon);
[latlim,lonlim] = bufgeoquad(latlim,lonlim,2,3)

latlim =

23.1200 51.3800

3-80

bufgeoquad

lonlim =

-127.7200 -63.9700

See Also geoquadpt | geoquadline | outlinegeoquad

3-81

camposm

Purpose Set camera position using geographic coordinates

Syntax camposm(lat,long,alt)
[x,y,z] = camposm(lat,long,alt)

Description camposm(lat,long,alt) sets the axes CameraPosition property of the
current map axes to the position specified in geographic coordinates.
The inputs lat and long are assumed to be in the angle units of the
current map axes.

[x,y,z] = camposm(lat,long,alt) returns the camera position in the
projected Cartesian coordinate system.

Examples Look at northern Australia from a point south and one Earth radius
above New Zealand:

figure
axesm('globe','galt',0)
gridm('glinestyle','-')
load topo
geoshow(topo,topolegend,'DisplayType','texturemap');
demcmap(topo)
camlight;
material(0.6*[1 1 1])
plat = -50; plon = 160;
tlat = -10; tlon = 130;
camtargm(tlat,tlon,0);
camposm(plat,plon,1);
camupm(tlat,tlon)
set(gca,'CameraViewAngle',75)
land = shaperead('landareas.shp','UseGeoCoords',true)
linem([land.Lat],[land.Lon])
axis off

3-82

camposm

See Also camtargm | camupm | campos | camva

3-83

camtargm

Purpose Set camera target using geographic coordinates

Syntax camtargm(lat,long,alt)
[x,y,z] = camtargm(lat,long,alt)

Description camtargm(lat,long,alt) sets the axes CameraTarget property of the
current map axes to the position specified in geographic coordinates.
The inputs lat and long are assumed to be in the angle units of the
current map axes.

[x,y,z] = camtargm(lat,long,alt) returns the camera target in the
projected Cartesian coordinate system.

Examples Look down the spine of the Andes from a location three Earth radii
above the surface:

figure
axesm('globe','galt',0)
gridm('glinestyle','-')
load topo
geoshow(topo,topolegend,'DisplayType','texturemap');
demcmap(topo)
lightm(-80,-180);
material(0.6*[1 1 1])
plat = 10; plon = -65;
tlat = -30; tlon = -70;
camtargm(tlat,tlon,0);
camposm(plat,plon,3);
camupm(tlat,tlon);
camva(20)
set(gca,'CameraViewAngle',30)
land = shaperead('landareas.shp','UseGeoCoords',true)
linem([land.Lat],[land.Lon])
axis off

3-84

camtargm

See Also camposm | camupm | camtarget | camva

3-85

camupm

Purpose Set camera up vector using geographic coordinates

Syntax camupm(lat,long)
[x,y,z] = camupm(lat,long)

Description camupm(lat,long) sets the axes CameraUpVector property of the
current map axes to the position specified in geographic coordinates.
The inputs lat and long are assumed to be in the angle units of the
current map axes.

[x,y,z] = camupm(lat,long) returns the camera position in the
projected Cartesian coordinate system.

Examples Look at northern Australia from a point south of and one Earth radius
above New Zealand. Set CameraUpVector to the antipode of the camera
target for that down under view:

figure
axesm('globe','galt',0)
gridm('glinestyle','-')
load topo
geoshow(topo,topolegend,'DisplayType','texturemap');
demcmap(topo)
camlight;
material(0.6*[1 1 1])
plat = -50; plon = 160;
tlat = -10; tlon = 130;
[alat,alon] = antipode(tlat,tlon);
camtargm(tlat,tlon,0);
camposm(plat,plon,1);
camupm(alat,alon)
set(gca,'CameraViewAngle',80)
land = shaperead('landareas.shp','UseGeoCoords',true)
linem([land.Lat],[land.Lon])
axis off

3-86

camupm

See Also camtargm | camposm | camup | camva

3-87

cart2grn

Purpose Transform projected coordinates to Greenwich system

Syntax [lat,lon,alt] = cart2grn
[lat,lon,alt] = cart2grn(hndl)
[lat,lon,alt] = cart2grn(hndl,mstruct)

Description When objects are projected and displayed on map axes, they are plotted
in Cartesian coordinates appropriate for the selected projection.
This function transforms those coordinates back into the Greenwich
frame, in which longitude is measured positively East from Greenwich
(longitude 0), England and negatively West from Greenwich.

[lat,lon,alt] = cart2grn returns the latitude, longitude, and
altitude data in geographic coordinates of the current map object,
removing any clips or trims introduced during the display process from
the output data.

[lat,lon,alt] = cart2grn(hndl) specifies the displayed map object
desired with its handle hndl. The default handle is gco.

[lat,lon,alt] = cart2grn(hndl,mstruct) specifies the map
structure associated with the object. The map structure of the current
axes is the default.

See Also gcm | mfwdtran | minvtran | project

3-88

changem

Purpose Substitute values in data array

Syntax mapout = changem(Z,newcode,oldcode)

Description mapout = changem(Z,newcode,oldcode) returns a data grid mapout
identical to the input data grid, except that each element of Z with a
value contained in the vector oldcode is replaced by the corresponding
element of the vector newcode.

oldcode is 0 (scalar) by default, in which case newcode must be scalar.
Otherwise, newcode and oldcode must be the same size.

Examples Invent a map:

A = magic(3)

A =
8 1 6
3 5 7
4 9 2

Replace instances of 8 or 9 with 0s:

B = changem(A,[0 0],[9 8])
B =

0 1 6
3 5 7
4 0 2

3-89

circcirc

Purpose Intersections of circles in Cartesian plane

Syntax [xout,yout] = circcirc(x1,y1,r1,x2,y2,r2)

Description [xout,yout] = circcirc(x1,y1,r1,x2,y2,r2) finds the points of
intersection (if any), given two circles, each defined by center and radius
in x -y coordinates. In general, two points are returned. When the
circles do not intersect or are identical, NaNs are returned.

When the two circles are tangent, two identical points are returned.
All inputs must be scalars.

See Also linecirc

3-90

clabelm

Purpose Add contour labels to map contour display

Syntax clabelm(c,h)
clabelm(c,h,v)
clabelm(c,h,'manual')
clabelm(c), clabelm(c,v), or clabelm(c,'manual')
clabelm(...,Name,Value)
h = clabelm(...)

Description clabelm(c,h) adds value labels to the current map contour plot. The
labels are rotated and inserted within the contour lines.

clabelm(c,h,v) labels only the contour levels given in vector v. (The
default action is to label all known contours.) The label positions are
selected randomly.

clabelm(c,h,'manual') places contour labels at the locations you
select by clicking the mouse. Press the return key while the cursor
is within the figure window to terminate labeling. If no mouse is
available, use the space bar to enter contours and the arrow keys to
move the crosshair.

clabelm(c), clabelm(c,v), or clabelm(c,'manual') uses a
different method to indicate the correspondence between labels and
contour lines. Use these syntaxes to display an upright label with a
plus sign to indicate the relevant contour line.

clabelm(...,Name,Value) specifies parameters and corresponding
values that control various aspects of the clabelm function. Parameter
names can be abbreviated, and case does not matter.

h = clabelm(...) returns handles to the text objects created.

Input
Arguments

c

Contour matrix returned by contourm, contourfm, or contour3m

h

Object handle returned by contourm, contourfm, or contour3m

3-91

clabelm

v

Vector

’manual’

String specifying manual placement of contour labels

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

LabelSpacing

Specifies the spacing between labels on the same contour line, in units
of points. (72 points equal one inch.)

Output
Arguments

h

Handle to the text and objects

Examples load geoid
axesm miller
framem
tightmap
[c,h] = contourm(geoid,geoidlegend,-100:50:80);
clabelm(c,h)

3-92

clabelm

See Also clegendm | contourm | contour3m | contourfm | clabel

3-93

clegendm

Purpose Add legend labels to map contour display

Syntax clegendm(cs,h)
clegendm(cs,h,loc)
clegendm(...,unitstr)
clegendm(...,strings)
h = clegendm(...)

Description clegendm(cs,h) adds a legend specifying the contour line heights to
the current map contour plot.

clegendm(cs,h,loc) places the legend in the specified location.

clegendm(...,unitstr) appends unitstr to each entry in the legend.

clegendm(...,strings) uses the strings specified in strings to label
the legend. strings must have the same number of entries as the line
children of h.

h = clegendm(...) returns the handle to the legend object created.

Input
Arguments

cs

Contour matrix output from contourm, contour3m, or contourfm

h

Object handle output from contourm, contour3m, or contourfm

loc

Any of the following integers, with the indicated placement:

Integer Placement

0 Automatic placement (default)

1 Upper right corner

2 Upper left corner

3 Lower left corner

3-94

clegendm

Integer Placement

4 Lower right corner

-1 To the right of the plot

unitstr

Character string appended to each entry in the legend

strings

Cell array of strings used to label the legend

Output
Arguments

h

Handle to the legend object

Examples Create a legend in the lower right-hand corner with a unit string
indicating that the contour elevations are in meters:

load topo
R = georasterref('RasterSize', size(topo), ...

'Latlim', [-90 90], 'Lonlim', [0 360]);
figure('Color','w'); worldmap('world')
[c,h] = contourm(topo, R, -6000:1500:6000);
clegendm(c,h,4,' m')

3-95

clegendm

3-96

clegendm

See Also clabelm | contourm | contour3m | contourfm | contourc |
contourcbar

3-97

clipdata

Purpose Clip data at +/-pi in longitude, +/-pi in latitude

Syntax [lat,long,splitpts] = clipdata(lat,long,'object')

Description [lat,long,splitpts] = clipdata(lat,long,'object') inserts NaNs
at the appropriate locations in a map object so that a displayed map is
clipped at the appropriate edges. It assumes that the clipping occurs at
+/- pi/2 radians in the latitude (y) direction and +/- pi radians in
the longitude (x) direction.

The input data must be in radians and properly transformed for the
particular aspect and origin so that it fits in the specified clipping range.

The output data is in radians, with clips placed at the proper locations.
The output variable splitpts returns the row and column indices of
the clipped elements (columns 1 and 2 respectively). These indices
are necessary to restore the original data if the map parameters or
projection are ever changed.

Allowable object strings are:

• surface for clipping graticules

• light for clipping lights

• line for clipping lines

• patch for clipping patches

• text for clipping text object location points

• point for clipping point data

• none to skip all clipping operations

See Also trimdata | undoclip | undotrim

3-98

clma

Purpose Clear current map axes

Syntax clma
clma all
clma purge

Description clma deletes all displayed map objects from the current map axes but
leaves the frame if it is displayed.

clma all deletes all displayed map objects, including the frame, but it
leaves the map structure intact, thereby retaining the map axes.

clma purge clears all displayed map objects and converts the map axes
to standard axes. This is equivalent to cla reset.

See Also cla | clmo | handlem | hidem | namem | showm | tagm

3-99

clmo

Purpose Clear specified graphics objects from map axes

Syntax clmo
clmo(handle)
clmo(object)

Description clmo deletes all displayed graphics objects on the current axes.

clmo(handle) deletes those objects specified by their handles.

clmo(object) deletes those objects with names identical to the input
string. This can be any string recognized by the handlem function,
including entries in the Tag property of each object, or the object Type if
the Tag property is empty.

See Also clma | handlem | hidem | namem | showm | tagm

3-100

closePolygonParts

Purpose Close all rings in multipart polygon

Syntax [xdata, ydata] = closePolygonParts(xdata, ydata)
[lat, lon] = closePolygonParts(lat, lon, angleunits)

Description [xdata, ydata] = closePolygonParts(xdata, ydata) ensures that
each ring in a multipart (NaN-separated) polygon is “closed” by repeating
the start point at the end of each ring, unless the start and end points
are already identical. Coordinate vectors xdata and ydata must match
in size and have identical NaN locations.

[lat, lon] = closePolygonParts(lat, lon, angleunits) works
with latitude-longitude data and accounts for longitude wrapping with
a period of 360 if angleunits is 'degrees' and 2*pi if angleunits
is 'radians'. For a ring to be considered closed, the latitudes of its
first and last vertices must match exactly, but their longitudes need
only match modulo the appropriate period. Such rings are returned
unaltered.

Examples Closing a polygon in plane coordinates

xOpen = [1 0 2 NaN 0.5 0.5 1 1];
yOpen = [0 1 2 NaN 0.8 1 1 0.8];
[xClosed, yClosed] = closePolygonParts(xOpen, yOpen)
xClosed =

Columns 1 through 7
1.0000 0 2.0000 1.0000 NaN 0.5000 0.5000

Columns 8 through 10
1.0000 1.0000 0.5000

yClosed =
Columns 1 through 7
0 1.0000 2.0000 0 NaN 0.8000 1.0000
Columns 8 through 10
1.0000 0.8000 0.8000

whos

3-101

closePolygonParts

Name Size Bytes Class Attributes

xClosed 1x10 80 double
xOpen 1x8 64 double
yClosed 1x10 80 double
yOpen 1x8 64 double

Closing a polygon in latitude-longitude coordinates

% Construct a two-part polygon based on coast.mat. The first ring
% is Antarctica. The longitude of its first vertex is -180 and the
% longitude of its last vertex is 180. The second ring is a small
% island from which the last vertex, a replica of the first vertex,
% is removed.
c = load('coast.mat');
[latparts, lonparts] = polysplit(c.lat, c.long);
latparts{2}(end) = [];
lonparts{2}(end) = [];
latparts(3:end) = [];
lonparts(3:end) = [];
[lat, lon] = polyjoin(latparts, lonparts);

% Examine how closePolygonParts treats the two rings. In both
% cases, the first and last vertices differ. However, Antarctica
% remains unchanged while the small island is closed back up.
[latClosed, lonClosed] = closePolygonParts(lat, lon, 'degrees');
[latpartsClosed, lonpartsClosed] = polysplit(latClosed, lonClosed);
lonpartsClosed{1}(end) - lonpartsClosed{1}(1) % Result is 360
lonpartsClosed{2}(end) - lonpartsClosed{2}(1) % Result is 0

See Also isshapemultipart | removeextrananseparators

3-102

colorui

Purpose Interactively define RGB color

Note colorui will be removed in a future release. Use uisetcolor
instead.

Syntax c = colorui
c = colorui(InitClr)
c = colorui(InitClr,FigTitle)

Description c = colorui will create an interface for the definition of an RGB
color triplet. On Windows® platforms, colorui will produce the same
interface as uisetcolor. On other machines, colorui produces a
platform-independent dialog for specifying the color values.

c = colorui(InitClr) will initialize the color value to the RGB triple
given in initclr.

c = colorui(InitClr,FigTitle) will use the string in FigTitle as
the window label.

The output value c is the selected RGB triple if the Accept or OK
button is pushed. If the user presses Cancel, then the output value
is set to 0.

See Also uisetcolor

3-103

combntns

Purpose All possible combinations of set of values

Syntax combos = combntns(set,subset)

Description combos = combntns(set,subset) returns a matrix whose rows are the
various combinations that can be taken of the elements of the vector
set of length subset. Many combinatorial applications can make
use of a vector 1:n for the input set to return generalized, indexed
combination subsets.

The combntns function provides the combinatorial subsets of a set
of numbers. It is similar to the mathematical expression a choose b,
except that instead of the number of such combinations, the actual
combinations are returned. In combinatorial counting, the ordering of
the values is not significant.

The numerical value of the mathematical statement a choose b is
size(combos,1).

Examples How can the numbers 1 to 5 be taken in sets of three (that is, what
is 5 choose 3)?

combos = combntns(1:5,3)

combos =
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5

size(combos,1) % "5 choose 3"

ans =

3-104

combntns

10

Note that if a value is repeated in the input vector, each occurrence
is treated as independent:

combos = combntns([2 2 5],2)

combos =
2 2
2 5
2 5

Tips This is a recursive function.

3-105

comet3m

Purpose Project 3-D comet plot on map axes

Syntax comet3m(lat,lon,z)
comet3m(lat,lon,z,p)

Description comet3m(lat,lon,z) traces a comet plot through the points specified
by the input latitude, longitude, and altitude vectors.

comet3m(lat,lon,z,p) specifies a comet body of length p*length(lat).
The input p is 0.1 by default.

A comet plot is an animated graph in which a circle (the comet head)
traces the data points on the screen. The comet body is a trailing
segment that follows the head. The tail is a solid line that traces the
entire function.

Examples Create a 3-D comet plot of the coastlines data:

load coast
z = (1:length(lat))'/3000;
axesm miller
framem; gridm;
setm(gca,'galtitude',max(z)+.5)
view(3)
comet3m(lat,long,z,0.01)

See Also comet3 | cometm

3-106

cometm

Purpose Project 2-D comet plot on map axes

Syntax cometm(lat,lon)
cometm(lat,lon,p)

Description cometm(lat,lon) traces a comet plot through the points specified by
the input latitude and longitude vectors.

cometm(lat,lon,p) specifies a comet body of length p*length(lat).
The input p is 0.1 by default.

A comet plot is an animated graph in which a circle (the comet head)
traces the data points on the screen. The comet body is a trailing
segment that follows the head. The tail is a solid line that traces the
entire function.

Examples Create a comet plot of the coastlines data:

load coast
axesm miller
framem
cometm(lat,long,0.01)

See Also comet | comet3m

3-107

contour3m

Purpose Project 3-D contour plot of map data

Description The contour3m function is the same as the contourm function except
that the lines for each contour level are drawn in their own horizontal
plane, at the z-coordinate equal to the value of that level.

Tips • If you use contour3m with the globe map display, the contour3m
function warns. Be careful to scale the input data relative to the
radius of your reference sphere.

Examples In an ordinary axes, contour the EGM96 geoid heights as a 3-D surface
with 50 levels and set the contour line color to black:

figure('Color','white')
load geoid
contour3m(geoid,geoidrefvec,50,'LineColor','black');

% Add the geoid as a surface.
hold on
geoshow(geoid,geoidrefvec,'DisplayType','surface')

% Add a title.
title('EGM96 Global Geoid Heights with 50 Contour Levels');

% View in 3-D
view(3)

3-108

contour3m

In a map axes, contour the topography and bathymetry of South Asia
and the northern Indian Ocean with a contour interval of 500 meters:

load topo
latlim = [0 50];
lonlim = [35 115];
[Z, refvec] = maptrims(topo, topolegend, latlim, lonlim);
figure('Color','white')
axesm('lambertstd','MapLatLimit', latlim, 'MapLonLimit', lonlim)
tightmap; axis off
contour3m(Z,refvec,'black','LevelStep',500)

% Add the geoid as a surface and set the colormap.
geoshow(Z,refvec,'DisplayType','surface')
demcmap(Z)

3-109

contour3m

% Add a title.
title({'South Asia Topography and Bathymetry', ...

'with 500 m Contours'});

% View in 3-D
set(gca,'DataAspectRatio',[1 1 40000])
view(3)

See Also clabel | clabelm | clegendm | contour | contour3 | contourm |
contourfm | geoshow | plot

3-110

contourcbar

Purpose Color bar for filled contour map display

Syntax H = contourcbar(...)

Description H = contourcbar(...) creates a color bar associated with a filled
contour display created with contourfm, contourm, contour3m, or
geoshow. It supports the same syntax and usage options as the
MATLAB function colorbar.

Tips • If a peer axes is specified when calling contourcbar, it should be
a map axes containing an object created using one of the Mapping
Toolbox functions listed previously. Otherwise the current axes
should contain such an object.

• If a Mapping Toolbox contour object is present, then the color bar
is filled with solid blocks of color which bound each other at the
contour levels used in the plot. Thus, the contour levels bounding a
fill polygon of a given color can be inferred graphically by inspecting
the upper and lower limits of the corresponding block in the color
bar. In the absence of a Mapping Toolbox contour object an ordinary
color bar is created.

• If multiple Mapping Toolbox contour objects are present in the same
axes, then the levels used to divide the color bar into blocks will
correspond to the first contour object that is found. This situation
could occur when a larger data set is broken up into multiple grid
tiles, for example, but as long the tiles all use the same contour level
list, the color bar will correctly represent them all.

Examples Add a colorbar to a map showing the topography of North America:

figure('Color','white')
worldmap('north america')
load topo
R = georasterref('RasterSize',[180 360], ...

'Latlim',[-90 90],'Lonlim',[0 360]);
contourfm(topo, R, -7000:1000:3000)

3-111

contourcbar

caxis([-8000 4000])
contourcbar

Add a colorbar to a map showing a geoid with non-uniform levels:

figure('Color','white')
ax = worldmap('world');
setm(gca,'MLabelParallel',-90)
setm(gca,'MLabelLocation',90)
load geoid
R = georasterref('RasterSize',[180 360], ...

'Latlim',[-90 90],'Lonlim', [0 360]);
levels = [-70 -40 -20 -10 0 10 20 40 70];
geoshow(geoid, R, 'DisplayType', 'contour',...

'LevelList',levels,'Fill','on','LineColor','black')
coast = load('coast.mat');
geoshow(coast.lat, coast.long, 'Color', 'white', 'LineWidth', 1.5)
cb = contourcbar('peer',ax,'Location','southoutside');

3-112

contourcbar

caxis([-110 90])
colormap(hsv)
set(get(cb,'XLabel'),'String','Geoid Undulation in Meters')

See Also clegendm | colorbar | contourfm

3-113

contourcmap

Purpose Contour colormap and colorbar for current axes

Syntax contourcmap(cmapstr)
contourcmap(cmapstr,cdelta)
contourcmap(...,Name,Value)
h = contourcmap(...)

Description contourcmap(cmapstr) updates the figure’s colormap for the current
axes with the colormap specified by cmapstr. If the axes contains
Mapping Toolbox contour objects, the resultant colormap contains
the same number of colors as the original colormap. Otherwise, the
resultant colormap contains ten colors.

contourcmap(cmapstr,cdelta) updates the figure’s colormap with
colors varying according to cdelta. If the axes contains Mapping
Toolbox contour objects, the value of cdelta is ignored.

contourcmap(...,Name,Value) allows you to add a colorbar and
control the colorbar’s properties. Parameter names can be abbreviated
and are case-insensitive.

h = contourcmap(...) returns a handle to the colorbar axes.

Input
Arguments

cmapstr

A string that specifies a colormap. Valid entries for cmapstr include
'pink', 'hsv', 'jet', or the name of any similar MATLAB colormap
function.

cdelta

A scalar or vector. If cdelta is a scalar, it represents a step size, and
colors are generated at multiples of cdelta. If cdelta is a vector of
evenly spaced values, colors are generated at those values; otherwise an
error is issued.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding

3-114

contourcmap

value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Colorbar

String with values 'on' or 'off' specifying whether a colorbar is
present, 'on', or absent from the axes, 'off'.

Default: 'off'

Location

String specifying the location of the colorbar. Permissible values are
'vertical', 'horizontal', or 'none'.

Default: 'vertical'

ColorAlignment

String specifying the alignment of the labels in the colorbar. Permissible
values are 'center', where the labels are centered on the color bands,
or 'ends', where the labels are centered on the color breaks. If the axes
contains Mapping Toolbox contour objects, the ColorAlignment will be
set automatically to 'center' for contour lines and 'ends' for filled
contours, and cannot be modified.

SourceObject

Handle of the graphics object which is used to determine the color limits
for the colormap. The SourceObject value is the handle of a currently
displayed object.

Default: gca

TitleString

String specifying the title of the colorbar axes.

3-115

contourcmap

XLabelString

String specifying the X label of the colorbar axes.

YLabelString

String specifying the Y label of the colorbar axes.

ZLabelString

String specifying the Z label of the colorbar axes. In addition, properties
and values that can be applied to the title and labels of the colorbar
axes are valid.

Output
Arguments

h

A handle to the colorbar axes.

Examples Display a world map with a colormap representing contour intervals in
meters:

load topo
R = georasterref('RasterSize', size(topo), ...

'Latlim', [-90 90], 'Lonlim', [0 360]);
figure('Color','white')
worldmap(topo, R)
contourfm(topo, R);
contourcmap('jet', 'Colorbar', 'on', ...

'Location', 'horizontal', ...
'TitleString', 'Contour Intervals in Meters');

3-116

contourcmap

Display a world map with a colormap in which colors vary at a step
size of 2000:

load topo
load coast
R = georasterref('RasterSize', size(topo), ...

'Latlim', [-90 90], 'Lonlim', [0 360]);
figure('Color','white')
worldmap(topo, R)
geoshow(topo, R, 'DisplayType', 'texturemap');
contourcmap('summer', 2000, 'Colorbar', 'on', ...

'Location', 'horizontal', ...
'TitleString', 'Contour Intervals in Meters');

geoshow(lat, long, 'Color', 'black')

3-117

contourcmap

See Also clabelm | clegendm | colormap | contour3m | contourcbar |
contourfm | contourm

3-118

contourfm

Purpose Project filled 2-D contour plot of map data

Description The contourfm function is the same as the contourm function except
that the areas between contours are filled with colors. For each
contour interval, contourfm selects a distinct color from the figure’s
colormap. You can obtain the same result by setting 'Fill','on' and
'LineColor','black' when calling contourm.

Examples Plot the Earth’s geoid with filled contours. The data is in meters.

figure
axesm eckert4; framem; gridm; axis off; tightmap

load geoid
contourfm(geoid, geoidrefvec, -120:20:100, 'LineStyle', 'none');

coast = load('coast');
geoshow(coast.lat, coast.long, 'Color', 'black')

contourcbar

See Also contourcbar | contourm | contour3m | clabelm | meshm | surfm

3-119

contourm

Purpose Project 2-D contour plot of map data

Syntax contourm(Z,R)
contourm(lat,lon,Z)
contourm(Z,R,n) or contourm(lat,lon,Z,n)
contourm(Z,R,V) or contourm(lat,lon,Z,V)
contourm(...,LineSpec)
contourm(...,Name,Value,...)
C = contourm(...)
[C,h] = contourm(...)

Description contourm(Z,R) creates a contour plot of the regular data grid Z with
referencing vector or matrix R.

contourm(lat,lon,Z) displays a contour plot of the geolocated, M-by-N
data grid, Z.

contourm(Z,R,n) or contourm(lat,lon,Z,n) draws n contour levels.

contourm(Z,R,V) or contourm(lat,lon,Z,V) draws contours at the
levels specified by the input vector V. Use V = [v v] to compute a
single contour at level v.

contourm(...,LineSpec) uses any valid LineSpec string to draw the
contour lines.

contourm(...,Name,Value,...) allows you to set optional parameters.
Parameter names can be abbreviated, and case does not matter. In
addition, any of the following hggroup properties may be specified:
HandleVisibility, Parent, Tag, UserData, and Visible.

C = contourm(...) returns contour matrix C.

[C,h] = contourm(...) returns the contour matrix and the handle
to the hggroup containing the contour lines.

Tips You have three ways to control the number of contour levels that
display in your map:

3-120

contourm

1 Set the number of contour levels by specifying the scalar n in the
syntax contourm(Z,R,n) or contourm(lat,lon,Z,n).

2 Use the vector V to specify the levels at which contours are drawn
with the syntax contourm(Z,R,V) or contourm(lat,lon,Z,V).

3 Choose regular intervals at which the contours are drawn by setting
the LevelStep parameter.

If you do not use any of the above methods to set your contour levels,
the contourm function will display around five contour levels.

Input
Arguments

Z

Regular or geolocated data grid.

If the grid contains regions with missing data, set the corresponding
elements of Z to NaN. Contour lines terminate when entering such
areas. Similarly, if you use 'Fill','on' or call contourfm, such
null-data areas will not be filled. If the syntax contourm(lat,lon,Z,
...) is used, however, lat and lon must have finite, non-NaN values
everywhere. In this case, set Z to NaN in null data areas, but make
sure the corresponding elements of lat and lon have finite values that
specify actual locations on the Earth.

R

spatialref.GeoRasterReference object, referencing vector, or
referencing matrix.

If R is a spatialref.GeoRasterReference object, its RasterSize
property must be consistent with size(Z).

If R is a referencing vector, it must be a 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to/from geographic coordinates according to:

3-121

contourm

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational, non-skewed)
relationship in which each column of the data grid falls along a
meridian and each row falls along a parallel. For more information
about referencing vectors and matrices, see the section “Understanding
Raster Geodata” in the User’s Guide. If the current axis is a map axis,
the coordinates of Z will be projected using the projection structure from
the axis. The contours are drawn at their corresponding Z level.

lat,lon

Geolocation arrays having the same size as Z, or vectors with length
(lat) matching the number of rows in Z and length (lon) matching the
number of columns in Z.

n

Scalar specifying the number of contour levels.

V

Vector specifying contour levels.

LineSpec

Line specification string. See the MATLAB function reference page for
LineSpec for more information.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Fill

off | on

3-122

contourm

Color areas between contour lines. By default contourm draws a line
(which may have multiple parts) for each contour level. If you set Fill
to on, contourm colors the polygonal regions between the lines, selecting
a distinct color for each contour interval from the colormap of the figure
in which the contours are drawn. Setting Fill to on is almost the same
as calling contourfm; the only difference is that contourfm also sets
LineColor to black by default.

Default: off

LabelSpacing

scalar

Spacing between labels on each contour line. When you display contour
line labels either by calling clabelm or by specifying 'ShowText','on',
the labels by default are spaced 144 points (2 inches) apart on each
line. You can specify the spacing by setting LabelSpacing to a value
in points. If the length of an individual contour line is less than the
specified value, only one contour label is displayed on that line.

LevelList

vector

Values at which contour lines are drawn. This property uses a row
vector of increasing values to specify the levels at which contour lines
are drawn.

LevelStep

scalar

Spacing of contour lines. When LevelStep, which must be a positive
real number, is specified, the contourm function draws contour lines
at regular intervals determined by the value of LevelStep, unless
the optional third argument, n (number of contour levels) or V (vector
specifying contour levels) is provided. If n or V is used in combination
with the LevelStep parameter, then the LevelStep parameter is

3-123

contourm

ignored. If n, v, and the LevelStep parameter are all omitted, contourm
selects a uniform step automatically.

LineColor

flat | ColorSpec | none

Contour line colors. To specify a single color to be used for all the contour
lines, you can set ColorSpec to a three-element RGB vector or one of
the MATLAB predefined names. See the MATLAB ColorSpec reference
page for more information on specifying color. If you omit LineColor or
set it to flat, contourm selects a distinct color for lines at each contour
level from the colormap of the figure in which the contours are drawn.
If you set LineColor to none, the contour lines will not be visible.

Default: flat

LineStyle

- | -- | : | -. | none

Line style for contour lines. Options for LineStyle include solid
(specified by -), dashed (--), dotted (:), dash-dot (-.), and none. The
specifier strings work the same as for line objects in MATLAB graphics.

Default: -

LineWidth

scalar

Width of the contour lines in points (1 point = 1/72 inch).

Default: 0.5

ShowText

on | off

Display labels on contour lines. If you set ShowText to on, contourm
displays text labels on each contour line indicating the value of the

3-124

contourm

corresponding contour level. Another way to add labels to your contour
lines is to call clabelm after calling contourm.

Default: off

Output
Arguments

C

Standard contour matrix with the first row representing longitude data
and the second row representing latitude data.

h

Handle to the hggroup containing the contour lines.

Examples Contour EGM96 geoid heights, label them, and add a legend:

load geoid
figure
[c,h] = contourm(geoid,geoidrefvec,'LevelStep',20,'ShowText','on');
xlabel('Longitude')
ylabel('Latitude')
clegendm(c,h,-1)

3-125

contourm

Contour geoid heights for an area including Korea with a backdrop of
terrain elevations and bathymetry:

% Load the data.
load korea
load geoid

% Create a map axes that includes Korea.
figure
worldmap(map, refvec)

% Display the digital elevation data and apply a colormap.
geoshow(map, refvec, 'DisplayType', 'texturemap');
demcmap(map)

% Contour the geoid values from -100 to 100 in increments of 5.

3-126

contourm

[c,h] = contourm(geoid, geoidlegend, -100:5:100, 'k');

% Add red labels with white backgrounds to the contours.
ht = clabelm(c,h);
set(ht,'Color','r','BackgroundColor','white','FontWeight','bold')

See Also clabelm | clegendm | contour | contourc | contour3 | contour3m |
contourfm | geoshow | plot

3-127

convertlat

Purpose Convert between geodetic and auxiliary latitudes

Syntax latout = convertlat(ellipsoid,latin,from,to,units)

Description latout = convertlat(ellipsoid,latin,from,to,units) converts
latitude values in latin from type FROM to type TO. ellipsoid is a
referenceSphere, referenceEllipsoid, or oblateSpheroid object, or
a vector of the form [semimajor_axis eccentricity].

latin is an array of input latitude values. from and to are each one of
the latitude type strings listed below (or unambiguous abbreviations).
latin has the angle units specified by units: either 'degrees',
'radians', or unambiguous abbreviations. The output array, latout,
has the same size and units as latin.

Latitude Type Description

geodetic The geodetic latitude is the angle that a line
perpendicular to the surface of the ellipsoid at the
given point makes with the equatorial plane.

authalic The authalic latitude maps an ellipsoid to a
sphere while preserving surface area. Authalic
latitudes are used in place of the geodetic latitudes
when projecting the ellipsoid using an equal area
projection.

conformal The conformal latitude maps an ellipsoid
conformally onto a sphere. Conformal latitudes
are used in place of the geodetic latitudes
when projecting the ellipsoid with a conformal
projection.

geocentric The geocentric latitude is the angle that a line
connecting a point on the surface of the ellipsoid
to its center makes with the equatorial plane.

isometric The isometric latitude is a nonlinear function of
the geodetic latitude.

3-128

convertlat

Latitude Type Description

parametric The parametric latitude of a point on the ellipsoid
is the latitude on a sphere of radius a, where a
is the semimajor axis of the ellipsoid, for which
the parallel has the same radius as the parallel of
geodetic latitude.

rectifying The rectifying latitude is used to map an ellipsoid
to a sphere in such a way that distance is
preserved along meridians.

To properly project rectified latitudes, the radius must also be scaled to
ensure the equal meridional distance property. This is accomplished
by rsphere.

Examples % Plot the difference between the auxiliary latitudes
% and geocentric latitude, from equator to pole,
% using the GRS 80 ellipsoid. Avoid the polar region with
% the isometric latitude, and scale down the difference
% by a factor of 200.
grs80 = referenceEllipsoid('grs80');
geodetic = 0:2:90;
authalic = ...
convertlat(grs80,geodetic,'geodetic','authalic', 'deg');
conformal = ...
convertlat(grs80,geodetic,'geodetic','conformal', 'deg');
geocentric = ...
convertlat(grs80,geodetic,'geodetic','geocentric','deg');
parametric = ...
convertlat(grs80,geodetic,'geodetic','parametric','deg');
rectifying = ...
convertlat(grs80,geodetic,'geodetic','rectifying','deg');
isometric = ...
convertlat(grs80,geodetic(1:end-5), ...
'geodetic','isometric','deg');
plot(geodetic, (authalic - geodetic),...
geodetic, (conformal - geodetic),...

3-129

convertlat

geodetic, (geocentric - geodetic),...
geodetic, (parametric - geodetic),...
geodetic, (rectifying - geodetic),...
geodetic(1:end-5), (isometric - geodetic(1:end-5))/200);
title('Auxiliary Latitudes vs. Geodetic')
xlabel('geodetic latitude, degrees')
ylabel('departure from geodetic, degrees');
legend('authalic','conformal','geocentric', ...
'parametric','rectifying', 'isometric/200',...
'Location','NorthWest');

3-130

convertlat

See Also referenceEllipsoid | referenceSphere | oblateSpheroid | rsphere

3-131

crossfix

Purpose Cross-fix positions from bearings and ranges

Syntax [newlat,newlon] = crossfix(lat,long,az)
[newlat,newlon] = crossfix(lat,long,az_range,case)
[newlat,newlon] = crossfix(lat,long,az_range,case,drlat,

drlong)
[newlat,newlon] = crossfix(lat,long,az,units)
[newlat,newlon] = crossfix(lat,long,az_range,case,units)
[newlat,newlon] = crossfix(lat,long,az_range,drlat,drlong,

units)
[newlat,newlon] = crossfix(lat,long,az_range,case,drlat,

drlong,units)
mat = crossfix(...)

Description [newlat,newlon] = crossfix(lat,long,az) returns the intersection
points of all pairs of great circles passing through the points given by the
column vectors lat and long that have azimuths az at those points. The
outputs are two-column matrices newlat and newlon in which each row
represents the two intersections of a possible pairing of the input great
circles. If there are n input objects, there will be n choose 2 pairings.

[newlat,newlon] = crossfix(lat,long,az_range,case) allows the
input az_range to specify either azimuths or ranges. Where the vector
case equals 1, the corresponding element of az_range is an azimuth;
where case is 0, az_range is a range. The default value of case is a
vector of ones (azimuths).

[newlat,newlon] =
crossfix(lat,long,az_range,case,drlat,drlong) resolves the
ambiguities when there is more than one intersection between two
objects. The scalar-valued drlat and drlong provide the location of an
estimated (dead reckoned) position. The outputs newlat and newlong
are column vectors in this case, returning only the intersection
closest to the estimated point. When this option is employed,
if any pair of objects fails to intersect, no output is returned
and the warning No Fix is displayed.

3-132

crossfix

[newlat,newlon] =
crossfix(lat,long,az,units), [newlat,newlon] =
crossfix(lat,long,az_range,case,units), [newlat,newlon] =
crossfix(lat,long,az_range,drlat,drlong,units),
and [newlat,newlon] =
crossfix(lat,long,az_range,case,drlat,drlong,units) allow
the specification of the angle units to be used for all angles
and ranges, where units is any valid angle units string. The
default value of units is 'degrees'.

mat = crossfix(...) returns the output in a two- or four-column
matrix mat.

This function calculates the points of intersection between a set of
objects taken in pairs. Given great circle azimuths and/or ranges from
input points, the locations of the possible intersections are returned.
This is different from the navigational function navfix in that crossfix
uses great circle measurement, while navfix uses rhumb line azimuths
and nautical mile distances.

Examples Where do the small circles defined as all points 8º in distance from the
points (0º,0º), (5ºN,5ºE), and (0º,10ºE)" intersect?

figure('color','w');

ha = axesm('mapproj','mercator', ...

'maplatlim',[-10 15],'maplonlim',[-10 20],...

'MLineLocation',2,'PLineLocation',2);

axis off, gridm on, framem on;

mlabel on, plabel on;

latpts = [0;5;0]; % Define latitudes of three arbitrary points

lonpts = [0;5;10]; % Define longitudes of three arbitrary points

radii = [8;8;8]; % Define three radii, all 8 degrees

% Obtain intersections of imagined small circles around these points

[newlat,newlon] = crossfix(latpts,lonpts,radii,[0;0;0])

% Draw red circle markers at the given points

geoshow(latpts,lonpts,'DisplayType','point',...

3-133

crossfix

'markeredgecolor','r','markerfacecolor','r','marker','o')

% Draw magenta diamond markers at intersection points just found

geoshow(reshape(newlat,6,1),reshape(newlon,6,1),'DisplayType','point',...

'markeredgecolor','m','markerfacecolor','m','marker','d')

% Generate a small circle 8 deg radius for each original point

[latc1,lonc1] = scircle1(latpts(1),lonpts(1),radii(1));

[latc2,lonc2] = scircle1(latpts(2),lonpts(2),radii(2));

[latc3,lonc3] = scircle1(latpts(3),lonpts(3),radii(3));

% Plot the small circles to show the intersections are as determined

geoshow(latc1,lonc1,'DisplayType','line',...

'color','b','linestyle','-')

geoshow(latc2,lonc2,'DisplayType','line',...

'color','b','linestyle','-')

geoshow(latc3,lonc3,'DisplayType','line',...

'color','b','linestyle','-')

The diagram shows why there are six intersections:

3-134

crossfix

 10° W 8° W 6° W 4° W 2° W 0° 2° E 4° E 6° E 8° E 10° E 12° E 14° E 16° E 18° E 20° E

 10° S

 8° S

 6° S

 4° S

 2° S

 0°

 2° N

 4° N

 6° N

 8° N

 10° N

 12° N

 14° N

If a dead reckoning position is provided, say (0º,5ºE), then one from each
pair is returned (the closest one):

[newlat,newlong] = crossfix([0 5 0]',[0 5 10]',...
[8 8 8]',[0 0 0]',0,5)

newlat =
-2.5744
6.2529

-2.5744

newlong =
7.5770
5.0000

3-135

crossfix

2.4230

See Also gcxgc | gcxsc | scxsc | rhxrh | polyxpoly | navfix

3-136

daspectm

Purpose Control vertical exaggeration in map display

Syntax daspectm(zunits)
daspectm(zunits,vfac)
daspectm(zunits,vfac,lat,long)
daspectm(zunits,vfac,lat,long,az)
daspectm(zunits,vfac,lat,long,az,radius)

Description daspectm(zunits) sets the figure 'DataAspectRatio' property so that
the z-axis is in proportion to the x-and y-projected coordinates. This
permits elevation data to be displayed without vertical distortion. The
string zunits specifies the units of the elevation data, and can be any
string recognized by unitsratio.

daspectm(zunits,vfac) sets the 'DataAspectRatio' property so that
the z-axis is vertically exaggerated by the factor vfac. If omitted, the
default is no vertical exaggeration.

daspectm(zunits,vfac,lat,long) sets the aspect ratio based on the
local map scale at the specified geographic location. If omitted, the
default is the center of the map limits.

daspectm(zunits,vfac,lat,long,az) also specifies the direction
along which the scale is computed. If omitted, 90 degrees (west) is
assumed.

daspectm(zunits,vfac,lat,long,az,radius) uses the last input to
determine the radius of the sphere. radius can be one of the strings
supported by km2deg, or it can be the (numerical) radius of the desired
sphere in zunits. If omitted, the default radius of the Earth is used.

Examples Show the elevation map of the Korean peninsula with a vertical
exaggeration factor of 30:

load korea
[latlim,lonlim] = limitm(map,refvec);
worldmap(latlim,lonlim)
meshm(map,refvec,size(map),map)
demcmap(map)

3-137

daspectm

view(3)
daspectm('m',30)
tightmap
camlight

Limitations The relationship between the vertical and horizontal coordinates holds
only as long as the geoid or scale factor properties of the map axes
remain unchanged. If you change the scaling between geographic
coordinates and projected axes coordinates, execute daspectm again.

See Also daspect | paperscale

3-138

dcwdata

Purpose Read selected DCW worldwide basemap data

Syntax struct = dcwdata(library,latlim,lonlim,theme,topolevel)
struct = dcwdata(devicename,library,...)
[struct1, struct2,...] =
dcwdata(...,{topolevel1,topolevel2,

...})

Description struct = dcwdata(library,latlim,lonlim,theme,topolevel)
reads data for the specified theme and topology level directly from
the DCW CD-ROM. There are four CDs, one for each of the libraries:
'NOAMER' (North America), 'SASAUS' (Southern Asia and Australia),
'EURNASIA' (Europe and Northern Asia), and 'SOAMAFR' (South
America and Africa). The desired theme is specified by a two-letter code
string. A list of valid codes is displayed when an invalid code, such as
'?', is entered. The region of interest can be given as a point latitude
and longitude or as a region with two-element vectors of latitude and
longitude limits. The units of latitude and longitude are degrees. The
data covering the requested region is returned, but will include data
extending to the edges of the 5-by-5 degree tiles. The result is returned
as a Version 1 Mapping Toolbox display structure.

struct = dcwdata(devicename,library,...) specifies the logical
device name of the CD-ROM for computers that do not automatically
name the mounted disk.

[struct1, struct2,...] =
dcwdata(...,{topolevel1,topolevel2,...}) reads several topology
levels. The levels must be specified as a cell array with the entries
'patch', 'line', 'point', or 'text'. Entering {'all'} for the topology
level argument is equivalent to {'patch', 'line', 'point', 'text'}.
Upon output, the data structures are returned in the output arguments
by topology level in the same order as they were requested.

Background The Digital Chart of the World (DCW) is a detailed and comprehensive
source of publicly available global vector data. It was digitized from the
Operational Navigation Charts (scale 1:1,000,000) and Jet Navigation

3-139

dcwdata

Charts (1:2,000,000), compiled by the U.S. Defense Mapping Agency
(DMA) along with mapping agencies in Australia, Canada, and the
United Kingdom. The digitized data was published on four CD-ROMS
by the DMA and is distributed by the U.S. Geological Survey (USGS).

The DCW is out of print and has been succeeded by the Vector Map
Level 0 (VMAP0).

The DCW organizes data into 17 different themes, such as
political/oceans (PO), drainage (DN), roads (RD), or populated places
(PP). The data is further tiled into 5-by-5 degree tiles and separated by
topology level (patches, lines, points, and text).

Tips Latitudes and longitudes use WGS84 as a horizontal datum. Elevations
are in feet above mean sea level. The data set does not contain
bathymetric data.

Some DCW themes do not contain all topology levels. In those cases,
empty matrices are returned.

The data is tagged with strings describing the objects. Some data is
provided with alternate tags in tag2 and tag3 fields. These alternate
tags contain information that supplements the standard tag, such as
the names of political entities or values of elevation. The tag2 field
generally has the actual values or codes associated with the data. If the
information in the tag2 field expands to more verbose descriptions,
these are provided in the tag3 field.

Point data for which there are descriptions of both the type and the
individual names of objects is returned twice within the structure.
The first set is a collection of points of the same type with appropriate
tag. The second is a set of individual points with the tag 'Individual
Points' and the name of the object in the tag2 field.

Patches are broken at the tile boundaries. Setting the EdgeColor to
'none' and plotting the lines gives the map a normal appearance.

The DCW was published in 1992 based on data compiled some years
earlier. The political boundaries do not reflect recent changes such as
the dissolution of the Soviet Union, Czechoslovakia, and Yugoslavia.

3-140

dcwdata

In some cases, the boundaries of the successor nations are present as
lower level political units. A new version, called VMAP0.

For information about the format of display structures, see “Version 1
Display Structures” on page 3-177 in the reference page for displaym.

Examples On a Macintosh computer,

s = dcwdata('NOAMER',41,-69,'?','patch');

??? Error using ==> dcwdata
Theme not present in library NOAMER
Valid two-letter theme identifiers are:
PO: Political/Oceans
PP: Populated Places
LC: Land Cover
VG: Vegetation
RD: Roads
RR: Railroads
UT: Utilities
AE: Aeronautical
DQ: Data Quality
DN: Drainage
DS: Supplemental Drainage
HY: Hypsography
HS: Supplemental Hypsography
CL: Cultural Landmarks
OF: Ocean Features
PH: Physiography
TS: Transportation Structure
POpatch = dcwdata('NOAMER',[41 44],[-72 -69],'PO','patch')
POpatch =
1x234 struct array with fields:

type
otherproperty
tag
altitude

3-141

dcwdata

lat
long
tag2
tag3

On an MS-DOS based operating system with the CD-ROM as the 'd:'
drive,

[RDtext,RDline] = dcwdata('d:','SASAUS',[-48 -34],[164 180],...
'RD',{'text','line'});

On a UNIX® operating system with the CD-ROM mounted as '\cdrom',

[POpatch,POline,POpoint,POtext] = dcwdata('\cdrom',...
'EURNASIA',-48 ,164,'PO',{'all'});

References The format and the history of the DCW are described in reference [1] of
the “Bibliography” at the end of this chapter.

See Also dcwgaz | dcwread | dcwrhead | displaym | extractm | mlayers |
updategeostruct | vmap0data

3-142

dcwgaz

Purpose Search DCW worldwide basemap gazette file

Syntax dcwgaz(library,object)
dcwgaz(devicename,library,object)
mtextstruc = dcwgaz(...)
[mtextstruc,mpointstruc] = dcwgaz(...)

Description dcwgaz(library,object) searches the DCW library for items
beginning with the object string. There are four CDs, one for each of
the libraries: 'NOAMER' (North America), 'SASAUS' (Southern Asia and
Australia), 'EURNASIA' (Europe and Northern Asia), and 'SOAMAFR'
(South America and Africa). Items that exactly match or begin with the
object string are displayed on screen.

dcwgaz(devicename,library,object) specifies the logical device
name of the CD-ROM for computers that do not automatically name the
mounted disk.

mtextstruc = dcwgaz(...) displays the matched items on screen
and returns a Mapping Toolbox display structure with the matches
as text entries.

[mtextstruc,mpointstruc] = dcwgaz(...) returns the matches in
structures formatted both as text and as points.

Background In addition to the geographic data, the Digital Chart of the World
(DCW) also includes an extensive gazette feature. The gazette is a
collection of the names of geographic items mentioned in the various
themes of a DCW disk. One DCW disk can contain about 10,000 to
15,000 names. This function allows you to search the gazette for names
beginning with a particular string.

Tips The search is not case sensitive. Items that match are those that begin
with the object string. Spaces are significant.

Examples On a Macintosh computer,

s = dcwgaz('EURNASIA','apatin')

3-143

dcwgaz

APATIN
s =

type: 'text'
otherproperty: {1x2 cell}

tag: 'Built up area'
string: 'APATIN'

altitude: []
lat: 45.6660

long: 18.9830

On a UNIX operating system with the CD-ROM mounted as '\cdrom',

[mtextstruc,mpointstruc] = ...
dcwgaz('\cdrom','SOAMAFR', 'cape good')

Cape Goodenough
Cape Goodenough
Cape Goodenough
mtextstruc =
1x3 struct array with fields:

type
otherproperty
tag
string
altitude
lat
long

mpointstruc =
1x3 struct array with fields:

type
otherproperty
tag
string
altitude
lat
long

3-144

dcwgaz

See Also dcwdata | dcwread | dcwrhead | mlayers | updategeostruct

3-145

dcwread

Purpose Read DCW worldwide basemap file

Syntax dcwread(filepath,filename)
dcwread(filepath,filename,recordIDs)
dcwread(filepath,filename,recordIDs,field,varlen)
struc = dcwread(...)
[struc,field] = dcwread(...)
[struc,field,varlen] = dcwread(...)
[struc,field,varlen,description] = dcwread(...)
[struc,field,varlen,description,

narrativefield] = dcwread(...)

Description dcwread reads a DCW file. The user selects the file interactively.

dcwread(filepath,filename) reads the specified file. The combination
[filepath filename] must form a valid complete filename.

dcwread(filepath,filename,recordIDs) reads selected records or
fields from the file. If recordIDs is a scalar or a vector of integers, the
function returns the selected records. If recordIDs is a cell array of
integers, all records of the associated fields are returned.

dcwread(filepath,filename,recordIDs,field,varlen) uses
previously read field and variable-length record information to skip
parsing the file header (see below).

struc = dcwread(...) returns the file contents in a structure.

[struc,field] = dcwread(...) returns the file contents and a
structure describing the format of the file.

[struc,field,varlen] = dcwread(...) also returns a vector
describing the fields that have variable-length records.

[struc,field,varlen,description] = dcwread(...) also returns a
string describing the contents of the file.

[struc,field,varlen,description,narrativefield] =
dcwread(...) also returns the name of the narrative file for the
current file.

3-146

dcwread

Background The Digital Chart of the World (DCW) uses binary files in a variety of
formats. This function determines the format of the file and returns the
contents in a structure. The field names of this structure are the same
as the field names in the DCW file.

Tips This function reads all DCW files except index files (files with names
ending in 'X'), thematic index files (files with names ending in 'TI'),
and spatial index files (files with names ending in 'SI').

File separators are platform dependent. The filepath input must
use appropriate file separators, which you can determine using the
MATLAB filesep function.

Examples The following examples use the Macintosh directory system and file
separators for the pathname:

s = dcwread('NOAMER:DCW:NOAMER:','GRT')
s =

ID: 1
DATA_TYPE: 'GEO'

UNITS: '014'
ELLIPSOID: 'WGS 84'

ELLIPSOID_DETAIL: 'A=6378137,B=6356752 Meters'
VERT_DATUM_REF: 'MEAN SEA LEVEL'

VERT_DATUM_CODE: '015'
SOUND_DATUM: 'MEAN SEA LEVEL'

SOUND_DATUM_CODE: '015'
GEO_DATUM_NAME: 'WGS 84'
GEO_DATUM_CODE: 'WGE'

PROJECTION_NAME: 'DECIMAL DEGREES'

s = dcwread('NOAMER:DCW:NOAMER:AE:','INT.VDT')
s =
5x1 struct array with fields:

ID
TABLE
ATTRIBUTE

3-147

dcwread

VALUE
DESCRIPTION

for i = 1:length(s); disp(s(i)); end
ID: 1

TABLE: 'AEPOINT.PFT'
ATTRIBUTE: 'AEPTTYPE'

VALUE: 1
DESCRIPTION: 'Active civil'

ID: 2
TABLE: 'AEPOINT.PFT'

ATTRIBUTE: 'AEPTTYPE'
VALUE: 2

DESCRIPTION: 'Active civil and military'
ID: 3

TABLE: 'AEPOINT.PFT'
ATTRIBUTE: 'AEPTTYPE'

VALUE: 3
DESCRIPTION: 'Active military'

ID: 4
TABLE: 'AEPOINT.PFT'

ATTRIBUTE: 'AEPTTYPE'
VALUE: 4

DESCRIPTION: 'Other'

ID: 5
TABLE: 'AEPOINT.PFT'

ATTRIBUTE: 'AEPTTYPE'
VALUE: 5

DESCRIPTION: 'Added from ONC when not available from DAFIF'
s = dcwread('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT',1)
s =

ID: 1
AEPTTYPE: 4
AEPTNAME: 'THULE AIR BASE'
AEPTVAL: 251

3-148

dcwread

AEPTDATE: '19900502000000000000'
AEPTICAO: '1261'
AEPTDKEY: 'BR17652'
TILE_ID: 94
END_ID: 1

s = dcwread('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT',{1,2})
s =
4678x1 struct array with fields:

ID
AEPTTYPE

See Also dcwdata | dcwgaz | dcwrhead

3-149

dcwrhead

Purpose Read DCW worldwide basemap file headers

Syntax dcwrhead
dcwrhead(filepath,filename)
dcwrhead(filepath,filename,fid)
dcwrhead(...)
str = dcwrhead(...)

Description dcwrhead allows the user to select the header file interactively.

dcwrhead(filepath,filename) reads from the specified file. The
combination [filepath filename] must form a valid complete filename.

dcwrhead(filepath,filename,fid) reads from the already open file
associated with fid.

dcwrhead(...) with no output arguments displays the formatted
header information on the screen.

str = dcwrhead(...) returns a string containing the DCW header.

Background The Digital Chart of the World (DCW) uses header strings in most
files to document the contents and format of that file. This function
reads the header string, displays a formatted version in the command
window, or returns it as a string.

Tips This function reads all DCW files except index files (files with names
ending in 'X'), thematic index files (files with names ending in 'TI'),
and spatial index files (files with names ending in 'SI').

File separators are platform dependent. The filepath input must
use appropriate file separators, which you can determine using the
MATLAB filesep function.

Examples The following example uses the Macintosh file separators and
pathname:

dcwrhead('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT')
Aeronautical Points

3-150

dcwrhead

AEPOINT.DOC
ID=I, 1,P,Row Identifier,-,-,
AEPTTYPE=I, 1,N,Airport Type,INT.VDT,-,
AEPTNAME=T, 50,N,Airport Name,-,-,
AEPTVAL=I, 1,N,Airport Elevation Value,-,-,
AEPTDATE=D, 1,N,Aeronautical Information Date,-,-,
AEPTICAO=T, 4,N,International Civil Organization Number,-,-,
AEPTDKEY=T, 7,N,DAFIF Reference Number,-,-,
TILE_ID=S, 1,F,Tile Reference Identifier,-,AEPOINT.PTI,
END_ID=I 1,F,Entity Node Primitive Foreign Key,-,-,

s = dcwrhead('NOAMER:DCW:NOAMER:AE:','AEPOINT.PFT')
s =
;Aeronautical Points;AEPOINT.DOC;ID=I, 1,P,Row
Identifier,-,-,:AEPTTYPE=I, 1,N,Airport
Type,INT.VDT,-,:AEPTNAME=T, 50,N,Airport Name,-,-,:AEPTVAL=I,
1,N,Airport Elevation Value,-,-,:AEPTDATE=D, 1,N,Aeronautical
Information Date,-,-,:AEPTICAO=T, 4,N,International Civil
Organization Number,-,-,:AEPTDKEY=T, 7,N,DAFIF Reference
Number,-,-,:TILE_ID=S, 1,F,Tile Reference
Identifier,-,AEPOINT.PTI,:END_ID=I 1,F,Entity Node Primitive
Foreign Key,-,-,:;

See Also dcwdata | dcwgaz | dcwread

3-151

defaultm

Purpose Initialize or reset map projection structure

Syntax mstruct = defaultm(projid)
mstruct = defaultm(mstruct)

Description mstruct = defaultm(projid) initializes a map projection structure.
The string projid should match one of the entries in the last column of
the table displayed by the maps function. The output mstruct is a map
projection structure. It is a scalar structure whose fields correspond to
“Map Axes Object Properties” on page 3-51.

mstruct = defaultm(mstruct) checks an existing map projection
structure, sets empty properties, and adjusts dependent properties.
The Origin, FLatLimit, FLonLimit, MapLatLimit, and MapLonLimit
properties may be adjusted for compatibility with each other and with
the MapProjection property and (in the case of UTM or UPS) the
Zone property.

With defaultm, you can construct a map projection structure (mstruct)
that contains all the information needed to project and unproject
geographic coordinates using mfwdtran, minvtran, vfwdtran, or
vintran without creating a map axes or making any use at all of
MATLAB graphics. Relevant parameters in the mstruct include the
projection name, angle units, zone (for UTM or UPS), origin, aspect,
false easting, false northing, and (for conic projections) the standard
parallel or parallels. In very rare cases you might also need to adjust
the frame limit (FLatLimit and FLonLimit) or map limit (MapLatLimit
and MapLonLimit) properties.

You should make exactly two calls to defaultm to set up your mstruct,
using the following sequence:

1 Construct a provisional version containing default values for the
projection you’ve selected: mstruct = defaultm(projection);

2 Assign appropriate values to mstruct.angleunits, mstruct.zone,
mstruct.origin, etc.

3-152

defaultm

3 Set empty properties and adjust interdependent properties as
needed to finalize your map projection structure: mstruct =
defaultm(mstruct);

If you’ve set field prop1 of mstruct to value1, field prop2 to value2, and
so forth, then the following sequence

mstruct = defaultm(projection);
mstruct.prop1 = value1;
mstruct.prop2 = value2;
...
mstruct = defaultm(mstruct);

produces exactly the same result as the following:

f = figure;
ax = axesm(projection, prop1, value1, prop2, value2, ...);
mstruct = getm(ax);
close(f)

but it avoids the use of graphics and is more efficient.

Note Angle-valued properties are in degrees by default. If you want
to work in radians instead, you can make the following assignment in
between your two calls to defaultm:

mstruct.angleunits = 'radians';

You must also use values in radians when assigning any angle-valued
properties (such as mstruct.origin, mstruct.parallels,
mstruct.maplatlimit, mstruct.maplonlimit, etc.).

See the Mapping Toolbox User’s Guide section on “Working in UTM
Without a Map Axes” for information and an example showing the use
of defaultm in combination with UTM.

3-153

defaultm

Examples Create an empty map projection structure for a Mercator projection:

mstruct = defaultm('mercator')

mstruct =
mapprojection: 'mercator'

zone: []
angleunits: 'degrees'

aspect: 'normal'
falseeasting: []

falsenorthing: []
fixedorient: []

geoid: [1 0]
maplatlimit: []
maplonlimit: []

mapparallels: 0
nparallels: 1

origin: []
scalefactor: []

trimlat: [-86 86]
trimlon: [-180 180]

frame: []
ffill: 100

fedgecolor: [0 0 0]
ffacecolor: 'none'
flatlimit: []

flinewidth: 2
flonlimit: []

grid: []
galtitude: Inf

gcolor: [0 0 0]
glinestyle: ':'
glinewidth: 0.5000

mlineexception: []
mlinefill: 100

mlinelimit: []
mlinelocation: []

3-154

defaultm

mlinevisible: 'on'
plineexception: []

plinefill: 100
plinelimit: []

plinelocation: []
plinevisible: 'on'

fontangle: 'normal'
fontcolor: [0 0 0]
fontname: 'helvetica'
fontsize: 9

fontunits: 'points'
fontweight: 'normal'

labelformat: 'compass'
labelrotation: 'off'

labelunits: []
meridianlabel: []

mlabellocation: []
mlabelparallel: []

mlabelround: 0
parallellabel: []

plabellocation: []
plabelmeridian: []

plabelround: 0

Now change the map origin to [0 90 0], and fill in default projection
parameters accordingly:

mstruct.origin = [0 90 0];
mstruct = defaultm(mstruct)

mstruct =
mapprojection: 'mercator'

zone: []
angleunits: 'degrees'

aspect: 'normal'
falseeasting: 0

falsenorthing: 0

3-155

defaultm

fixedorient: []
geoid: [1 0]

maplatlimit: [-86 86]
maplonlimit: [-90 270]

mapparallels: 0
nparallels: 1

origin: [0 90 0]
scalefactor: 1

trimlat: [-86 86]
trimlon: [-180 180]

frame: 'off'
ffill: 100

fedgecolor: [0 0 0]
ffacecolor: 'none'
flatlimit: [-86 86]

flinewidth: 2
flonlimit: [-180 180]

grid: 'off'
galtitude: Inf

gcolor: [0 0 0]
glinestyle: ':'
glinewidth: 0.5

mlineexception: []
mlinefill: 100

mlinelimit: []
mlinelocation: 30
mlinevisible: 'on'

plineexception: []
plinefill: 100

plinelimit: []
plinelocation: 15
plinevisible: 'on'

fontangle: 'normal'
fontcolor: [0 0 0]
fontname: 'Helvetica'
fontsize: 10

fontunits: 'points'

3-156

defaultm

fontweight: 'normal'
labelformat: 'compass'

labelrotation: 'off'
labelunits: 'degrees'

meridianlabel: 'off'
mlabellocation: 30
mlabelparallel: 86

mlabelround: 0
parallellabel: 'off'

plabellocation: 15
plabelmeridian: -90

plabelround: 0

See Also axesm | gcm | mfwdtran | minvtran | setm

3-157

deg2km

Purpose Convert distance from degrees to kilometers

Syntax km = deg2km(deg)
km = deg2km(deg,radius)
km = deg2km(deg,sphere)

Description km = deg2km(deg) converts distances from degrees to kilometers as
measured along a great circle on a sphere with a radius of 6371 km, the
mean radius of the Earth.

km = deg2km(deg,radius) converts distances from degrees to
kilometers as measured along a great circle on a sphere having the
specified radius. radius must be in units of kilometers.

km = deg2km(deg,sphere) converts distances from degrees to
kilometers, as measured along a great circle on a sphere approximating
an object in the Solar System. sphere may be one of the following
strings: 'sun', 'moon', 'mercury', 'venus', 'earth', 'mars',
'jupiter', 'saturn', 'uranus', 'neptune', or 'pluto', and is
case-insensitive.

See Also deg2nm | degtorad | deg2sm | km2deg | sm2deg

3-158

deg2nm

Purpose Convert distance from degrees to nautical miles

Syntax nm = deg2nm(deg)
nm = deg2nm(deg,radius)
nm = deg2nm(deg,sphere)

Description nm = deg2nm(deg) converts distances from degrees to nautical miles,
as measured along a great circle on a sphere with a radius of 6371 km,
the mean radius of the Earth.

nm = deg2nm(deg,radius) converts distances from degrees to nautical
miles, as measured along a great circle on a sphere having the specified
radius. radius must be in units of nautical miles.

nm = deg2nm(deg,sphere) converts distances from degrees to nautical
miles, as measured along a great circle on a sphere approximating an
object in the Solar System. sphere may be one of the following strings:
'sun', 'moon', 'mercury', 'venus', 'earth', 'mars', 'jupiter',
'saturn', 'uranus', 'neptune', or 'pluto', and is case-insensitive.

Examples A degree of arc length is about 60 nautical miles:

deg2nm(1)

ans =
60.0405

This is not true on Mercury, of course:

deg2nm(1,'mercury')

ans =
22.9852

See Also degtorad | deg2sm | km2deg | sm2deg

3-159

deg2sm

Purpose Convert distance from degrees to statute miles

Syntax sm = deg2sm(deg)
sm = deg2sm(deg,radius)
sm = deg2sm(deg,sphere)

Description sm = deg2sm(deg) converts distances from degrees to statute miles, as
measured along a great circle on a sphere with a radius of 6371 km, the
mean radius of the Earth.

sm = deg2sm(deg,radius) converts distances from degrees to statute
miles, as measured along a great circle on a sphere having the specified
radius. radius must be in units of statute miles.

sm = deg2sm(deg,sphere) converts distances from degrees to statute
miles, as measured along a great circle on a sphere approximating an
object in the Solar System. sphere may be one of the following strings:
'sun', 'moon', 'mercury', 'venus', 'earth', 'mars', 'jupiter',
'saturn', 'uranus', 'neptune', or 'pluto', and is case-insensitive.

See Also deg2nm | degtorad | km2deg | sm2deg

3-160

degrees2dm

Purpose Convert degrees to degrees-minutes

Syntax DM = degrees2dm(angleInDegrees)

Description DM = degrees2dm(angleInDegrees) converts angles from values in
degrees which may include a fractional part (sometimes called “decimal
degrees”) to degree-minutes representation. The input should be a
real-valued column vector. Given N-by-1 input, DM will be N-by-2,
with one row per input angle. The first column of DM contains the
“degrees” element and is integer-valued. The second column contains
the “minutes” element and may have a nonzero fractional part. In any
given row of DM, the sign of the first nonzero element indicates the sign
of the overall angle. A positive number indicates north latitude or east
longitude; a negative number indicates south latitude or west longitude.
Any remaining elements in that row will have nonnegative values.

Examples angleInDegrees = [30.8457722555556; ...
-82.0444189583333; ...
-0.504756513888889;...
0.004116666666667];

dm = degrees2dm(angleInDegrees)

dm =
30.000000000000000 50.746335333336106

-82.000000000000000 2.665137499997741
0 -30.285390833333338
0 0.247000000000020

See Also dm2degrees | degtorad | degrees2dms | radtodeg

3-161

degrees2dms

Purpose Convert degrees to degrees-minutes-seconds

Syntax DMS = degrees2dms(angleInDegrees)

Description DMS = degrees2dms(angleInDegrees) converts angles from values in
degrees which may include a fractional part (sometimes called “decimal
degrees”) to degree-minutes-seconds representation. The input should
be a real-valued column vector. Given N-by-1 input, DMS will be N-by-3,
with one row per input angle. The first column of DMS contains the
“degrees” element and is integer-valued. The second column contains
the “minutes” element and is integer valued. The third column contains
the “seconds” element, and can have a nonzero fractional part. In any
given row of DMS, the sign of the first nonzero element indicates the sign
of the overall angle. A positive number indicates north latitude or east
longitude; a negative number indicates south latitude or west longitude.
Any remaining elements in that row will have nonnegative values.

Examples Convert four angles from values in degrees to degree-minutes-seconds
representation.

format long g
angleInDegrees = [30.8457722555556; ...

-82.0444189583333; ...
-0.504756513888889; ...
0.004116666666667];

dms = degrees2dms(angleInDegrees)

The output appears as follows:

dms =
30 50 44.7801200001663

-82 2 39.9082499998644
0 -30 17.1234500000003
0 0 14.8200000000012

Convert angles to a string, with each angle on its own line.

3-162

degrees2dms

nonnegative = all((dms >= 0),2);
hemisphere = repmat('N', size(nonnegative));
hemisphere(~nonnegative) = 'S';
absvalues = num2cell(abs(dms'));
values = [absvalues; num2cell(hemisphere')];
str = sprintf('%2.0fd%2.0fm%7.5fs%s\n', values{:})

The output appears as follows:

str =
30d50m44.78012sN
82d 2m39.90825sS
0d30m17.12345sS
0d 0m14.82000sN

Split the string into cells as delimited by the newline character, then
return to the original values using str2angle.

newline = sprintf('\n');
C = textscan(str,'%s',-1,'delimiter',newline);
a = deal(C{:});
for k = 1:numel(a)

str2angle(a{k})
end

The output appears as follows:

ans =
30.8457722555556

ans =
-82.0444189583333

ans =
-0.504756513888889

ans =

3-163

degrees2dms

0.00411666666666667

See Also dms2degrees | degtorad | degrees2dm | radtodeg

3-164

degtorad

Purpose Convert angles from degrees to radians

Syntax angleInRadians = degtorad(angleInDegrees)

Description angleInRadians = degtorad(angleInDegrees) converts angle units
from degrees to radians. This is both an angle conversion function and
a distance conversion function, since arc length can be a measure of
distance in either radians or degrees, provided that the radius is known.

Examples Show that there are 2π radians in a full circle:

2*pi - degtorad(360)

ans =
0

See Also fromDegrees | fromRadians | toDegrees | toRadians | radtodeg

3-165

demcmap

Purpose Colormaps appropriate to terrain elevation data

Syntax demcmap(Z)
demcmap(Z,ncolors)
demcmap(Z,ncolors,cmapsea,cmapland)

demcmap('inc',Z,deltaz)
demcmap('inc',Z,deltaz,cmapsea,cmapland)

[cmap,climits] = demcmap(___)

Description demcmap(Z) sets the colormap and color axis limits based on the
elevation data limits derived from input argument Z.

• The default colormap assigns shades of green and brown for positive
elevations, and various shades of blue for negative elevation values
below sea level.

• The number of colors assigned to land and to sea are in proportion to
the ranges in terrain elevation and bathymetric depth and total 64
by default. The color axis limits are computed such that the interface
between land and sea maps to the zero elevation contour.

• The colormap is applied to the current figure and the color axis
limits are applied to the current axes.

demcmap(Z,ncolors) creates a colormap of length ncolors.

demcmap(Z,ncolors,cmapsea,cmapland) assigns cmapsea and
cmapland to elevations below and above sea level respectively.

demcmap('inc',Z,deltaz) chooses number of colors and color axis
limits such that each color approximately represents the increment
of elevation deltaz.

3-166

demcmap

• The literal string 'inc' signals demcmap that the first argument
after Z will be deltaz.

demcmap('inc',Z,deltaz,cmapsea,cmapland)assigns cmapsea and
cmapland to elevations below and above sea level respectively.

[cmap,climits] = demcmap(___) returns colormap cmap and color
axis limit climits, using any of the above syntaxes, but does not apply
them to figure or axes properties.

• Even if only one output argument is specified, no change occurs to
figure or axes properties.

Input
Arguments

Z - Terrain elevation limits
vector | matrix

Terrain elevation limits specified as a vector or matrix. If Z is a 2
element vector, then it specifies the minimum and maximum limits
of terrain elevation data; ordering is not important. If Z is a matrix,
then it specifies an elevation grid in which positive and negative values
represent points above and below sea level respectively.

load topo
worldmap('world')
meshm(topo,topolegend)
Zlimits = [min(topo(:)) max(topo(:))];
Zgrid = topo;
demcmap(Zlimits);
demcmap(Zgrid)

The above two syntaxes for demcmap are identical in their effect on the
figure colormap and axes properties.

Data Types
single | double | int8 | int32 | uint8 | uint16 | uint32

ncolors - Number of colors in colormap

3-167

demcmap

64 (default) | scalar

Number of colors in the colormap specified as a scalar. It defines the
number of rows m in the mx3 RGB matrix of the figure colormap.

Data Types
double

cmapsea,cmapland - RGB colormap matrices
matrix

• RGB colormaps specified as mx3 arrays containing any number of
rows. The two colormaps need not be equal in length. They serve as
the basis set for populating the figure colormap by interpolation.

• cmapsea and cmapland replace the default colormap. The default
colormap for land or sea can be retained by providing an empty
matrix in place of either colormap matrix.

That part of the figure colormap assigned to negative elevations is
derived from cmapssea; cmapland plays a similar role for positive
elevations.

Data Types
double

deltaz - Increment of elevation
scalar

The increment of elevation specified as a scalar. The color quantization
of the default or user supplied colormap is adjusted such that each
discrete color approximately represents a deltaz increment in
elevation.

Data Types
double

3-168

demcmap

Output
Arguments

cmap - RGB colormap
matrix

RGB colormap returned as a matrix constructed for the figure colormap.
Supply output arguments when you want to obtain the colormap and
color axis limits without applying them automatically to the figure or
axes properties. These properties remain unchanged even if only one
output (cmap) is specified.

Data Types
double

climits - Color axis limits
vector

Color axis limits returned as a vector. climits may differ somewhat
from those derived from input argument Z due to the quantization
which results from fitting a limited number of colors over the range
limit of the elevation data.

Supply output arguments when you want to obtain the colormap and
color axis limits without applying them automatically to the figure or
axes.

Data Types
double

Examples Displaying Elevation Data With Default Colormap

Explicitly determine maximum and minimum values of elevation data
matrix

load topo
axesm hatano
meshm(topo,topolegend)
zlimits = [min(topo(:)) max(topo(:))];
demcmap(zlimits);
colorbar;

3-169

demcmap

Defining Custom Land And Sea Colormaps

Custom RGB colormaps, cmapssea; cmapland , of differing lengths are
used to populate figure colormap by interpolation. The colors in each
colormap map to the land and sea regions of the map. Fewer colors
have been specified in total than the default number of 64. demcmap
determines maximum and minimum elevation data limits internally as
shown in the below example when the first argument is the elevation
data grid.

load topo % grid of elevation data
axesm hatano
meshm(topo,topolegend)
cmapsea = [.8 0 .8; 0 0 .8];
cmapland = [.7 0 0; .8 .8 0; 1 1 .8];
demcmap(topo,32,cmapsea,cmapland)
colorbar;

3-170

demcmap

Colormap in Which Each Color Approximates a User Defined
Increment

The following demcmap example controls the color quantization by
choosing an optimal number of colors such that each color represents an
elevation increment of approximately 2000 .

load topo
R = georasterref('RasterSize', size(topo),'Latlim', [-90 90], 'Lonlim
figure('Color','white')
worldmap('world')
geoshow(topo, R, 'DisplayType', 'texturemap')
demcmap('inc',[max(topo(:)) min(topo(:))],2000);
colorbar

3-171

demcmap

Algorithms If the elevation grid data contains both positive and negative values,
then the computed colormap, cmap, has a “sea” partition of length nsea
and "land" partition of length nland. The sum of nsea and nland
equals the total number of entries in the computed colormap. The
actual values of nsea and nland depend upon the number of entries and
the relative range of the negative and positive limits of the elevation
data. The sea partition consists of rows 1 through nsea, and the land
partition consists of rows nsea + 1 through ncolors. The sea and land
partitions of the figure colormap are populated with colors interpolated
from the basis RGB colormaps, cmapsea and cmapland. In the figure
below, the sea and land 3x3 RGB colormaps shown are the default
colors used by demcmap to populate the figure colormap when no user
specified colormaps are provided.

3-172

demcmap

If the elevation grid data contains only positive or negative values, then
the figure colormap is derived solely from the corresponding sea or
land colormap.

See Also caxis | colormap | meshlrm | meshm | surflsrm | surfm

3-173

departure

Purpose Departure of longitudes at specified latitudes

Syntax dist = departure(long1,long2,lat)
dist = departure(long1,long2,lat,ellipsoid)
dist = departure(long1,long2,lat,units)
dist = departure(long1,long2,lat,geoid,units)

Description dist = departure(long1,long2,lat) computes the departure
distance from long1 to long2 at the input latitude lat. Departure is the
distance along a specific parallel between two meridians. The output
dist is returned in degrees of arc length on a sphere.

dist = departure(long1,long2,lat,ellipsoid) computes the
departure assuming that the input points lie on the ellipsoid
defined by the input ellipsoid. ellipsoid is a referenceSphere,
referenceEllipsoid, or oblateSpheroid object, or a vector of the form
[semimajor_axis eccentricity].

dist = departure(long1,long2,lat,units) uses the input string
units to define the angle units of the input and output data. In this
form, the departure is returned as an arc length in the units specified
by units. If units is omitted, 'degrees' is assumed.

dist = departure(long1,long2,lat,geoid,units) is a valid calling
form. In this case, the departure is computed in the same units as the
semimajor axes of the ellipsoid.

Definitions Departure is the distance along a parallel between two points. Whereas
a degree of latitude is always the same distance, a degree of longitude
is different in length at different latitudes. In practice, this distance is
usually given in nautical miles.

Examples On a spherical Earth, the departure is proportional to the cosine of
the latitude:

distance = departure(0, 10, 0)

distance =

3-174

departure

10

distance = departure(0, 10, 60)

distance =
5

When an ellipsoid is used, the result is more complicated. The distance
at 60º is not exactly twice the 0º value:

distance = departure(0, 10, 0, referenceEllipsoid('earth', 'nm'))

distance =
601.0772

distance = departure(0, 10, 60, referenceEllipsoid('earth', 'nm'))

distance =
299.7819

See Also distance | stdm

3-175

displaym

Purpose Display geographic data from display structure

Syntax displaym(displaystruct)
displaym(displaystruct,str)
displaym(displaystruct,strings)
displaym(displaystruct,strings,searchmethod)
h = displaym(displaystruct)

Description displaym(displaystruct) projects the data contained in the input
displaystruct, a Version 1 Mapping Toolbox display structure, in the
current axes. The current axes must be a map axes with a valid map
definition. See the remarks about “Version 1 Display Structures” on
page 3-177 below for details on the contents of display structures.

displaym(displaystruct,str) displays the vector data elements of
displaystruct whose 'tag' fields contains strings beginning with the
string str. Vector data elements are those whose 'type' field is either
'line' or 'patch’. The string match is case-insensitive.

displaym(displaystruct,strings) displays the vector data elements
of displaystruct whose 'tag' field matches begins with one of the
elements (or rows) of strings. strings is a cell array of strings (or a
2-D character array). In the case of character array, trailing blanks are
stripped from each row before matching.

displaym(displaystruct,strings,searchmethod) controls the
method used to match the values of the tag field in displaystruct,
as follows:

• 'strmatch'— Search for matches at the beginning of the tag

• 'findstr' — Search within the tag

• 'exact' — Search for exact matches
Note that when searchmethod is specified the search is case-sensitive.

h = displaym(displaystruct) returns handles to the graphic objects
created by displaym.

3-176

displaym

Note The type of display structure accepted by displaym is not the
same as a geographic data structure (geostructs and mapstructs).
introduced in Mapping Toolbox Version 2. Use geoshow or mapshow
instead of displaym to display geostructs or mapstructs—created using
shaperead and gshhs, for example. For more information, see “Mapping
Toolbox Geographic Data Structures”.

Tips The following section documents the contents of display structures.

Version 1 Display Structures

A display structure is a MATLAB structure array with a specific set
of fields:

• A tag field names an individual feature or object

• A type field specifies a MATLAB graphics object type ('line',
'patch’, 'surface', 'text', or 'light') or has the value 'regular',
specifying a regular data grid

• lat and long fields contain coordinate vectors of latitudes and
longitudes, respectively

• An altitude field contains a vector of vertical coordinate values

• A string property contains text to be displayed if type is 'text'

• MATLAB graphics properties are specified explicitly, on a
per-feature basis, in an otherproperty field

The choice of options for the type field reveals that a display structure
can contain

• Vector geodata (type is 'line' or 'patch')

• Raster geodata (type is 'surface' or 'regular')

• Graphic objects (type is 'text' or 'light')

The following table indicates which fields are used in the six types of
display structures:

3-177

displaym

Field Name
Type
’light’

Type
’line’

Type
’patch’

Type
’regular’

Type
’surface’

Type
’text’

type • • • • • •

tag • • • • • •

lat • • • • •

long • • • • •

map • •

maplegend •

meshgrat •

string •

altitude • • • • • •

otherproperty • • • • • •

Some fields can contain empty entries, but each indicated field must
exist for the objects in the struct array to be displayed correctly.
For instance, the altitude field can be an empty matrix and the
otherproperty field can be an empty cell array.

The type field must be one of the specified map object types: 'line',
'patch', 'regular', 'surface', 'text', or 'light'.

The tag field must be a string different from the type field usually
containing the name or kind of map object. Its contents must not be
equal to the name of the object type (i.e., line, surface, text, etc.).

The lat, long, and altitude fields can be scalar values, vectors, or
matrices, as appropriate for the map object type.

The map field is a data grid. If map is a regular data grid, maplegend is its
corresponding referencing vector, and meshgrat is a two-element vector
specifying the graticule mesh size. If map is a geolocated data grid, lat
and long are the matrices of latitude and longitude coordinates.

The otherproperty field is a cell array containing any additional
display properties appropriate for the map object. Cell array entries can

3-178

displaym

be a line specification string, such as 'r+', or property name/property
value pairs, such as 'color','red'. If the otherproperty field is left
as an empty cell array, default colors are used in the display of lines
and patches based on the tag field.

Note In some cases you can use the geoshow function as a direct
alternative to displaym. It accepts display structures of type line and
patch.

See Also extractm | geoshow | mapshow | mlayers | updategeostruct

3-179

dist2str

Purpose Format distance strings

Syntax str = dist2str(distin)
str = dist2str(dist,format)
str = dist2str(dist,format,units)
str = dist2str(dist,format,digits)
str = dist2str(dist,format,units,digits)

Description str = dist2str(distin)converts a numerical vector of distances in
kilometers, distin, to a string matrix. The output string matrix is
useful for the display of distances.

str = dist2str(dist,format) uses the format string to specify the
notation to be used for the string matrix. If blank or 'none', the result
is a simple numerical representation (no indicator for positive distances,
minus signs for negative distances). The only other format is 'pm' (for
plus-minus) prefixes a + for positive distances.

str = dist2str(dist,format,units) defines the units in which the
input distances are supplied, and which are encoded in the string
matrix. Units must be one of the following: 'feet', 'kilometers',
'meters', 'nauticalmiles', 'statutemiles', 'degrees', or
'radians'. Note that statute miles are encoded as 'mi' in the string
matrix, whereas in most Mapping Toolbox functions, 'mi' indicates
international miles. If omitted or blank, 'kilometers' is assumed.

str = dist2str(dist,format,digits) or str =
dist2str(dist,format,units,digits) uses the input
digits to determine the number of decimal digits in the output matrix.
digits = -2 uses accuracy in the hundredths position, digits = 0
uses accuracy in the units position. Default is digits = -2. For further
discussion of specifying digits, see roundn.

The purpose of this function is to make distance-valued variables into
strings suitable for map display.

Examples Create a vector of values and convert to strings:

d = [-3.7 2.95 87];

3-180

dist2str

str = dist2str(d,'none','km')

str =
-3.70 km
2.95 km

87.00 km

Now change the units to nautical miles, add plus signs to positive
values, and truncate to the tenths (10–1) slot:

str = dist2str(d,'pm','nm',-1)

str =
-3.7 nm
+3.0 nm

+87.0 nm

See Also angl2str | roundn

3-181

distance

Purpose Distance between points on sphere or ellipsoid

Syntax [arclen,az] = distance(lat1,lon1,lat2,lon2)
[arclen,az] = distance(lat1,lon1,lat2,lon2,ellipsoid)
[arclen,az] = distance(lat1,lon1,lat2,lon2,units)
[arclen,az] = distance(lat1,lon1,lat2,lon2,ellipsoid,units)
[arclen,az] = distance(track,...)
[arclen,az] = distance(pt1,pt2)
[arclen,az] = distance(pt1,pt2,ellipsoid)
[arclen,az] = distance(pt1,pt,units)
[arclen,az] = distance(pt1,pt2,ellipsoid,units)
[arclen,az] = distance(track,pt1,...)

Description [arclen,az] = distance(lat1,lon1,lat2,lon2) computes the
lengths, arclen, of the great circle arcs connecting pairs of points on the
surface of a sphere. In each case, the shorter (minor) arc is assumed.
The function can also compute the azimuths, az, of the second point in
each pair with respect to the first (that is, the angle at which the arc
crosses the meridian containing the first point). The input latitudes and
longitudes, lat1, lon1, lat2, lon2, can be scalars or arrays of equal
size and must be expressed in degrees. arclen is expressed in degrees
of arc and will have the same size as the input arrays. az is measured
clockwise from north, in units of degrees. When given a combination of
scalar and array inputs, the scalar inputs are automatically expanded
to match the size of the arrays.

[arclen,az] = distance(lat1,lon1,lat2,lon2,ellipsoid)
computes geodesic arc length and azimuth assuming that the points lie
on the reference ellipsoid defined by the input ellipsoid. ellipsoid is
a referenceSphere, referenceEllipsoid, or oblateSpheroid object,
or a vector of the form [semimajor_axis eccentricity]. The output,
arclen, is expressed in the same length units as the semimajor axis
of the ellipsoid.

[arclen,az] = distance(lat1,lon1,lat2,lon2,units) uses the
input string units to define the angle unit of the outputs arclen and
az and the input latitude-longitude coordinates. units may equal
'degrees' (the default value) or 'radians'.

3-182

distance

[arclen,az] = distance(lat1,lon1,lat2,lon2,ellipsoid,units)
uses the units string to specify the units of the latitude-longitude
coordinates, but the output range has the same units as the semimajor
axis of the ellipsoid.

[arclen,az] = distance(track,...) uses the input string track to
specify either a great circle/geodesic or a rhumb line arc. If track equals
'gc' (the default value), then great circle distances are computed on a
sphere and geodesic distances are computed on an ellipsoid. If track
equals 'rh', then rhumb line distances are computed on either a sphere
or ellipsoid.

[arclen,az] = distance(pt1,pt2) accepts N-by-2 coordinate arrays
pt1 and pt2 such that pt1 = [lat1 lon1] and pt2 = [lat2 lon2],
where lat1, lon1, lat2, and lon2 are column vectors. It is equivalent
to arclen = distance(pt1(:,1),pt1(:,2),pt2(:,1),pt2(:,2)).

[arclen,az] = distance(pt1,pt2,ellipsoid),

[arclen,az] = distance(pt1,pt,units),

[arclen,az] = distance(pt1,pt2,ellipsoid,units), and

[arclen,az] = distance(track,pt1,...) are all valid calling forms.

Examples Using pt1,pt2 notation, find the distance from Norfolk, Virginia (37ºN,
76ºW), to Cape St. Vincent, Portugal (37ºN, 9ºW), just outside the
Straits of Gibraltar. The distance between these two points depends
upon the track string selected.

arclen = distance('gc',[37,-76],[37,-9])

arclen =
52.3094

arclen = distance('rh',[37,-76],[37,-9])

arclen =
53.5086

3-183

distance

The difference between these two tracks is 1.1992 degrees, or about
72 nautical miles. This represents about 2% of the total trip distance.
The trade-off is that at the cost of those 72 miles, the entire trip can be
made on a rhumb line with a fixed course of 90º, due east, while in
order to follow the shorter great circle path, the course must be changed
continuously.

On a meridian and on the Equator, great circles and rhumb lines
coincide, so the distances are the same. For example,

% Great circle distance
arclen = distance(37,-76,67,-76)

arclen =
30.0000

% Rhumb line distance
arclen = distance('rh',37,-76,67,-76)

arclen =
30.0000

The distances are the same, 30º, or about 1800 nautical miles. (There
are about 60 nautical miles in a degree of arc length.)

Algorithms Distance calculations for geodesics degrade slowly with increasing
distance and may break down for points that are nearly antipodal, as
well as when both points are very close to the Equator. In addition,
for calculations on an ellipsoid, there is a small but finite input space,
consisting of pairs of locations in which both the points are nearly
antipodal and both points fall close to (but not precisely on) the Equator.
In this case, a warning is issued and both arclen and az are set to
NaN for the “problem pairs.”

Alternatives Distance between two points can be calculated in two ways. For great
circles (on the sphere) and geodesics (on the ellipsoid), the distance is
the shortest surface distance between two points. For rhumb lines, the

3-184

distance

distance is measured along the rhumb line passing through the two
points, which is not, in general, the shortest surface distance between
them.

When you need to compute both distance and azimuth for the same
point pair(s), it is more efficient to do so with a single call to distance.
That is, use

[arclen az] = distance(...);

rather than the slower

arclen = distance(...)
az = azimuth(...)

To express the output arclen as an arc length in either degrees or
radians, omit the ellipsoid argument. This is possible only on a
sphere. If ellipsoid is supplied, arclen is a distance expressed in the
same units as the semimajor axis of the ellipsoid. Specify ellipsoid
as [R 0] to compute arclen as a distance on a sphere of radius R, with
arclen having the same units as R.

See Also referenceEllipsoid | referenceSphere | oblateSpheroid | azimuth
| elevation | reckon | track | track1 | track2 | trackg

How To • “Great Circles, Rhumb Lines, and Small Circles”

3-185

distortcalc

Purpose Distortion parameters for map projections

Syntax areascale = distortcalc(lat,long)
areascale = distortcalc(mstruct,lat,long)
[areascale,angdef,maxscale,minscale,merscale,

parscale] = distortcalc(...)

Description areascale = distortcalc(lat,long) computes the area distortion
for the current map projection at the specified geographic location. An
area scale of 1 indicates no scale distortion. Latitude and longitude can
be scalars, vectors, or matrices in the angle units of the defined map
projection.

areascale = distortcalc(mstruct,lat,long) uses the projection
defined in the map structure mstruct.

[areascale,angdef,maxscale,minscale,merscale,parscale] =
distortcalc(...) computes the area scale, maximum angular
deformation of right angles (in the angle units of the defined projection),
the particular maximum and minimum scale distortions in any
direction, and the particular scale along the meridian and parallel. You
can also call distortcalc with fewer output arguments, in the order
shown.

Background Map projections inevitably introduce distortions in the shapes and sizes
of objects as they are transformed from three-dimensional spherical
coordinates to two-dimensional Cartesian coordinates. The amount and
type of distortion vary between projections, over the projection, and
with the selection of projection parameters such as standard parallels.
This function allows a quantitative evaluation of distortion parameters.

Examples At the equator, the Mercator projection is free of both area and angular
distortion:

axesm mercator
[areascale,angdef] = distortcalc(0,0)

3-186

distortcalc

areascale =
1.0000

angdef =
8.5377e-007

At 60 degrees north, objects are shown at 400% of their true area. The
projection is conformal, so angular distortion is still zero.

[areascale,angdef] = distortcalc(60,0)

areascale =
4.0000

angdef =
4.9720e-004

Tips This function uses a finite difference technique. The geographic
coordinates are perturbed slightly in different directions and projected.
A small amount of error is introduced by numerical computation of
derivatives and the variation of map distortion parameters.

See Also mdistort | tissot

3-187

distdim

Purpose Convert length units

Syntax distOut = distdim(distIn,from,to)
distOut = distdim(distIn,from,to,radius)
distOut = distdim(distIn,from,to,sphere)

Note distdim has been replaced by unitsratio, but will be
maintained for backward compatibility. See “Replacing distdim” on
page 3-190 for details.

Description distOut = distdim(distIn,from,to) converts distIn from the units
specified by the string from to the units specified by the string to. from
and to are case-insensitive, and may equal any of the following:

'meters' or 'm'

'feet' or 'ft' U.S. survey feet

'kilometers' or 'km'

'nauticalmiles' or 'nm'

'miles', 'statutemiles', 'mi', or 'sm' Statute miles

'degrees' or 'deg'

'radians' or 'rad'

If either from or to indicates angular units ('degrees' or 'radians'),
the conversion to or from linear distance is made along a great circle arc
on a sphere with a radius of 6371 km, the mean radius of the Earth.

distOut = distdim(distIn,from,to,radius), where one of the unit
strings, either from or to, indicates angular units and the other unit
string indicates length units, uses a great circle arc on a sphere of the
given radius. The specified length units must apply to radius as well
as to the input distance (when from indicates length) or output distance
(when to indicates length). If neither from nor to indicates angular
units, or if both do, then the value of radius is ignored.

3-188

distdim

distOut = distdim(distIn,from,to,sphere), where either from
or to indicates angular units, uses a great circle arc on a sphere
approximating a body in the Solar System. sphere may be one of
the following strings: 'sun', 'moon', 'mercury', 'venus', 'earth',
'mars', 'jupiter', 'saturn', 'uranus', 'neptune', or 'pluto', and
is case-insensitive. If neither to nor from is angular, sphere is ignored.

Tips Arc Lengths of Angles Not Constant

Distance is expressed in one of two general forms: as a linear measure
in some unit (kilometers, miles, etc.) or as angular arc length (degrees
or radians). While the use of linear units is generally understood,
angular arc length is not always as clear. The conversion from angular
units to linear units for the arc along any circle is the angle in radians
multiplied by the radius of the circle. On the sphere, this means that
radians of latitude are directly translatable to kilometers, say, by
multiplying by the radius of the Earth in kilometers (about 6,371 km).
However, the linear distance associated with radians of longitude
changes with latitude; the radius in question is then not the radius
of the Earth, but the (chord) radius of the small circle defining that
parallel. The angle in radians or degrees associated with any distance
is the arc length of a great circle passing through the points of interest.
Therefore, the radius in question always refers to the radius of the
relevant sphere, consistent with the distance function.

Exercise Caution with ’feet’ and ’miles’

Exercise caution with ’feet’ and ’miles’. distdim interprets 'feet' and
'ft' as U.S. survey feet, and does not support international feet at
all. In contrast, unitsratio follows the opposite, and more standard
approach, interpreting both 'feet' and 'ft' as international feet.
unitsratio provides separate options, including 'surveyfeet' and
'sf', to indicate survey feet. By definition, one international foot is
exactly 0.3048 meters and one U.S. survey foot is exactly 1200/3937
meters. For many applications, the difference is significant. Most
projected coordinate systems use either the meter or the survey foot as
a standard unit. International feet are less likely to be used, but do
occur sometimes. Likewise, distdim interprets 'miles' and 'mi' as

3-189

distdim

statute miles (also known as U.S. survey miles), and does not support
international miles at all. By definition, one international mile is 5,280
international feet and one statute mile is 5,280 survey feet. You can
evaluate:

unitsratio('millimeter','statute mile') - ...
unitsratio('millimeter','mile')

to see that the difference between a statute mile and an international
mile is just over three millimeters. This may seem like a very small
amount over the length of a single mile, but mixing up these units
could result in a significant error over a sufficiently long baseline.
Originally, the behavior of distdim with respect to 'miles' and 'mi'
was documented only indirectly, via the now-obsolete unitstr function.
As with feet, unitsratio takes a more standard approach. unitsratio
interprets 'miles' and 'mi' as international miles, and 'statute
miles' and 'sm' as statute miles. (unitsratio accepts several other
strings for each of these units; see the unitsratio help for further
information.)

Replacing distdim

If both from and to are known at the time of coding, then you may
be able to replace distdim with a direct conversion utility, as in the
following examples:

distdim(dist,'nm',km') ⇒ nm2km(dist)

distdim(dist,'sm','deg') ⇒ sm2deg(dist)

distdim(dist, 'rad',
'km', 'moon')

⇒ rad2km(dist,'moon')

If the there is no appropriate direct conversion utility, or you won’t know
the valus of from and/or to until run time, you can generally replace

distdim(dist, FROM, TO)

with

3-190

distdim

unitsratio(TO, FROM) * dist

If you are using units of feet or miles, see the cautionary note above
about how they are interpreted. For example, with distIn in meters
and distOut in survey feet, distOut = distdim(distIn, 'meters',
'feet') should be replaced with distOut = unitsratio('survey
feet','meters') * distIn. Saving a multiplicative factor computed
with unitsratio and using it to convert in a separate step can make
code cleaner and more efficient than using distdim. For example,
replace

dist1_meters = distdim(dist1_nm, 'nm', 'meters');
dist2_meters = distdim(dist2_nm, 'nm', 'meters');

with

metersPerNM = unitsratio('meters','nm');
dist1_meters = metersPerNM * dist1_nm;
dist2_meters = metersPerNM * dist2_nm;

unitsratio does not perform great-circle conversion between units of
length and angle, but it can be easily combined with other functions to
do so. For example, to convert degrees to meters along a great-circle arc
on a sphere approximating the planet Mars, you could replace

distdim(dist, 'degrees', 'meters', 'mars')

with

unitsratio('meters','km') * deg2km(dist, 'mars')

Examples Convert 100 kilometers to nautical miles:

distkm = 100

distkm =

3-191

distdim

100

distnm = distdim(distkm,'kilometers','nauticalmiles')

distnm =
53.9957

A degree of arc length is about 60 nautical miles:

distnm = distdim(1,'deg','nm')

distnm =
60.0405

This is not accidental. It is the original definition of the nautical mile.
Naturally, this assumption does not hold on other planets:

distnm = distdim(1,'deg','nm','mars')

distnm =
31.9474

See Also deg2km | deg2nm | deg2sm | km2deg | km2nm | km2rad | km2sm | nm2deg
| nm2km | nm2rad | nm2sm | rad2km | rad2nm | rad2sm | sm2deg |
sm2km | sm2nm | sm2rad | unitsratio

3-192

dm2degrees

Purpose Convert degrees-minutes to degrees

Syntax angleInDegrees = dm2degrees(DM)

Description angleInDegrees = dm2degrees(DM) converts angles from
degree-minutes representation to values in degrees which may include
a fractional part (sometimes called “decimal degrees”). DM should be
N-by-2 and real-valued, with one row per angle. The output will be an
N-by-1 column vector whosekth element corresponds to the kth row of DM.
The first column of DM contains the “degrees” element and should be
integer-valued. The second column contains the “minutes” element and
may have a fractional part For an angle that is positive (north latitude
or east longitude) or equal to zero, all elements in the row need to be
nonnegative. For a negative angle (south latitude or west longitude), the
first nonzero element in the row should be negative and the remaining
value, if any, should be nonzero. Thus, for an input row with value [D
M], with integer-valued D and real M, the output value will be

SGN * (abs(D) + abs(M)/60)

where SGN is 1 if D and M are both nonnegative and -1 if the first nonzero
element of [D M] is negative (an error results if a nonzero D is followed
by a negative M). Any fractional parts in the first (degrees) columns of DM
are ignored. An error results unless the absolute values of all elements
in the second (minutes) column are less than 60.

Examples dm = [...
30 44.78012; ...

-82 39.90825; ...
0 -17.12345; ...
0 14.82000];

format long g
angleInDegrees = dm2degrees(dm)

angleInDegrees =
30.7463353333333

-82.6651375

3-193

dm2degrees

-0.285390833333333
0.247

See Also degrees2dm | degtorad | dms2degrees | str2angle

3-194

dms2degrees

Purpose Convert degrees-minutes-seconds to degrees

Syntax angleInDegrees = dms2degrees(DMS)

Description angleInDegrees = dms2degrees(DMS) converts angles from
degree-minutes-seconds representation to values in degrees which
may include a fractional part (sometimes called “decimal degrees”).
DMS should be N-by-3 and real-valued, with one row per angle. The
output will be an N-by-1 column vector whose kth element corresponds
to the kth row of DMS. The first column of DMS contains the “degrees”
element and should be integer-valued. The second column contains the
“minutes” element and should be integer-valued. The third column
contains the “seconds” element and may have a fractional part. For an
angle that is positive (north latitude or east longitude) or equal to zero,
all elements in the row need to be nonnegative. For a negative angle
(south latitude or west longitude), the first nonzero element in the row
should be negative and the remaining values should be positive. Thus,
for an input row with value [D M S], with integer-valued D and M, and
real D, M, and S, the output value will be

SGN * (abs(D) + abs(M)/60 + abs(S)/3600)

where SGN is 1 if D, M, and S are all nonnegative and -1 if the first
nonzero element of [D M S] is negative (an error results if a nonzero
element is followed by a negative element). Any fractional parts in the
first (degrees) and second (minutes) columns of DMS are ignored. An
error results unless the absolute values of all elements in the second
(minutes) and third (seconds) columns are less than 60.

Examples dms = [...
30 50 44.78012; ...

-82 2 39.90825; ...
0 -30 17.12345; ...
0 0 14.82000];

format long g
angleInDegrees = dms2degrees(dms)

3-195

dms2degrees

angleInDegrees =
30.8457722555556

-82.0444189583333
-0.504756513888889

0.00411666666666667

See Also degrees2dm | degtorad | dm2degrees | str2angle

3-196

dreckon

Purpose Dead reckoning positions for track

Syntax [drlat,drlong,drtime] = dreckon(waypoints,time,speed)
[drlat,drlong,drtime] = dreckon (waypoints,time,speed,

spdtimes)

Description [drlat,drlong,drtime] = dreckon(waypoints,time,speed) returns
the positions and times of required dead reckoning (DR) points for
the input track that starts at the input time. The track should be in
navigational track format (two columns, latitude then longitude, in
order of traversal). These waypoints are the starting and ending points
of each leg of the track. There is one fewer track leg than waypoints, as
the last point included is the end of the track. In navigation, the first
waypoint would be a navigational fix, taken at time. The speed input
can be a scalar, in which case a constant speed is used throughout, or it
can be a vector in which one speed is given for each track leg (that is,
speed changes coincide with course changes).

[drlat,drlong,drtime] = dreckon
(waypoints,time,speed,spdtimes) allows speed changes to occur
independent of course changes. The elements of the speed vector must
have a one-to-one correspondence with the elements of the spdtimes
vector. This latter variable consists of the time interval after time at
which each speed order ends. For example, if time is 6.75, and the first
element of spdtimes is 1.35, then the first speed element is in effect
from 6.75 to 8.1 hours. When this syntax is used, the last output DR is
the earlier of the final spdtimes time or the final waypoints point.

Background This is a navigational function. It assumes that all latitudes and
longitudes are in degrees, all distances are in nautical miles, all times
are in hours, and all speeds are in knots, that is, nautical miles per hour.

Dead reckoning is an estimation of position at various times based on
courses, speeds, and times elapsed from the last certain position, or fix.
In navigational practice, a dead reckoning position, or DR, must be
plotted at every course change, every speed change, and at every hour,

3-197

dreckon

on the hour. Navigators also DR at other times that are not relevant
to this function.

Often in practice, when two events occur that require DRs within a
very short time, only one DR is generated. This function mimics that
practice by setting a tolerance of 3 minutes (0.05 hours). No two DRs
will fall closer than that.

Refer to “Navigation” in the Mapping Toolbox Guide for further
information.

Examples Assume that a navigator gets a fix at noon, 1200Z, which is (10.3ºN,
34.67ºW). He’s in a hurry to make a 1330Z rendezvous with another
ship at (9.9ºN, 34.5ºW), so he plans on a speed of 25 knots. After the
rendezvous, both ships head for (0º, 37ºW). The engineer wants to take
an engine off line for maintenance at 1430Z, so at that time, speed
must be reduced to 15 knots. At 1530Z, the maintenance will be done.
Determine the DR points up to the end of the maintenance.

waypoints = [10.1 -34.6; 9.9 -34.5; 0 -37]

waypoints =

10.1000 -34.6000 % Fix at noon

9.9000 -34.5000 % Rendezvous point

0 -37.0000 % Ultimate destination

speed = [25; 15];

spdtimes = [2.5; 3.5]; % Elapsed times after fix

noon = 12;

[drlat,drlong,drtime] = dreckon(waypoints,noon,speed,spdtimes);

[drlat,drlong,drtime]

ans =

9.8999 -34.4999 12.5354 % Course change at waypoint

9.7121 -34.5478 13.0000 % On the hour

9.3080 -34.6508 14.0000 % On the hour

9.1060 -34.7022 14.5000 % Speed change to 15 kts

8.9847 -34.7330 15.0000 % On the hour

3-198

dreckon

8.8635 -34.7639 15.5000 % Stop at final spdtime, last

% waypoint has not been reached

See Also legs | navfix | track

3-199

driftcorr

Purpose Heading to correct for wind or current drift

Syntax heading = driftcorr(course,airspeed,windfrom,windspeed)
[heading,groundspeed,windcorrangle] = driftcorr(...)

Description heading = driftcorr(course,airspeed,windfrom,windspeed)
computes the heading that corrects for drift due to wind (for aircraft) or
current (for watercraft). course is the desired direction of movement
(in degrees), airspeed is the speed of the vehicle relative to the moving
air or water mass, windfrom is the direction facing into the wind or
current (in degrees), and windspeed is the speed of the wind or current
(in the same units as airspeed).

[heading,groundspeed,windcorrangle] = driftcorr(...) also
returns the ground speed and wind correction angle. The wind
correction angle is positive to the right, and negative to the left.

Examples An aircraft cruising at a speed of 160 knots plans to fly to an airport due
north of its current position. If the wind is blowing from 310 degrees at
45 knots, what heading should the aircraft fly to remain on course?

course=0; airspeed=160;windfrom=310; windspeed = 45;
[heading,groundspeed,windcorrangle] =
driftcorr(course,airspeed,windfrom,windspeed)

heading =

347.56

groundspeed =

127.32

windcorrangle =

-12.442

3-200

driftcorr

The required heading is 348 degrees, which amounts to a wind
correction angle of 12 degrees to the left of course. The headwind
component reduces the aircraft’s ground speed to 127 knots.

See Also driftvel

3-201

driftvel

Purpose Wind or current from heading, course, and speeds

Syntax [windfrom,windspeed] = driftvel (course,groundspeed,heading,
airspeed)

Description [windfrom,windspeed] = driftvel
(course,groundspeed,heading,airspeed) computes the wind (for
aircraft) or current (for watercraft) from course, heading, and speeds.
course and groundspeed are the direction and speed of movement
relative to the ground (in degrees), heading is the direction in which the
vehicle is steered, and airspeed is the speed of the vehicle relative to
the air mass or water. The output windfrom is the direction facing into
the wind or current (in degrees), and windspeed is the speed of the wind
or current (in the same units as airspeed and groundspeed).

Examples An aircraft is cruising at a true air speed of 160 knots and a heading
of 10 degrees. From the Global Positioning System (GPS) receiver, the
pilot determines that the aircraft is progressing over the ground at 155
knots in a northerly direction. What is the wind aloft?

course = 0; groundspeed = 155; heading = 10; airspeed = 160;
[windfrom,windspeed] =
driftvel(course,groundspeed,heading,airspeed)

windfrom =
84.717

windspeed =
27.902

The wind is blowing from the right, 085 degrees at 28 knots.

See Also driftcorr

3-202

dted

Purpose Read U.S. Department of Defense Digital Terrain Elevation Data
(DTED)

Syntax [Z, refvec] = dted
[Z, refvec] = dted(filename)
[Z, refvec] = dted(filename, samplefactor)
[Z, refvec] = dted(filename, samplefactor, latlim, lonlim)
[Z, refvec] = dted(foldername, samplefactor, latlim, lonlim)
[Z, refvec, UHL, DSI, ACC] = dted(...)

Description [Z, refvec] = dted returns all of the elevation data in a DTED file
as a regular data grid, Z, with elevations in meters. The file is selected
interactively. This function reads the DTED elevation files, which
generally have filenames ending in .dtN, where N is 0,1,2,3,... refvec is
the associated three-element referencing vector that geolocates Z.

[Z, refvec] = dted(filename) returns all of the elevation data in
the specified DTED file. The file must be found on the MATLAB path.
If not found, the file may be selected interactively.

[Z, refvec] = dted(filename, samplefactor) subsamples data
from the specified DTED file. samplefactor is a scalar integer. When
samplefactor is 1 (the default), DTED reads the data at its full
resolution. When samplefactor is an integer n greater than one, every
nth point is read.

[Z, refvec] = dted(filename, samplefactor, latlim, lonlim)
reads the data for the part of the DTED file within the latitude and
longitude limits. The limits must be two-element vectors in units of
degrees.

[Z, refvec] = dted(foldername, samplefactor, latlim,
lonlim) reads and concatenates data from multiple files within a DTED
CD-ROM or folder structure. The foldername input is a string with the
name of a folder containing the DTED folder. Within the DTED folder
are subfolders for each degree of longitude, each of which contain files
for each degree of latitude. For DTED CD-ROMs, foldername is the
device name of the CD-ROM drive.

3-203

dted

[Z, refvec, UHL, DSI, ACC] = dted(...) returns structures
containing the DTED User Header Label (UHL), Data Set Identification
(DSI) and Accuracy metadata records.

Background The U. S. Department of Defense, through the National Geospatial
Intelligence Agency, produces several kinds of digital cartographic data.
One is digital elevation data, in a series called DTED, for Defense
Digital Terrain Elevation Data. The data is available as 1-by-1 degree
quadrangles at horizontal resolutions ranging from about 1 kilometer to
1 meter. The lowest resolution data is available to the public. Certain
higher resolution data is restricted to the U.S. Department of Defense
and its contractors.

DTED Level 0 files have 121-by-121 points. DTED Level 1 files have
1201-by-1201. The edges of adjacent tiles have redundant records.
Maps extend a half a cell outside the requested map limits. The 1
kilometer data and some higher-resolution data is available online,
as are product specifications and documentation. DTED files are
binary. No line ending conversion or byte-swapping is required when
downloading a DTED file.

Tips Latitude-Dependent Sampling

In DTED files north of 50° North and south of 50° South, where the
meridians have converged significantly relative to the equator, the
longitude sampling interval is reduced to half of the latitude sampling
interval. In order to retain square output cells, this function reduces
the latitude sampling to match the longitude sampling. For example, it
will return a 121-by-121 elevation grid for a DTED file covering from 49
to 50 degrees north, but a 61-by-61 grid for a file covering from 50 to 51
degrees north. When you supply a folder name instead of a file name,
and latlim spans either 50° North or 50° South, an error results.

Snapping Latitude and Longitude Limits

If you call dted specifying arbitrary latitude-longitude limits for a
region of interest, the grid and referencing vector returned will not
exactly honor the limits you specified unless they fall precisely on grid
cell boundaries. Because grid cells are discrete and cannot be arbitrarily

3-204

dted

divided, the data grid returned will include all areas between your
latitude-longitude limits and the next row or column of cells, potentially
in all four directions.

Data Sources and Information

DTED files contain digitial elevation maps covering 1-by-1-degree
quadrangles at horizontal resolutions ranging from about 1 kilometer to
1 meter. For details on locating DTED for download over the Internet,
see the following documentation at the MathWorks Web site:

http://www.mathworks.com/help/map/finding-geospatial-data.html

Null Data Values

Some DTED Level 1 and higher data tiles contain null data cells, coded
with value -32767. When encountered, these null data values are
converted to NaN.

Nonconforming Data Encoding

DTED files from some sources may depart from the specification by
using two’s complement encoding for binary elevation files instead of
“sign-bit” encoding. This difference affects the decoding of negative
values, and incorrect decoding usually leads to nonsensical elevations.

Thus, if the DTED function determines that all the (nonnull) negative
values in a file would otherwise be less than -12,000 meters, it issues a
warning and assumes two’s complement encoding.

Examples [Z,refvec] = dted('n38.dt0');
[Z,refvec,UHL,DSI,ACC] = dted('n38.dt0',1,[38.5 38.8],...

[-76.8 -76.6]);
[Z,refvec,UHL,DSI,ACC] = dted('f:',1,[38.5 38.8],...

[-76.8 -76.6]);

See Also usgsdem | gtopo30 | tbase | etopo

3-205

http://www.mathworks.com/help/map/finding-geospatial-data.html
http://www.mathworks.com/help/map/finding-geospatial-data.html

dteds

Purpose DTED filenames for latitude-longitude quadrangle

Syntax fname = dteds(latlim,lonlim)
fname = dteds(latlim,lonlim,level)

Description fname = dteds(latlim,lonlim) returns Level 0 DTED file names
(folder and name) required to cover the geographic region specified by
latlim and lonlim.

fname = dteds(latlim,lonlim,level) controls the level for which
the file names are generated. Valid inputs for the level of the DTED
files include 0, 1, or 2.

Background The U. S. Department of Defense produces several kinds of digital
cartographic data. One is digital elevation data, in a series called DTED,
for Defense Digital Terrain Elevation Data. The data is available as
1-by-1 degree quadrangles at horizontal resolutions ranging from about
1 kilometer to 1 meter. The lowest resolution data is available to the
public. Higher resolution data is restricted to the U.S. Department of
Defense and its contractors.

Determining the files needed to cover a particular region requires
knowledge of the DTED database naming conventions. This function
constructs the file names for a given geographic region based on these
conventions.

Examples Which files are needed for Cape Cod?

latlim = [41.15 42.22]; lonlim = [-70.94 -69.68];
dteds(latlim,lonlim,1)

ans =
'\DTED\W071\N41.dt1'
'\DTED\W070\N41.dt1'
'\DTED\W071\N42.dt1'
'\DTED\W070\N42.dt1'

See Also dted

3-206

earthRadius

Purpose Mean radius of planet Earth

Syntax R = earthRadius
R = earthRadius(lengthUnit)

Description R = earthRadius returns the scalar value 6371000, the mean radius of
the Earth in meters.

R = earthRadius(lengthUnit) returns the mean radius of the Earth
using the specified unit of length. The lengthUnit input may be any
string accepted by the validateLengthUnit function.

Examples earthRadius % Returns 6371000

earthRadius('meters') % Returns 6371000

earthRadius('km') % Returns 6371

See Also unitsratio | validateLengthUnit

3-207

eastof

Purpose Wrap longitudes to values east of specified meridian

Note The eastof function is obsolete and will be removed in a future
release of Mapping Toolbox software. Replace it with the following calls,
which are also more efficient:

eastof(lon,meridian,'degrees') ==> meridian+mod(lon-meridian,360)

eastof(lon,meridian,'radians') ==> meridian+mod(lon-meridian,2*pi)

Syntax lonWrapped = eastof(lon,meridian)
lonWrapped = eastof(lon,meridian,angleunits)

Description lonWrapped = eastof(lon,meridian) wraps angles in lon to values
in the interval [meridian meridian+360). lon is a scalar longitude or
vector of longitude values. All inputs and outputs are in degrees.

lonWrapped = eastof(lon,meridian,angleunits) specifies the input
and output units with the string angleunits. angleunits can be either
'degrees' or 'radians'. It may be abbreviated and is case-insensitive.
If angleunits is 'radians', the input is wrapped to the interval
[meridian meridian+2*pi).

3-208

ecc2flat

Purpose Flattening of ellipse from eccentricity

Syntax f = ecc2flat(ecc)
f = ecc2flat(ellipsoid)

Description f = ecc2flat(ecc) computes the flattening of an ellipse (or ellipsoid
of revolution) given its eccentricity ecc. Except when the input has
2 columns (or is a row vector), each element is assumed to be an
eccentricity and the output f has the same size as ecc.

f = ecc2flat(ellipsoid), where ellipsoid has two columns (or is
a row vector), assumes that the eccentricity is in the second column,
and a column vector is returned.

See Also ecc2n | flat2ecc | majaxis | minaxis

3-209

ecc2n

Purpose Third flattening of ellipse from eccentricity

Syntax n = ecc2n(ecc)
n = ecc2n(ellipsoid)

Description n = ecc2n(ecc) computes the parameter n (the "third flattening")
of an ellipse (or ellipsoid of revolution) given its eccentricity ecc. n
is defined as (a-b)/(a+b), where a is the semimajor axis and b is the
semiminor axis. Except when the input has 2 columns (or is a row
vector), each element is assumed to be an eccentricity and the output n
has the same size as ecc.

n = ecc2n(ellipsoid), where ellipsoid has two columns (or is a row
vector), assumes that the eccentricity is in the second column, and a
column vector is returned.

See Also ecc2flat | majaxis | minaxis | n2ecc

3-210

ecef2aer

Purpose Geocentric ECEF to local spherical AER

Syntax [az,elev,slantRange] =
ecef2aer(X,Y,Z,lat0,lon0,h0,spheroid)
[___] = ecef2aer(___ ,angleUnit)

Description [az,elev,slantRange] =
ecef2aer(X,Y,Z,lat0,lon0,h0,spheroid) returns coordinates in
a local spherical system corresponding to coordinates X, Y, Z in an
Earth-Centered Earth-Fixed (ECEF) spheroid-centric Cartesian
system. Any of the first six numeric input arguments can be scalar,
even when the others are nonscalar; but all nonscalar numeric
arguments must match in size.

[___] = ecef2aer(___ ,angleUnit) adds angleUnit which specifies
the units of inputs lat0, lon0, and outputs az, elev.

Input
Arguments

X - ECEF x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the spheroid-centric ECEF
system, specified as a scalar value, vector, matrix, or N-D array. Values
must be in units that match the LengthUnit property of the spheroid
object.

Data Types
single | double

Y - ECEF y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the spheroid-centric ECEF
system, specified as a scalar value, vector, matrix, or N-D array. Values
must be in units that match the LengthUnit property of the spheroid
object.

Data Types
single | double

3-211

ecef2aer

Z - ECEF y-coordinates
scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the spheroid-centric ECEF
system, returned as a scalar value, vector, matrix, or N-D array. Units
are determined by the LengthUnit property of the spheroid object.

lat0 - Geodetic latitude of local origin
scalar value | vector | matrix | N-D array

Geodetic latitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lat0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

lon0 - Longitude of local origin
scalar value | vector | matrix | N-D array

Longitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lon0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

h0 - Ellipsoidal height of local origin
scalar value | vector | matrix | N-D array

Ellipsoidal height of local origin (reference) point(s), specified as a
scalar value, vector, matrix, or N-D array. In many cases there is one
origin (reference) point, and the value of h0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in

3-212

ecef2aer

units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

az - Azimuth angles
scalar value | vector | matrix | N-D array

Azimuth angles in the local spherical system, returned as a scalar
value, vector, matrix, or N-D array. Azimuths are measured clockwise
from north. Units are determined by the input argument angleUnit, if
supplied; values are in degrees, otherwise. When in degrees, they lie
in the half-open interval [0 360).

elev - Elevation angles
scalar value | vector | matrix | N-D array

Elevation angles in the local spherical system, returned as a scalar
value, vector, matrix, or N-D array. Elevations are with respect to a
plane perpendicular to the spheroid surface normal. Units determined
by the input argument angleUnit, if supplied; values are in degrees,
otherwise. When in degrees, they lie in the closed interval [-90 90].

slantRange - Distances from local origin
scalar value | vector | matrix | N-D array

3-213

ecef2aer

Distances from origin in the local spherical system, returned as a scalar
value, vector, matrix, or N-D array. The straight-line, 3-D Cartesian
distance is computed. Units are determined by the LengthUnit property
of the spheroid input.

See Also ecef2enu | ecef2ned | aer2ecef | geodetic2aer

3-214

ecef2enu

Purpose Geocentric ECEF to local Cartesian ENU

Syntax [xEast,yNorth,zUp] = ecef2enu(X,Y,Z,lat0,lon0,h0,spheroid)
[___] = ecef2enu(___ ,angleUnit)

Description [xEast,yNorth,zUp] = ecef2enu(X,Y,Z,lat0,lon0,h0,spheroid)
returns coordinates in a local east-north-up (ENU) Cartesian system
corresponding to coordinates X, Y, Z in an Earth-Centered Earth-Fixed
(ECEF) spheroid-centric Cartesian system. Any of the first six numeric
input arguments can be scalar, even when the others are nonscalar; but
all nonscalar numeric arguments must match in size.

[___] = ecef2enu(___ ,angleUnit) adds angleUnit which specifies
the units of inputs, lat0, and lon0.

Input
Arguments

X - ECEF x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the spheroid-centric ECEF
system, specified as a scalar value, vector, matrix, or N-D array. Values
must be in units that match the LengthUnit property of the spheroid
object.

Data Types
single | double

Y - ECEF y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the spheroid-centric ECEF
system, specified as a scalar value, vector, matrix, or N-D array. Values
must be in units that match the LengthUnit property of the spheroid
object.

Data Types
single | double

Z - ECEF y-coordinates

3-215

ecef2enu

scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the spheroid-centric ECEF
system, returned as a scalar value, vector, matrix, or N-D array. Units
are determined by the LengthUnit property of the spheroid object.

lat0 - Geodetic latitude of local origin
scalar value | vector | matrix | N-D array

Geodetic latitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lat0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

lon0 - Longitude of local origin
scalar value | vector | matrix | N-D array

Longitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lon0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

h0 - Ellipsoidal height of local origin
scalar value | vector | matrix | N-D array

Ellipsoidal height of local origin (reference) point(s), specified as a
scalar value, vector, matrix, or N-D array. In many cases there is one
origin (reference) point, and the value of h0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in

3-216

ecef2enu

units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

xEast - Local ENU x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the local ENU system, returned
as a scalar value, vector, matrix, or N-D array. Units are determined by
the LengthUnit property of the spheroid input.

yNorth - Local ENU y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the local ENU system, returned
as a scalar value, vector, matrix, or N-D array. Units are determined by
the LengthUnit property of the spheroid input.

zUp - Local ENU z-coordinates
scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the local ENU system, returned
as a scalar value, vector, matrix, or N-D array. Units are determined by
the LengthUnit property of the spheroid input.

3-217

ecef2enu

See Also ecef2ned | ecef2aer | enu2ecef | geodetic2enu

3-218

ecef2enuv

Purpose Rotate vector from geocentric ECEF to local ENU

Syntax [uEast,vNorth,wUp] = ecef2enuv(U,V,W,lat0,lon0)
[___] = ecef2enuv(___ ,angleUnit)

Description [uEast,vNorth,wUp] = ecef2enuv(U,V,W,lat0,lon0) returns
Cartesian 3-vector components in a local east-north-down (ENU)
system corresponding to the 3-vector with components U, V, W in
an Earth-Centered Earth-Fixed (ECEF) spheroid-centric Cartesian
system. Any of the five numerical input arguments can be scalar, even
when the others are nonscalar; but all nonscalar numeric arguments
must match in size.

[___] = ecef2enuv(___ ,angleUnit) adds angleUnit which
specifies the units of inputs lat0 and lon0.

Input
Arguments

U - Vector x-components in ECEF system
scalar value | vector | matrix | N-D array

x-components of one or more Cartesian vectors in the spheroid-centric
ECEF system, specified as a scalar value, vector, matrix, or N-D array.

Data Types
single | double

V - Vector y-components in ECEF system
scalar value | vector | matrix | N-D array

y-components of one or more Cartesian vectors in the spheroid-centric
ECEF system, specified as a scalar value, vector, matrix, or N-D array.

Data Types
single | double

W - Vector z-components in ECEF system
scalar value | vector | matrix | N-D array

3-219

ecef2enuv

z-components of one or more Cartesian vectors in the spheroid-centric
ECEF system, specified as a scalar value, vector, matrix, or N-D array.

Data Types
single | double

lat0 - Geodetic latitude of local origin
scalar value | vector | matrix | N-D array

Geodetic latitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lat0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

lon0 - Longitude of local origin
scalar value | vector | matrix | N-D array

Longitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lon0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

3-220

ecef2enuv

Output
Arguments

uEast - Vector x-components in ENU system
scalar value | vector | matrix | N-D array

x-components of one or more Cartesian vectors in the local ENU system,
returned as a scalar value, vector, matrix, or N-D array.

vNorth - Vector y-components in ENU system
scalar value | vector | matrix | N-D array

y-components of one or more Cartesian vectors in the local ENU system,
returned as a scalar value, vector, matrix, or N-D array.

wUp - Vector z-components in ENU system
scalar value | vector | matrix | N-D array

z-components of one or more Cartesian vectors in the local ENU system,
returned as a scalar value, vector, matrix, or N-D array.

See Also ecef2enu | enu2ecefv | ecef2nedv

3-221

ecef2geodetic

Purpose Convert geocentric (ECEF) to geodetic coordinates

Syntax [phi,lambda,h] = ecef2geodetic(x,y,z,ellipsoid)

Description [phi,lambda,h] = ecef2geodetic(x,y,z,ellipsoid) converts
geocentric Cartesian coordinates, stored in the coordinate arrays x, y,
z, to geodetic coordinates phi (geodetic latitude in radians), lambda
(geodetic longitude in radians), and h (height above the ellipsoid).
ellipsoid is a referenceEllipsoid (oblateSpheroid) object, a
referenceSphere object, or a vector of the form [semimajor axis,
eccentricity]. Arrays x, y, z, and h must use the same units as the
semimajor axis. x, y, z, phi, lambda, and h must have the same shape.

Definitions For a definition of the geocentric system, also known as Earth-Centered,
Earth-Fixed (ECEF), see the help for geodetic2ecef.

See Also ecef2lv | geodetic2ecef | lv2ecef

3-222

ecef2lv

Purpose Convert geocentric (ECEF) to local vertical coordinates

Note ecef2lv will be removed in a future release. Use ecef2enu
instead. In ecef2enu, the latitude and longitude of the local origin
are in degrees by default, so the optional angleUnit input should be
included, with the value 'radians'.

Syntax [xl,yl,zl] = ecef2lv(x,y,z,phi0,lambda0,h0,ellipsoid)

Description [xl,yl,zl] = ecef2lv(x,y,z,phi0,lambda0,h0,ellipsoid)
converts geocentric point locations specified by the coordinate arrays x,
y, and z to the local vertical coordinate system, with its origin at geodetic
latitude phi0, longitude lambda0, and ellipsoidal height h0. The arrays
x, y, and z may be of any shape, as long as they all match in size. phi0,
lambda0, and h0 must be scalars. ellipsoid is a referenceEllipsoid
(oblateSpheroid) object, a referenceSphere object, or a vector of the
form [semimajor axis, eccentricity]). x, y, z, and h0 must have
the same length units as the semimajor axis. phi0 and lambda0 must
be in radians. The output coordinate arrays, xl, yl, and zl are the local
vertical coordinates of the input points. They have the same size as x, y,
and z and have the same length units as the semimajor axis.

In the local vertical Cartesian system defined by phi0, lambda0, h0, and
ellipsoid, the xl axis is parallel to the plane tangent to the ellipsoid at
(phi0,lambda0) and points due east. The yl axis is parallel to the same
plane and points due north. The zl axis is normal to the ellipsoid at
(phi0,lambda0) and points outward into space. The local vertical system
is sometimes referred to as east-north-up or ENU.

Definitions For a definition of the geocentric system, also known as Earth-Centered,
Earth-Fixed (ECEF), see the help for geodetic2ecef.

See Also ecef2enu

3-223

ecef2ned

Purpose Geocentric ECEF to local Cartesian NED

Syntax [xNorth,yEast,zDown] =
ecef2ned(X,Y,Z,lat0,lon0,h0,spheroid)
[___] = ecef2ned(___ ,angleUnit)

Description [xNorth,yEast,zDown] =
ecef2ned(X,Y,Z,lat0,lon0,h0,spheroid) returns coordinates in
a local north-east-down (NED) Cartesian system corresponding to
coordinates X, Y, Z in an Earth-Centered Earth-Fixed (ECEF)
spheroid-centric Cartesian system. Any of the first six numeric input
arguments can be scalar, even when the others are nonscalar; but all
nonscalar numeric arguments must match in size.

[___] = ecef2ned(___ ,angleUnit) adds angleUnit which specifies
the units of inputs lat0, and lon0.

Input
Arguments

X - ECEF x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the spheroid-centric ECEF
system, specified as a scalar value, vector, matrix, or N-D array. Values
must be in units that match the LengthUnit property of the spheroid
object.

Data Types
single | double

Y - ECEF y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the spheroid-centric ECEF
system, specified as a scalar value, vector, matrix, or N-D array. Values
must be in units that match the LengthUnit property of the spheroid
object.

Data Types
single | double

3-224

ecef2ned

Z - ECEF y-coordinates
scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the spheroid-centric ECEF
system, returned as a scalar value, vector, matrix, or N-D array. Units
are determined by the LengthUnit property of the spheroid object.

lat0 - Geodetic latitude of local origin
scalar value | vector | matrix | N-D array

Geodetic latitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lat0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

lon0 - Longitude of local origin
scalar value | vector | matrix | N-D array

Longitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lon0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

h0 - Ellipsoidal height of local origin
scalar value | vector | matrix | N-D array

Ellipsoidal height of local origin (reference) point(s), specified as a
scalar value, vector, matrix, or N-D array. In many cases there is one
origin (reference) point, and the value of h0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in

3-225

ecef2ned

units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

xNorth - Local NED x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the local NED system, returned
as a scalar value, vector, matrix, or N-D array. Units are determined by
the LengthUnit property of the spheroid input.

yEast - Local NED y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the local NED system, returned
as a scalar value, vector, matrix, or N-D array. Units are determined by
the LengthUnit property of the spheroid input.

zDown - Local NED z-coordinates
scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the local NED system, returned
as a scalar value, vector, matrix, or N-D array. Units are determined by
the LengthUnit property of the spheroid input.

3-226

ecef2ned

See Also ecef2enu | ecef2aer | ned2ecef | geodetic2ned

3-227

ecef2nedv

Purpose Rotate vector from geocentric ECEF to local NED

Syntax [uNorth,vEast,wDown] = ecef2nedv(U,V,W,lat0,lon0)
[___] = ecef2nedv(___ ,angleUnit)

Description [uNorth,vEast,wDown] = ecef2nedv(U,V,W,lat0,lon0) returns
Cartesian 3-vector components in a local north-east-down (NED)
system corresponding to the 3-vector with components U, V, W in
an Earth-Centered Earth-Fixed (ECEF) spheroid-centric Cartesian
system. Any of the five numerical input arguments can be scalar, even
when the others are nonscalar; but all nonscalar numeric arguments
must match in size.

[___] = ecef2nedv(___ ,angleUnit) adds angleUnit which
specifies the units of inputs lat0 and lon0.

Input
Arguments

U - Vector x-components in ECEF system
scalar value | vector | matrix | N-D array

x-components of one or more Cartesian vectors in the spheroid-centric
ECEF system, specified as a scalar value, vector, matrix, or N-D array.

Data Types
single | double

V - Vector y-components in ECEF system
scalar value | vector | matrix | N-D array

y-components of one or more Cartesian vectors in the spheroid-centric
ECEF system, specified as a scalar value, vector, matrix, or N-D array.

Data Types
single | double

W - Vector z-components in ECEF system
scalar value | vector | matrix | N-D array

3-228

ecef2nedv

z-components of one or more Cartesian vectors in the spheroid-centric
ECEF system, specified as a scalar value, vector, matrix, or N-D array.

Data Types
single | double

lat0 - Geodetic latitude of local origin
scalar value | vector | matrix | N-D array

Geodetic latitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lat0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

lon0 - Longitude of local origin
scalar value | vector | matrix | N-D array

Longitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lon0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

3-229

ecef2nedv

Output
Arguments

uNorth - Vector x-components in NED system
scalar value | vector | matrix | N-D array

x-components of one or more Cartesian vectors in the local NED system,
returned as a scalar value, vector, matrix, or N-D array.

vEast - Vector y-components in NED system
scalar value | vector | matrix | N-D array

y-components of one or more Cartesian vectors in the local NED system,
returned as a scalar value, vector, matrix, or N-D array.

wDown - Vector z-components in NED system
scalar value | vector | matrix | N-D array

z-components of one or more Cartesian vectors in the local NED system,
returned as a scalar value, vector, matrix, or N-D array.

See Also ecef2enuv | ned2ecefv | ecef2ned

3-230

egm96geoid

Purpose Read 15-minute gridded geoid heights from EGM96

Syntax [N, refvec] = egm96geoid(samplefactor)
[N, refvec] = egm96geoid(samplefactor,latlim,lonlim)

Description [N, refvec] = egm96geoid(samplefactor) imports global geoid
height in meters from the EGM96 geoid model. The data set is gridded
at 15-minute intervals, but may be down-sampled as specified by the
positive integer samplefactor. The result is returned in the regular
data grid N along with referencing vector refvec. At full resolution (a
samplefactor of 1), N will be 721-by-1441.

The gridded EGM96 data set must be on your path in a file named
'WW15MGH.GRD'.

[N, refvec] = egm96geoid(samplefactor,latlim,lonlim) imports
data for the part of the world within the specified latitude and longitude
limits. The limits must be two-element vectors in units of degrees.
Longitude limits can be defined in the range [-180 180] or [0 360]. For
example, lonlim = [170 190] returns data centered on the dateline,
while lonlim = [-10 10] returns data centered on the prime meridian.

Background Although the Earth is round, it is not exactly a sphere. The shape
of the Earth is usually defined by the geoid, which is defined as a
gravitational equipotential surface, but can be conceptualized as the
shape the ocean surface would take in the absence of waves, weather,
and land. For cartographic purposes it is generally sufficient to treat
the Earth as a sphere or ellipsoid of revolution. For other applications,
a more detailed model of the geoid such as EGM 96 may be required.
EGM 96 is a spherical harmonic model of the geoid complete to degree
and order 360. This function reads from a file of gridded geoid heights
derived from the EGM 96 harmonic coefficients.

Examples Read the EGM 96 geoid grid for the world, taking every 10th point.

[N,refvec] = egm96geoid(10);

3-231

egm96geoid

Read a subset of the geoid grid at full resolution and interpolate to find
the geoid height at a point between grid points.

[N,refvec] = egm96geoid(1,[-10 -12],[129 132]);
n = ltln2val(N,refvec,-11.1,130.22,'bicubic')

n =
52.7151

Tips This function reads the 15-minute EGM96 grid file WW15MGH.GRD. The
grid is available as either a DOS self-extracting compressed file or a
UNIX compressed file. Do not modify the file once it has been extracted.

Note For details on locating map data for download over the
Internet, see the following documentation at the MathWorks Web site:
http://www.mathworks.com/help/map/finding-geospatial-data.html

Maps will extend a half a cell outside the requested map limits.

There are 721 rows and 1441 columns of values in the grid at full
resolution. The low resolution data in GEOID.MAT is derived from the
EGM 96 grid.

See Also ltln2val

3-232

http://www.mathworks.com/help/map/finding-geospatial-data.html

elevation

Purpose Local vertical elevation angle, range, and azimuth

Note elevation will be removed in a future release. Use
geodetic2aer instead.

The reference point comes second in the geodetic2aer argument list,
and the outputs are ordered differently. The replacement pattern is:

[azimuthangle, elevationangle, slantrange] =
geodetic2aer(lat2, lon2, alt2, lat1, lon1, alt1,
spheroid, ...)

Unlike elevation, geodetic2aer requires a spheroid input, and
it must be must be an oblateSpheroid, referenceEllipsoid, or
referenceSphere object, not a 2-by-1 ellipsoid vector.

You can use the following steps to convert an ellipsoid vector,
ellipsoid, to an oblateSpheroid object, spheroid:

• spheroid = oblateSpheroid;

• spheroid.SemimajorAxis = ellipsoid(1);

• spheroid.Eccentricity = ellipsoid(2);

When elevation is called with only 6 inputs, the GRS 80 reference
ellipsoid, in meters, is used by default. To replace this usage, use
referenceEllipsoid('GRS80','meters') as the spheroid input for
geodetic2aer.

If an angleunits input is included, it must follow the spheroid input
in the call to geodetic2aer, rather than preceding it.

elevation can be called with a lengthunits string, but geodetic2aer
has no such input. Set the LengthUnit property of the input spheroid
to the desired value instead. In this case a referenceEllipsoid or
referenceSphere object must be used (not an oblateSpheroid object).

3-233

elevation

Syntax [elevationangle,slantrange,azimuthangle] = ...
elevation(lat1,lon1,alt1,lat2,lon2,alt2)

[...] = elevation(lat1,lon1,alt1,lat2,lon2,alt2,...
angleunits)

[...] = elevation(lat1,lon1,alt1,lat2,lon2,alt2,...
angleunits,distanceunits)

[...] = elevation(lat1,lon1,alt1,lat2,lon2,alt2,...
angleunits,ellipsoid)

Description [elevationangle,slantrange,azimuthangle] = ...
elevation(lat1,lon1,alt1,lat2,lon2,alt2) computes the

elevation angle, slant range, and azimuth angle of point 2 (with geodetic
coordinates lat2, lon2, and alt2) as viewed from point 1 (with geodetic
coordinates lat1, lon1, and alt1). The coordinates alt1 and alt2
are ellipsoidal heights. The elevation angle is the angle of the line
of sight above the local horizontal at point 1. The slant range is the
three-dimensional Cartesian distance between point 1 and point 2. The
azimuth is the angle from north to the projection of the line of sight
on the local horizontal. Angles are in units of degrees; altitudes and
distances are in meters. The figure of the earth is the default ellipsoid
(GRS 80).

Inputs can be vectors of points, or arrays of any shape, but must match
in size, with the following exception: Elevation, range, and azimuth
from a single point to a set of points can be computed very efficiently
by providing scalar coordinate inputs for point 1 and vectors or arrays
for point 2.

[...] = elevation(lat1,lon1,alt1,lat2,lon2,alt2,...
angleunits) uses the string angleunits to specify the units of

the input and output angles. If the string angleunits is omitted,
'degrees' is assumed.

[...] = elevation(lat1,lon1,alt1,lat2,lon2,alt2,...
angleunits,distanceunits) uses the string distanceunits to

specify the altitude and slant-range units. If the string distanceunits
is omitted, 'meters' is assumed. Any units string recognized by
unitsratio may be used.

3-234

elevation

[...] = elevation(lat1,lon1,alt1,lat2,lon2,alt2,...
angleunits,ellipsoid) uses ellipsoid to specify the ellipsoid.

ellipsoid is a referenceSphere, referenceEllipsoid, or
oblateSpheroid object, or a vector of the form [semimajor_axis
eccentricity]. If ellipsoid is supplied, the altitudes must be in the
same units as the semimajor axis, and the slant range will be returned
in these units. If ellipsoid is omitted, the default is a unit sphere.
Distances are in meters unless otherwise specified.

Note The line-of-sight azimuth angles returned by elevation will
generally differ slightly from the corresponding outputs of azimuth and
distance, except for great circle azimuths on a spherical earth.

Examples Find the elevation angle of a point 90 degrees from an observer
assuming that the observer and the target are both 1000 km above
the Earth.

lat1 = 0; lon1 = 0; alt1 = 1000*1000;
lat2 = 0; lon2 = 90; alt2 = 1000*1000;
elevang = elevation(lat1,lon1,alt1,lat2,lon2,alt2)

elevang =
-45

Visually check the result using the los2 line of sight function. Construct
a data grid of zeros to represent the Earth’s surface. The los2 function
with no output arguments creates a figure displaying the geometry.

Z = zeros(180,360);
refvec = [1 90 -180];
los2(Z,refvec,lat1,lon1,lat2,lon2,alt1,alt1);

3-235

elevation

See Also oblateSpheroid |

3-236

ellipse1

Purpose Geographic ellipse from center, semimajor axes, eccentricity, and
azimuth

Syntax [lat,lon] = ellipse1(lat0,lon0,ellipse)
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset)
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az)
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az,ellipsoid)
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,units)

[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az,

[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az,ellipsoid,
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az,ellipsoid,

units,npts)
[lat,lon] = ellipse1(track,...)
mat = ellipse1(...)

Description [lat,lon] = ellipse1(lat0,lon0,ellipse) computes ellipse(s) with
center(s) at lat0,lon0. The ellipse is defined by the third input, which
is of the form [semimajor axis,eccentricity], where the eccentricity
input can be a two-element row vector or a two-column matrix. The
ellipse input must have the same number of rows as the input scalar or
column vectors lat0 and lon0. The input semimajor axis is in degrees
of arc length on a sphere. All ellipses are oriented so that their major
axes run north-south.

[lat,lon] = ellipse1(lat0,lon0,ellipse,offset) computes the
ellipse(s) where the major axis is rotated from due north by an azimuth
offset. The offset angle is measured clockwise from due north. If
offset = [], then no offset is assumed.

[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az) uses the
input az to define the ellipse arcs computed. The arc azimuths are
measured clockwise from due north. If az is a column vector, then the
arc length is computed from due north. If az is a two-column matrix,
then the ellipse arcs are computed starting at the azimuth in the first
column and ending at the azimuth in the second column. If az = [],
then a complete ellipse is computed.

3-237

ellipse1

[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az,ellipsoid)
computes the ellipse on the ellipsoid defined by the input ellipsoid.
ellipsoid is a referenceSphere, referenceEllipsoid, or
oblateSpheroid object, or a vector of the form [semimajor_axis
eccentricity]. If omitted, the unit sphere, is assumed. When an
ellipsoid is supplied, the input semimajor axis must be in the same
units as the ellipsoid semimajor axes. In this calling form, the units of
the ellipse semimajor axis are not assumed to be in degrees.

[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,units),
[lat,lon] = ellipse1(lat0,lon0,ellipse,offset,az,units), and
[lat,lon] =
ellipse1(lat0,lon0,ellipse,offset,az,ellipsoid,units) are
all valid calling forms, which use the input units to define
the angle units of the inputs and outputs. If the units string
is omitted, 'degrees' is assumed.

[lat,lon] =
ellipse1(lat0,lon0,ellipse,offset,az,ellipsoid,units,npts)
uses the scalar npts to determine the number of points per ellipse
computed. If npts is omitted, 100 points are used.

[lat,lon] = ellipse1(track,...) uses the track string to define
either great circle or rhumb line distances from the ellipse center. If
track = 'gc', then great circle distances are computed (the default). If
track = 'rh', then rhumb line distances are computed.

mat = ellipse1(...) returns a single output argument where mat =
[lat lon]. This is useful if only one ellipse is computed.

You can define multiple ellipses with a common center by providing
scalar lat0 and lon0 inputs and a two-column ellipse matrix.

Examples Create and plot the small ellipse centered at (0º,0º), with a semimajor
axis of 10º and a semiminor axis of 5º.

axesm mercator
ecc = axes2ecc(10,5);
plotm(0,0,'r+')

3-238

ellipse1

[elat,elon] = ellipse1(0,0,[10 ecc],45);
plotm(elat,elon)

If the desired radius is known in some nonangular distance unit, use
the radius returned by the earthRadius function as the ellipsoid input
to set the range units. (Use an empty azimuth entry to specify a full
ellipse.)

[elat,elon] = ellipse1(0,0,[550 ecc],45,[],earthRadius('nm'));
plotm(elat,elon,'m--')

For just an arc of the ellipse, enter an azimuth range:

[elat,elon] = ellipse1(0,0,[5 ecc],45,[-30 70]);
plotm(elat,elon,'c-')

3-239

ellipse1

See Also axes2ecc | scircle1 | track1

3-240

encodem

Purpose Fill in regular data grid from seed values and locations

Syntax newgrid = encodem(Z,seedmat)
newgrid = encodem(Z,seedmat,stopvals)

Description newgrid = encodem(Z,seedmat) fills in regions of the input data grid,
Z, with desired new values. The boundary consists of the edges of the
matrix and any entries with the value 1. The seeds, or starting points,
and the values associated with them, are specified by the three-column
matrix seedmat, the rows of which have the form [row column value].

newgrid = encodem(Z,seedmat,stopvals) allows you to specify a
vector, stopvals, of stopping values. Any value that is an element of
stopvals will act as a boundary.

This function fills in regions of data grids with desired values. If a
boundary exists, the new value replaces all entries in all four directions
until the boundary is reached. The boundary is made up of selected
stopping values and the edges of the matrix. The new value tries to
flood the region exhaustively, stopping only when no new spaces can be
reached by moving up, down, left, or right without hitting a stopping
value.

Examples For this imaginary map, fill in the upper right region with 7s and the
lower left region with 3s:

Z = eye(4)

Z =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

newgrid = encodem(Z,[4,1,3; 1,4,7])

newgrid =
1 7 7 7

3-241

encodem

3 1 7 7
3 3 1 7
3 3 3 1

See Also getseeds | imbedm

3-242

enu2aer

Purpose Local Cartesian ENU to local spherical AER

Syntax [az,elev,slantRange] = enu2aer(xEast,yNorth,zUp)
[___] = enu2aer(___ ,angleUnit)

Description [az,elev,slantRange] = enu2aer(xEast,yNorth,zUp) returns
coordinates in a local spherical system corresponding to coordinates
xEast, yNorth, zUp in a local east-north-up (ENU) Cartesian system
having the same local origin. Any of the three numerical input
arguments can be scalar, even when the others are nonscalar; but all
nonscalar numeric arguments must match in size.

[___] = enu2aer(___ ,angleUnit) adds angleUnit which specifies
the units outputs az, elev.

Input
Arguments

xEast - Local ENU x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the the local ENU system,
specified as a scalar value, vector, matrix, or N-D array.

Data Types
single | double

yNorth - Local ENU y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the the local ENU system,
specified as a scalar value, vector, matrix, or N-D array.

Data Types
single | double

zUp - Local ENU z-coordinates
scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the the local ENU system,
specified as a scalar value, vector, matrix, or N-D array.

3-243

enu2aer

Data Types
single | double

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

az - Azimuth angles
scalar value | vector | matrix | N-D array

Azimuth angles in the local spherical system, returned as a scalar
value, vector, matrix, or N-D array. Azimuths are measured clockwise
from north. Units are determined by the input argument angleUnit, if
supplied; values are in degrees, otherwise. When in degrees, they lie
in the half-open interval [0 360).

elev - Elevation angles
scalar value | vector | matrix | N-D array

Elevation angles in the local spherical system, returned as a scalar
value, vector, matrix, or N-D array. Elevations are with respect to a
plane perpendicular to the spheroid surface normal. Units determined
by the input argument angleUnit, if supplied; values are in degrees,
otherwise. When in degrees, they lie in the closed interval [-90 90].

slantRange - Distances from local origin
scalar value | vector | matrix | N-D array

Distances from origin in the local spherical system, returned as a
scalar, vector, matrix, or N-D array. The straight-line, 3-D Cartesian
distance is computed.

See Also aer2enu | ned2aer

3-244

enu2ecef

Purpose Local Cartesian ENU to geocentric ECEF

Syntax [X,Y,Z] = enu2ecef(xEast,yNorth,zUp,lat0,lon0,h0,spheroid)
[___] = enu2ecef(___ ,angleUnits)

Description [X,Y,Z] = enu2ecef(xEast,yNorth,zUp,lat0,lon0,h0,spheroid)
returns Earth-Centered Earth-Fixed (ECEF) spheroid-centric Cartesian
coordinates corresponding to coordinates xEast, yNorth, zUp in a local
east-north-up (ENU) Cartesian system.Any of the first six numeric
input arguments can be scalar, even when the others are nonscalar; but
all nonscalar numeric arguments must match in size.

[___] = enu2ecef(___ ,angleUnits) adds angleUnit which
specifies the units of inputs lat0 and lon0.

Input
Arguments

xEast - Local ENU x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the the local ENU system,
specified as a scalar value, vector, matrix, or N-D array. Values must be
in units that match the LengthUnit property of the spheroid input.

Data Types
single | double

yNorth - Local ENU y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the the local ENU system,
specified as a scalar value, vector, matrix, or N-D array. Values must be
in units that match the LengthUnit property of the spheroid input.

Data Types
single | double

zUp - Local ENU z-coordinates
scalar value | vector | matrix | N-D array

3-245

enu2ecef

z-coordinates of one or more points in the the local ENU system,
specified as a scalar value, vector, matrix, or N-D array. Values must be
in units that match the LengthUnit property of the spheroid input.

Data Types
single | double

lat0 - Geodetic latitude of local origin
scalar value | vector | matrix | N-D array

Geodetic latitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lat0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

lon0 - Longitude of local origin
scalar value | vector | matrix | N-D array

Longitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lon0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

h0 - Ellipsoidal height of local origin
scalar value | vector | matrix | N-D array

Ellipsoidal height of local origin (reference) point(s), specified as a
scalar value, vector, matrix, or N-D array. In many cases there is one
origin (reference) point, and the value of h0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in

3-246

enu2ecef

units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

X - ECEF x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the spheroid-centric ECEF
system, returned as a scalar value, vector, matrix, or N-D array. Units
are determined by the LengthUnit property of the spheroid object.

Y - ECEF y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the spheroid-centric ECEF
system, returned as a scalar value, vector, matrix, or N-D array. Units
are determined by the LengthUnit property of the spheroid object.

Z - ECEF y-coordinates
scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the spheroid-centric ECEF
system, returned as a scalar value, vector, matrix, or N-D array. Units
are determined by the LengthUnit property of the spheroid object.

3-247

enu2ecef

See Also ned2ecef | aer2ecef | ecef2enu | enu2geodetic

3-248

enu2ecefv

Purpose Rotate vector from local ENU to geocentric ECEF

Syntax [U,V,W] = enu2ecefv(uEast,vNorth,wUp,lat0,lon0)
[___] = enu2ecefv(___ ,angleUnit)

Description [U,V,W] = enu2ecefv(uEast,vNorth,wUp,lat0,lon0) returns
coordinates in a local spherical system corresponding to coordinates
xNorth, yEast, zDown in a local north-east-down (NED) Cartesian
system having the same local origin. Any of the three numerical input
arguments can be scalar, even when the others are nonscalar; but all
nonscalar numeric arguments must match in size.

[___] = enu2ecefv(___ ,angleUnit) adds angleUnit which
specifies the units of inputs lat0 and lon0.

Input
Arguments

uEast - Vector x-components in ENU system
scalar value | vector | matrix | N-D array

x-components of one or more Cartesian vectors in the local ENU system,
specified as a scalar value, vector, matrix, or N-D array.

Data Types
single | double

vNorth - Vector y-components in ENU system
scalar value | vector | matrix | N-D array

y-components of one or more Cartesian vectors in the local ENU system,
specified as a scalar value, vector, matrix, or N-D array.

Data Types
single | double

wUp - Vector z-components in ENU system
scalar value | vector | matrix | N-D array

z-components of one or more Cartesian vectors in the local ENU system,
specified as a scalar value, vector, matrix, or N-D array.

3-249

enu2ecefv

Data Types
single | double

lat0 - Geodetic latitude of local origin
scalar value | vector | matrix | N-D array

Geodetic latitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lat0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

lon0 - Longitude of local origin
scalar value | vector | matrix | N-D array

Longitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lon0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

3-250

enu2ecefv

Output
Arguments

U - Vector x-components in ECEF system
scalar value | vector | matrix | N-D array

x-components of one or more Cartesian vectors in the spheroid-centric
ECEF system, returned as a scalar value, vector, matrix, or N-D array.

V - Vector y-components in ECEF system
scalar value | vector | matrix | N-D array

y-components of one or more Cartesian vectors in the spheroid-centric
ECEF system, returned as a scalar value, vector, matrix, or N-D array.

W - Vector z-components in ECEF system
scalar value | vector | matrix | N-D array

z-components of one or more Cartesian vectors in the spheroid-centric
ECEF system, returned as a scalar value, vector, matrix, or N-D array.

See Also ecef2enu | enu2ecef | ned2ecefv

3-251

enu2geodetic

Purpose Local Cartesian ENU to geodetic

Syntax [lat,lon,h] = enu2geodetic(xEast,yNorth,zUp,lat0,lon0,h0,
spheroid)

[___] = enu2geodetic(___ ,angleUnits)

Description [lat,lon,h] =
enu2geodetic(xEast,yNorth,zUp,lat0,lon0,h0,spheroid)) returns
geodetic coordinates corresponding to coordinates xEast, yNorth, zUp
in a local east-north-up (ENU) Cartesian system. Any of the first six
numeric input arguments can be scalar, even when the others are
nonscalar; but all nonscalar numeric arguments must match in size.

[___] = enu2geodetic(___ ,angleUnits) adds angleUnit which
specifies the units of inputs lat0, lon0, and outputs lat, lon.

Input
Arguments

xEast - Local ENU x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the the local ENU system,
specified as a scalar value, vector, matrix, or N-D array. Values must be
in units that match the LengthUnit property of the spheroid input.

Data Types
single | double

yNorth - Local ENU y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the the local ENU system,
specified as a scalar value, vector, matrix, or N-D array. Values must be
in units that match the LengthUnit property of the spheroid input.

Data Types
single | double

zUp - Local ENU z-coordinates
scalar value | vector | matrix | N-D array

3-252

enu2geodetic

z-coordinates of one or more points in the the local ENU system,
specified as a scalar value, vector, matrix, or N-D array. Values must be
in units that match the LengthUnit property of the spheroid input.

Data Types
single | double

lat0 - Geodetic latitude of local origin
scalar value | vector | matrix | N-D array

Geodetic latitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lat0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

lon0 - Longitude of local origin
scalar value | vector | matrix | N-D array

Longitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lon0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

h0 - Ellipsoidal height of local origin
scalar value | vector | matrix | N-D array

Ellipsoidal height of local origin (reference) point(s), specified as a
scalar value, vector, matrix, or N-D array. In many cases there is one
origin (reference) point, and the value of h0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in

3-253

enu2geodetic

units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

lat - Geodetic latitudes
scalar value | vector | matrix | N-D array

Geodetic latitudes of one or more points, returned as a scalar value,
vector, matrix, or N-D array. Units are determined by the input
argument angleUnit, if supplied; values are in degrees, otherwise.
When in degrees, they lie in the closed interval [-90 90].

lon - Longitudes
scalar value | vector | matrix | N-D array

Longitudes of one or more points, returned as a scalar value, vector,
matrix, or N-D array. Units are determined by the input argument
angleUnit, if supplied; values are in degrees, otherwise. When in
degrees, they lie in the interval [-180 180].

h - Ellipsoidal heights
scalar value | vector | matrix | N-D array

3-254

enu2geodetic

Ellipsoidal heights of one or more points, returned as a scalar value,
vector, matrix, or N-D array. Units are determined by the LengthUnit
property of the spheroid object

See Also aer2geodetic | enu2ecef | geodetic2enu | ned2geodetic

3-255

epsm

Purpose Accuracy in angle units for certain map computations

Syntax epsm
epsm(units)

Description epsm is the limit of map angular precision. It is useful in avoiding
trigonometric singularities, among other things.

epsm(units) returns the same angle in units corresponding to any
valid angle units string. The default is 'degrees'.

Examples The value of epsm is 10–6 degrees. To put this in perspective, in terms of
an angular arc length, the distance is

epsmkm = deg2km(epsm)

epsmkm =
1.1119e-04 % kilometers

This is about 11 centimeters, a very small distance on a global scale.

See Also roundn

3-256

eqa2grn

Purpose Convert from equal area to Greenwich coordinates

Syntax [lat,lon] = eqa2grn(x,y)
[lat,lon] = eqa2grn(x,y,origin)
[lat,lon] = eqa2grn(x,y,origin,ellipsoid)
[lat,lon] = eqa2grn(x,y,origin,units)
mat = eqa2grn(x,y,origin...)

Description [lat,lon] = eqa2grn(x,y) converts the equal-area coordinate points
x and y to the Greenwich (standard geographic) coordinates lat and
lon.

[lat,lon] = eqa2grn(x,y,origin) specifies the location in the
Greenwich system of the x-y origin (0,0). The two-element vector origin
must be of the form [latitude longitude]. The default places the
origin at the Greenwich coordinates (0º,0º).

[lat,lon] = eqa2grn(x,y,origin,ellipsoid) specifies the ellipsoidal
model of the figure of the Earth using ellipsoid. ellipsoid is a
referenceSphere, referenceEllipsoid, or oblateSpheroid object, or
a vector of the form [semimajor_axis eccentricity]. The ellipsoid
is a unit sphere by default.

[lat,lon] = eqa2grn(x,y,origin,units) specifies the units for
the outputs, where units is any valid angle units string. The default
value is 'degrees'.

mat = eqa2grn(x,y,origin...) packs the outputs into a single
variable.

This function converts data from equal-area x-y coordinates to
geographic (latitude-longitude) coordinates. The opposite conversion
can be performed with grn2eqa.

Examples [lat,lon] = eqa2grn(.5,.5)

lat =
30.0000

lon =

3-257

eqa2grn

28.6479

See Also grn2eqa | hista

3-258

etopo

Purpose Read gridded global relief data (ETOPO products)

Syntax [Z, refvec] = etopo
[Z, refvec] = etopo(samplefactor)
[Z, refvec] = etopo(samplefactor, latlim, lonlim)
[Z, refvec] = etopo(folder, ...)
[Z, refvec] = etopo(filename, ...)
[Z, refvec] = etopo({'etopo5.northern.bat',

'etopo5.southern.bat'}, ...)

Description [Z, refvec] = etopo reads the ETOPO data for the entire world from
the ETOPO data in the current folder. The etopo function searches the
current folder first for ETOPO1c binary data, then ETOPO2V2c binary
data, then ETOPO2 (2001) binary data, then ETOPO5 binary data, and
finally ETOPO5 ASCII data. Once the function finds a case-insensitive
file name match, it reads the data. See the table Supported ETOPO
Data File Names on page 3-260 for a list of possible file names. The
etopo function returns the data grid, Z, as an array of elevations. Data
values, in whole meters, represent the elevation of the center of each
cell. refvec, the associated three-element referencing vector, geolocates
Z.

[Z, refvec] = etopo(samplefactor) reads the data for the entire
world, downsampling the data by samplefactor. The scalar integer
samplefactor when equal to 1 gives the data at its full resolution
(10800 by 21600 values for ETOPO1 data, 5400 by 10800 values for
ETOPO2 data, and 2160 by 4320 values for ETOPO5 data). When
samplefactor is an integer n greater than one, the etopo function
returns every nth point. If you omit samplefactor or leave it empty, it
defaults to 1. (If the etopo function reads an older, ASCII ETOPO5
data set, then samplefactor must divide evenly into the number of
rows and columns of the data file.)

[Z, refvec] = etopo(samplefactor, latlim, lonlim) reads the
data for the part of the world within the specified latitude and longitude
limits. Specify the limits of the desired data as two-element vectors
of latitude, latlim, and longitude, lonlim, in degrees. Specify the
elements of latlim and lonlim in ascending order. Specify lonlim in

3-259

etopo

the range [0 360] for ETOPO5 data and [-180 180] for ETOPO2 and
ETOPO1 data. If latlim is empty, the latitude limits are [-90 90]. If
lonlim is empty, the file type determines the longitude limits.

[Z, refvec] = etopo(folder, ...) allows you to use the variable
folder to specify the path for the ETOPO data file. Otherwise, the
etopo function searches the current folder for the data.

[Z, refvec] = etopo(filename, ...) reads the ETOPO data from
filename. The variable filename, a case-insensitive string, specifies
the name of the ETOPO file, as referenced in the ETOPO data file
names table. Include the folder name in filename or place the file in
the current folder or in a folder on the MATLAB path.

[Z, refvec] = etopo({'etopo5.northern.bat',
'etopo5.southern.bat'}, ...) reads the ETOPO data
from the specified case-insensitive ETOPO5 ASCII data files. Place the
files in the current folder or in a folder on the MATLAB path.

Tips Supported ETOPO Data File Names

Format Filenames

ETOPO1c (cell) • etopo1_ice_c.flt

• etopo1_bed_c.flt

• etopo1_ice_c_f4.flt

• etopo1_bed_c_f4.flt

• etopo1_ice_c_i2.bin

• etopo1_bed_c_i2.bin

ETOPO2V2c
(cell)

• ETOPO2V2c_i2_MSB.bin

• ETOPO2V2c_i2_LSB.bin

• ETOPO2V2c_f4_MSB.flt

• ETOPO2V2c_f4_LSB.flt

• ETOPO2V2c.hdf

3-260

etopo

Supported ETOPO Data File Names (Continued)

Format Filenames

ETOPO2 (2001) • ETOPO2.dos.bin

• ETOPO2.raw.bin

ETOPO5
(binary)

• ETOPO5.DOS

• ETOPO5.DAT

ETOPO5 (ASCII) • etopo5.northern.bat

• etopo5.southern.bat

• For details on locating ETOPO data for download over the Internet,
see the following documentation at the MathWorks Web site:
http://www.mathworks.com/help/map/finding-geospatial-data.html .

Definitions According to the National Geophysical Data Center (NGDC) Web site,
ETOPO models combine regional and global land topography and ocean
bathymetry data from many data sources. ETOPO1, the most recent
model, has an Ice Surface version showing the top of the Antarctic and
Greenland ice sheets and a Bedrock version showing the bedrock below
the ice sheets. For detailed information about the data sources used to
create the ETOPO1 model, see the NGDC Web site. NGDC lists the
ETOPO2 and ETOPO5 models as deprecated but still available.

Model Cell Size Date Available

ETOPO1 1-arc-minute March 2009

ETOPO2v2 2-minute 2006

ETOPO2 2-minute 2001

ETOPO5 5-minute 1988

3-261

http://www.mathworks.com/help/map/finding-geospatial-data.html
http://www.ngdc.noaa.gov/mgg/global/global.html

etopo

Examples Read and display ETOPO2V2c data from the file
'ETOPO2V2c_i2_LSB.bin' downsampled to half-degree cell
size and display the boundary of the land areas.

samplefactor = 15;
[Z, refvec] = etopo('ETOPO2V2c_i2_LSB.bin', samplefactor);
figure
worldmap world
geoshow(Z, refvec, 'DisplayType', 'texturemap');
demcmap(Z, 256);
geoshow('landareas.shp', 'FaceColor', 'none', ...

'EdgeColor', 'black');

Read and display ETOPO1 data for a region around Australia.

figure
worldmap australia
mstruct = gcm;
latlim = mstruct.maplatlimit;
lonlim = mstruct.maplonlimit;
[Z, refvec] = etopo('etopo1_ice_c.flt', 1, latlim, lonlim);

3-262

etopo

geoshow(Z, refvec, 'DisplayType', 'surface');
demcmap(Z, 256);

References [1] “2-minute Gridded Global Relief Data (ETOPO2v2),” U.S.
Department of Commerce, National Oceanic and Atmospheric
Administration, National Geophysical Data Center, 2006.

[2] Amante, C. and B. W. Eakins, “ETOPO1 1 Arc-Minute Global Relief
Model: Procedures, Data Sources and Analysis,” NOAA Technical
Memorandum NESDIS NGDC-24, March 2009.

[3] “Digital Relief of the Surface of the Earth,” Data Announcement
88-MGG-02, NOAA, National Geophysical Data Center, Boulder,
Colorado, 1988.

[4] “ETOPO2v2 Global Gridded 2-minute Database,” National
Geophysical Data Center, National Oceanic and Atmospheric
Administration, U.S. Dept. of Commerce.

3-263

etopo

See Also gtopo30 | tbase | usgsdem

3-264

etopo5

Purpose Read global 5-min digital terrain data

Syntax
Note etopo5 will be removed in a future version; use etopo instead.

[Z, refvec] = etopo5
[Z, refvec] = etopo5(samplefactor)
[[Z, refvec] = etopo5(samplefactor, latlim, lonlim)
[Z, refvec] = etopo5(folder, ...)
[Z, refvec] = etopo5(file, ...)

Description [Z, refvec] = etopo5 reads the topography data for the entire world
for the data in the current folder. The current folder is searched first
for ETOPO2 binary data, followed by ETOPO5 binary data, followed
by ETOPO5 ASCII data from the file names etopo5.northern.bat
and etopo5.southern.bat. Once a match is found the data is read.
The data grid, Z, is returned as an array of elevations. Data values
are in whole meters, representing the elevation of the center of each
cell. refvec is the associated three-element referencing vector that
geolocates Z.

[Z, refvec] = etopo5(samplefactor) reads the data for the entire
world, downsampling the data by samplefactor. samplefactor is a
scalar integer, which when equal to 1 gives the data at its full resolution
(1080 by 4320 values). When samplefactor is an integer n greater than
one, every nth point is returned. samplefactor must divide evenly into
the number of rows and columns of the data file. If samplefactor is
omitted or empty, it defaults to 1.

[[Z, refvec] = etopo5(samplefactor, latlim, lonlim) reads the
data for the part of the world within the specified latitude and longitude
limits. The limits of the desired data are specified as two-element
vectors of latitude, latlim, and longitude, lonlim, in degrees. The
elements of latlim and lonlim must be in ascending order. If latlim is
empty the latitude limits are [-90 90]. lonlim must be specified in the
range [0 360]. If lonlim is empty, the longitude limits are [0 360].

3-265

etopo5

[Z, refvec] = etopo5(folder, ...) allows the path for the data file
to be specified by folder rather than the current folder.

[Z, refvec] = etopo5(file, ...) reads the data from file, where
file is a string or a cell array of strings containing the name or names
of the data files.

ETOPO5 is being superseded by ETOPO2 and the TerrainBase digital
terrain model. See the tbase external interface function for more
information.

Note For details on locating map data for download over the Internet,
see the following documentation at the MathWorks Web Site:
http://www.mathworks.com/help/map/finding-geospatial-data.html

Examples Example 1

Read every tenth point in the data set:

% Read and display the ETOPO5 data from the folder 'etopo5'
% downsampled by a factor of 10.
[Z, refvec] = etopo5('etopo5',10);
axesm merc
geoshow(Z, refvec, 'DisplayType', 'surface');
demcmap(Z);

Example 2

Read in data for Korea and Japan at the full resolution:

samplefactor = 1; latlim = [30 45]; lonlim = [115 145];
[Z,refvec] = etopo5(samplefactor,latlim,lonlim);
whos Z

Name Size Bytes Class
Z 180x360 518400 double array

See Also etopo | gtopo30 | tbase | usgsdem

3-266

http://www.mathworks.com/help/map/finding-geospatial-data.html

extractfield

Purpose Field values from structure array

Syntax a = extractfield(s, name)

Description a = extractfield(s, name) returns the field values specified by
the field named name into the 1-by-n output array a. n is the total
number of elements in the field name of structure s, that is, n =
numel([s(:).(name)]). name is a case-sensitive string defining the
field name of the structure s. a is a cell array if any field values in the
field name contain a string or if the field values are not uniform in
type; otherwise a is the same type as the field values. The shape of the
input field is not preserved in a.

Examples % Plot the X, Y coordinates of the road's shape
roads = shaperead('concord_roads.shp');
plot(extractfield(roads,'X'),extractfield(roads,'Y'));

% Extract the names of the roads
roads = shaperead('concord_roads.shp');
names = extractfield(roads,'STREETNAME');

% Extract a mix-type field into a cell array
S(1).Type = 0;
S(2).Type = logical(0);
mixedType = extractfield(S,'Type');

3-267

extractfield

See Also struct | shaperead

3-268

extractm

Purpose Coordinate data from line or patch display structure

Syntax [lat,lon] = extractm(display_struct,object_str)
[lat,lon] = extractm(display_struct,object_strings)
[lat,lon] = extractm(display_struct,object_strings,

searchmethod)
[lat,lon] = extractm(display_struct)
[lat,lon,indx] = extractm(...)
mat = extractm(...)

Description [lat,lon] = extractm(display_struct,object_str) extracts
latitude and longitude coordinates from those elements of
display_struct having 'tag' fields that begin with the string
specified by object_str. display_struct is a Mapping Toolbox
display structure in which the 'type' field has a value of either ’line’
or 'patch'. The output lat and lon vectors include NaNs to separate
the individual map features. The comparison of 'tag' values is not
case-sensitive.

[lat,lon] = extractm(display_struct,object_strings), where
object_strings is a character array or a cell array of strings, selects
features with 'tag' fields matching any of several different strings.
Character array objects will have trailing spaces stripped before
matching.

[lat,lon] =
extractm(display_struct,object_strings,searchmethod)
controls the method used to match the values of the 'tag' field in
display_struct. searchmethod can be one of three strings:

'strmatch' Search for matches at the beginning of the tag

'findstr' Search within the tag

'exact' Search for exact matches. Note that when
searchmethod is specified the search is
case-sensitive.

3-269

extractm

[lat,lon] = extractm(display_struct) extracts all vector data from
the input map structure.

[lat,lon,indx] = extractm(...) also returns the vector indx
identifying which elements of display_struct met the selection
criteria.

mat = extractm(...) returns the vector data in a single matrix,
where mat = [lat lon].

Examples Extract the District of Columbia from the low-resolution U.S. vector
data:

load greatlakes
[lat, lon] = extractm(greatlakes, 'Erie');
axesm mercator
geoshow(lat,lon, 'DisplayType','polygon', 'FaceColor','blue')

Tips A Version 1 display structure is a MATLAB structure that can contain
line, patch, text, regular data grid, geolocated data grid, and certain
other objects and fixed attributes. In Mapping Toolbox Version 2, a new
data structure for vector geodata was introduced (called a mapstruct or
a geostruct, depending on whether coordinates it contains are projected
or unprojected). Geostructs and mapstructs have few required fields
and can include any number of user-defined fields, giving them much
greater flexibility to represent vector geodata. For information about

3-270

extractm

the contents and format of display structures, see “Version 1 Display
Structures” on page 3-177 in the reference page for displaym. For
information about converting display structures to geographic data
structures, see the reference page for updategeostruct, which performs
such conversions.

See Also displaym | extractfield | geoshow | mapshow | updategeostruct
| mlayers

3-271

fill3m

Purpose Project filled 3-D patch objects on map axes

Syntax h = fill3m(lat,lon,z,cdata)
h = fill3m(lat,lon,z,PropertyName,PropertyValue,...)

Description h = fill3m(lat,lon,z,cdata) projects and displays any patch object
with vertices defined by vectors lat and lon to the current map axes.
The scalar z indicates the altitude plane at which the patch is displayed.
The input cdata defines the patch face color. The patch handle or
handles, h, can be returned.

h = fill3m(lat,lon,z,PropertyName,PropertyValue,...) allows
any property name/property value pair supported by patch to be
assigned to the fill3m object.

Examples lat = [30 15 0 0 0 15 30 30]';
lon = [-60 -60 -60 0 60 60 60 0]';
axesm bonne; framem
view(3)
fill3m(lat,lon,2,'b')

3-272

fill3m

See Also fillm | patchesm | patchm

3-273

fillm

Purpose Project filled 2-D patch objects on map axes

Syntax h = fillm(lat,lon,cdata)
h = fillm(lat,lon,'PropertyName',PropertyValue,...)

Description h = fillm(lat,lon,cdata) projects and displays any patch object
with vertices defined by the vectors lat and lon to the current map
axes. The input cdata defines the patch face color. The patch handle or
handles, h, can be returned.

h = fillm(lat,lon,'PropertyName',PropertyValue,...) allows
any property name/property value pair supported by patch to be
assigned to the fillm object.

Examples lat = [30 15 0 0 0 15 30 30]';
lon = [-60 -60 -60 0 60 60 60 0]';
axesm bonne; framem
fillm(lat,lon,'b')

See Also fill3m | patchesm | patchm

3-274

filterm

Purpose Filter latitudes and longitudes based on underlying data grid

Syntax [latout,lonout] = filterm(lat,lon,Z,R,allowed)
[latout,lonout,indx] = filterm(lat,lon,Z,R,allowed)

Description [latout,lonout] = filterm(lat,lon,Z,R,allowed) filters a set
of latitudes and longitudes to include only those data points which
have a corresponding value in Z equal to allowed. R can be a
spatialref.GeoRasterReference object, a referencing vector, or a
referencing matrix.

If R is a spatialref.GeoRasterReference object, its RasterSize
property must be consistent with size(Z).

If R is a referencing vector, it must be a 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to or from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel. Nearest-neighbor
interpolation is used by default. NaN is returned for points outside
the grid limits or for which lat or lon contain NaN. All angles are in
units of degrees.

[latout,lonout,indx] = filterm(lat,lon,Z,R,allowed) also
returns the indices of the included points.

Examples Filter a random set of 100 geographic points. Use the topo map for
starters:

load topo

Then generate 100 random points:

3-275

filterm

lat = -90+180*rand(100,1);
long = -180+360*rand(100,1);

Make a land map, which is 1 where topo>0 elevation:

land = topo>0;
[newlat,newlong] = filterm(lat,long,land,topolegend,1);
size(newlat)

ans =
15 1

15 of the 100 random points fall on land.

See Also imbedm | hista | histr

3-276

findm

Purpose Latitudes and longitudes of nonzero data grid elements

Syntax [lat,lon] = findm(Z,R)
[lat,lon] = findm(latz,lonz,Z)
[lat,lon,val] = findm(...)
mat = findm(...)

Description [lat,lon] = findm(Z,R) computes the latitudes and longitudes
of the nonzero elements of a regular data grid, Z. R can be a
spatialref.GeoRasterReference object, a referencing vector, or a
referencing matrix.

If R is a spatialref.GeoRasterReference object, its RasterSize
property must be consistent with size(Z).

If R is a referencing vector, it must be a 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to or from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel. Nearest-neighbor
interpolation is used by default. NaN is returned for points outside
the grid limits or for which lat or lon contain NaN. All angles are in
units of degrees.

[lat,lon] = findm(latz,lonz,Z) returns the latitudes and
longitudes of the nonzero elements of a geolocated data grid Z, which
is an M-by-N logical or numeric array. Typically latz and lonz are
M-by-N latitude-longitude arrays, but latz may be a latitude vector of
length M and lonz may be a longitude vector of length N.

[lat,lon,val] = findm(...) returns the values of the nonzero
elements of Z, in addition to their locations.

3-277

findm

mat = findm(...) returns a single output, where mat = [lat lon].

This function works in two modes: with a regular data grid and with a
geolocated data grid.

Examples The data grid can be the result of a logical operation. For instance, you
can find all locations with elevations greater than 5500 meters.

load topo
[lat, lon] = findm((topo>5500),topolegend);
[lat lon]

ans =
34.5000 79.5000
34.5000 80.5000
30.5000 84.5000
28.5000 86.5000

These points are in the Himalayas. Find the grid values at these
locations with setpostn:

heights = topo(setpostn(topo,topolegend,lat,lon))

heights =
5559
5515
5523
5731

Use a regular data grid to retrieve the elevations from setpostn.

See Also find

3-278

fipsname

Purpose Read Federal Information Processing Standard (FIPS) name file used
with TIGER thinned boundary files

Syntax struc = fipsname
struc = fipsname(filename)

Description struc = fipsname opens a file selection window to pick the file, reads
the FIPS codes, and returns them in a structure.

struc = fipsname(filename) reads the specified file.

Background The TIGER thinned boundary files provided by the U.S. Census use
FIPS codes to identify geographic entities. This function reads the FIPS
files as provided with the TIGER files. These files generally have names
of the format _name.dat.

Tips The FIPS name files, along with TIGER thinned boundary files, are
available over the Internet.

Examples struc = fipsname('st_name.dat')

struc =
1x57 struct array with fields:

name
id

s(1)

ans =
name: 'Alabama'

id: 1

3-279

flat2ecc

Purpose Eccentricity of ellipse from flattening

Syntax ecc = flat2ecc(f)
ecc = flat2ecc(f)

Description ecc = flat2ecc(f) computes the eccentricity of an ellipse (or ellipsoid
of revolution) given its flattening f. Except when the input has 2
columns (or is a row vector), each element is assumed to be a flattening
and the output ecc has the same size as f.

ecc = flat2ecc(f), where f has two columns (or is a row vector),
assumes that the second column is a flattening, and a column vector
is returned.

See Also axes2ecc | ecc2flat | n2ecc

3-280

flatearthpoly

Purpose Insert points along date line to pole

Syntax [latf,lonf] = flatearthpoly(lat,lon)
[latf,lonf] = flatearthpoly(lat,lon,longitudeOrigin)

Description [latf,lonf] = flatearthpoly(lat,lon) trims NaN-separated
polygons specified by the latitude and longitude vectors lat and lon to
the limits [-180 180] in longitude and [-90 90] in latitude, inserting
straight segments along the +/- 180-degree meridians and at the poles.
Inputs and outputs are in degrees.

[latf,lonf] = flatearthpoly(lat,lon,longitudeOrigin) centers
the longitude limits on the longitude specified by the scalar longitude
longitudeOrigin.

Tips The polygon topology for the input vectors must be valid. This means
that vertices for outer rings (main polygon or “island” polygons) must
be in clockwise order, and any inner rings (“lakes”) must run in
counterclockwise order for the function to work properly. You can use
the ispolycw function to check whether or not your lat, lon vectors
meet this criterion, and the poly2cw and poly2ccw functions to correct
any that run in the wrong direction.

Examples Vector data for geographic objects that encompass a pole will inevitably
encounter or cross the date line. While the toolbox properly displays
such polygons, they can cause problems for functions like the polygon
intersection and Boolean operations that work with Cartesian
coordinates. When these polygons are treated as Cartesian coordinates,
the date line crossing results in a spurious line segment, and the
polygon displayed as a patch does not have the interior filled correctly.

antarctica = shaperead('landareas', 'UseGeoCoords', true,...
'Selector', {@(name) strcmp(name,'Antarctica'), 'Name'});

figure; plot(antarctica.Lon, antarctica.Lat); ylim([-100 -60])

3-281

flatearthpoly

The polygons can be reformatted more appropriately for Cartesian
coordinates using the flatearthpoly function. The result resembles
a map display on a cylindrical projection. The polygon meets the date
line, drops down to the pole, sweeps across the longitudes at the pole,
and follows the date line up to the other side of the date line crossing.

[latf, lonf] = flatearthpoly(antarctica.Lat', antarctica.Lon');
figure; mapshow(lonf, latf, 'DisplayType', 'polygon')
ylim([-100 -60])
xlim([-200 200])
axis square

3-282

flatearthpoly

See Also ispolycw | maptrimp | poly2cw | poly2ccw

3-283

framem

Purpose Toggle and control display of map frame

Syntax framem
framem('on')
framem('off')
framem('reset')
framem(linespec)
framem(PropertyName,PropertyValue,...)

Description framem toggles the visibility of the map frame by setting the map axes
property Frame to 'on' or 'off'. The default setting for map axes is
'off'.

framem('on') sets the map axes property Frame to 'on'.

framem('off') sets the map axes property Frame to 'off'.

When called with the string argument 'off', the map axes property
Frame is set to 'off'.

framem('reset') resets the entire frame using the current properties.
This is essentially a refresh option.

framem(linespec) sets the map axes FEdgeColor property to the color
component of any linespec string recognized by the MATLAB line
function.

framem(PropertyName,PropertyValue,...) sets the appropriate map
axes properties to the desired values. These property names and values
are described on the axesm reference page.

Tips • You can also create or alter map frame properties using the axesm
or setm functions.

• By default the Clipping property is set to 'off'. Override this setting
with the following code:

hgrat = gridm('on');
set(hgrat,'Clipping','on')

3-284

framem

See Also axesm | setm

3-285

fromDegrees

Purpose Convert angles from degrees

Syntax [angle1, angle2, ...] = fromDegrees(toUnits,
angle1InDegrees,

angle2InDegrees, ...)

Description [angle1, angle2, ...] = fromDegrees(toUnits,
angle1InDegrees, angle2InDegrees, ...) converts
angle1InDegrees, angle2InDegrees, ... from degrees to the
specified output ("to") angle units. toUnits can be either 'degrees' or
'radians' and may be abbreviated. The inputs angle1InDegrees,
angle2InDegrees, ... and their corresponding outputs are
numeric arrays of various sizes, with size(angleN) matching
size(angleNInDegrees).

See Also degtorad | fromRadians | toDegrees | toRadians

3-286

fromRadians

Purpose Convert angles from radians

Syntax [angle1, angle2, ...] = fromRadians(toUnits,
angle1InRadians,

angle2InRadians, ...)

Description [angle1, angle2, ...] = fromRadians(toUnits,
angle1InRadians, angle2InRadians, ...) converts
angle1InRadians, angle2InRadians, ... from radians to the
specified output ("to") angle units. toUnits can be either 'degrees' or
'radians' and may be abbreviated. The inputs angle1InRadians,
angle2InRadians, ... and their corresponding outputs are
numeric arrays of various sizes, with size(angleN) matching
size(angleNInRadians).

See Also fromDegrees | radtodeg | toDegrees | toRadians

3-287

gc2sc

Purpose Center and radius of great circle

Syntax [lat,lon,radius] = gc2sc(lat0,lon0,az)
[lat,lon,radius] = gc2sc(lat0,lon0,az,angleunits)
mat = gc2sc(...)

Description [lat,lon,radius] = gc2sc(lat0,lon0,az) converts a great circle
from great circle notation (i.e., lat, lon, azimuth, where (lat, lon) is
on the circle) to small circle notation (i.e., lat, lon, radius, where (lat,
lon) is the center of the circle and the radius is 90 degrees, which is a
definition of a great circle). A great circle has two centers and one is
chosen arbitrarily. The other is its antipode. All inputs and outputs are
in units of degrees.

[lat,lon,radius] = gc2sc(lat0,lon0,az,angleunits) uses the
string angleunits to specify the angle units of the inputs and outputs.
angleunits can equal either 'degrees' or 'radians'.

mat = gc2sc(...) returns a single output, where mat = [lat lon
radius].

Definitions A small circle is the intersection of a plane with the surface of a sphere.
A great circle is a small circle with a radius of 90º.

Examples Represent a great circle passing through (25ºS,70ºW) on an azimuth of
45º as a small circle:

[lat,lon,radius] = gc2sc(-25,-70,45)

lat =
-39.8557

lon =
42.9098

radius =
90

A great circle always bisects the sphere. As a demonstration of this
statement, consider the Equator, which passes through any point with

3-288

gc2sc

a latitude of 0º and proceeds on an azimuth of 90º or 270º. Represent the
Equator as a small circle:

[lat, lon, radius] = gc2sc(0,-70,270)

lat =
90

lon =
-145.9638

radius =
90

Not surprisingly, the small circle is centered on the North Pole.
As always at the poles, the longitude is arbitrary because of the
convergence of the meridians.

Note that the center coordinates returned by this function always lead
to one of two possibilities. Since the great circle bisects the sphere,
the antipode of the returned point is also a center with a radius of 90º.
In the above example, the South Pole would also be a suitable center
for the Equator in a small circle.

See Also antipode | crossfix | gcxgc | gcxsc | rhxrh

3-289

gcm

Purpose Current map projection structure

Syntax mstruct = gcm
mstruct = gcm(hndl)

Description mstruct = gcm returns the map axes map structure, which contains the
settings for all the current map axes properties.

mstruct = gcm(hndl) specifies the map axes by axes handle.

Examples Establish a map axes with default values, then look at the structure:

axesm mercator
mstruct = gcm

mstruct =
mapprojection: 'mercator'

zone: []
angleunits: 'degrees'

aspect: 'normal'
falsenorthing: 0
falseeasting: 0
fixedorient: []

geoid: [1 0]
maplatlimit: [-86 86]
maplonlimit: [-180 180]

mapparallels: 0
nparallels: 1

origin: [0 0 0]
scalefactor: 1

trimlat: [-86 86]
trimlon: [-180 180]

frame: 'off'
ffill: 100

fedgecolor: [0 0 0]
ffacecolor: 'none'
flatlimit: [-86 86]

3-290

gcm

flinewidth: 2
flonlimit: [-180 180]

grid: 'off'
galtitude: Inf

gcolor: [0 0 0]
glinestyle: ':'
glinewidth: 0.5000

mlineexception: []
mlinefill: 100

mlinelimit: []
mlinelocation: 30
mlinevisible: 'on'

plineexception: []
plinefill: 100

plinelimit: []
plinelocation: 15
plinevisible: 'on'

fontangle: 'normal'
fontcolor: [0 0 0]
fontname: 'Helvetica'
fontsize: 10

fontunits: 'points'
fontweight: 'normal'

labelformat: 'compass'
labelrotation: 'off'

labelunits: 'degrees'
meridianlabel: 'off'

mlabellocation: 30
mlabelparallel: 86

mlabelround: 0
parallellabel: 'off'

plabellocation: 15
plabelmeridian: -180

plabelround: 0

3-291

gcm

Tips You create map structure properties with the axesm function. You can
query them with the getm function and modify them with the setm
function.

See Also axesm | getm | setm

3-292

gcpmap

Purpose Current mouse point from map axes

Syntax pt = gcpmap
pt = gcpmap(hndl)

Description pt = gcpmap returns the current point (the location of last button
click) of the current map axes in the form [latitude longitude
z-altitude].

pt = gcpmap(hndl) specifies the map axes in question by its handle.

Tips gcpmap works much like the standard MATLAB function
get(gca,'CurrentPoint'), except that the returned matrix is in [lat
lon z], not [x y z].

You must use view(2) and an ordinary projection (not the Globe
projection) when working with the gcpmap function.

The CurrentPoint property is updated whenever a button-click event
occurs in a MATLAB figure window. The pointer does not have to be
within the axes, or even the figure window. Coordinates with respect
to the requested axes are returned regardless of the pointer location.
Likewise, gcpmap will return values that may look reasonable whether
the current point is within the graticule bounds or not, and thus must
be used with care.

Examples Set up a map axes with a graticule and display a world map:

axesm robinson
gridm on
geoshow('landareas.shp')

Click somewhere near Boston, Massachusetts to obtain a current point:

pt = gcpmap

pt =
44.171 -69.967 2

3-293

gcpmap

44.171 -69.967 0
whos

Name Size Bytes Class Attributes
pt 2x3 48 double array

See Also inputm

How To • Axes Properties

3-294

gcwaypts

Purpose Equally spaced waypoints along great circle

Syntax [lat,lon] = gcwaypts(lat1,lon1,lat2,lon2)
[lat,lon] = gcwaypts(lat1,lon1,lat2,lon2,nlegs)
pts = gcwaypts(lat1,lon1,lat2,lon2...)

Description [lat,lon] = gcwaypts(lat1,lon1,lat2,lon2) returns the
coordinates of equally spaced points along a great circle path connecting
two endpoints, (lat1,lon1) and (lat2,lon2).

[lat,lon] = gcwaypts(lat1,lon1,lat2,lon2,nlegs) specifies the
number of equal-length track legs to calculate. nlegs+1 output points
are returned, since a final endpoint is required. The default number
of legs is 10.

pts = gcwaypts(lat1,lon1,lat2,lon2...) packs the outputs, which
are otherwise two-column vectors, into a two-column matrix of the form
[latitude longitude]. This format for successive waypoints along a
navigational track is called navigational track format in this guide.
See the navigational track format reference page in this section
for more information.

Background This is a navigational function. It assumes that all latitudes and
longitudes are in degrees.

In navigational practice, great circle paths are often approximated by
rhumb line segments. This is done to come reasonably close to the
shortest distance between points without requiring course changes too
frequently. The gcwaypts function provides an easy means of finding
waypoints along a great circle path that can serve as endpoints for
rhumb line segments (track legs).

Examples Imagine you own a sailing yacht and are planning a voyage from North
Point, Barbados (13.33º N,59.62ºW), to Brest, France (48.36ºN,4.49ºW).
To divide the track into three equal-length segments,

figure('color','w');
ha = axesm('mapproj','mercator',...

3-295

gcwaypts

'maplatlim',[10 55],'maplonlim',[-80 10],...
'MLineLocation',15,'PLineLocation',15);

axis off, gridm on, framem on;
load coast;
hg = geoshow(lat,long,'displaytype','line','color','b');
% Define point locations for Barbados and Brest
barbados = [13.33 -59.62];
brest = [48.36 -4.49];
[l,g] = gcwaypts(barbados(1),barbados(2),brest(1),brest(2),3);
geoshow(l,g,'displaytype','line','color','r',...

'markeredgecolor','r','markerfacecolor','r','marker','o');
geoshow(barbados(1),barbados(2),'DisplayType','point',...

'markeredgecolor','k','markerfacecolor','k','marker','o')
geoshow(brest(1),brest(2),'DisplayType','point',...

'markeredgecolor','k','markerfacecolor','k','marker','o')

See Also dreckon | legs | navfix | track

3-296

gcxgc

Purpose Intersection points for pairs of great circles

Syntax [newlat,newlong] = gcxgc(lat1,long1,az1,lat2,long2,az2)
[newlat,newlong] =
gcxgc(lat1,long1,az1,lat2,long2,az2,units)

Description [newlat,newlong] = gcxgc(lat1,long1,az1,lat2,long2,az2)
returns the two intersection points of pairs of great circles input in
great circle notation. When the two great circles are identical (which is
not, in general, apparent by inspection), two NaNs are returned instead
and a warning is displayed. For multiple pairings, the inputs must
be column vectors.

[newlat,newlong] =
gcxgc(lat1,long1,az1,lat2,long2,az2,units) specifies the
standard angle unit string. The default value is 'degrees'.

For any pair of great circles, there are two possible intersection
conditions: the circles are identical or they intersect exactly twice on
the sphere.

Great circle notation consists of a point on the great circle and the
azimuth at that point along which the great circle proceeds.

Examples Given a great circle passing through (10ºN,13ºE) and proceeding on
an azimuth of 10º, where does it intersect with a great circle passing
through (0º, 20ºE), on an azimuth of -23º (that is, 337º)?

[newlat,newlong] = gcxgc(10,13,10,0,20,-23)

newlat =
14.3105 -14.3105

newlong =
13.7838 -166.2162

Note that the two intersection points are always antipodes of each
other. As a simple example, consider the intersection points of two
meridians, which are just great circles with azimuths of 0º or 180º:

3-297

gcxgc

[newlat,newlong] = gcxgc(10,13,0,0,20,180)

newlat =
-90 90

newlong =
-174.4504 12.5094

The two meridians intersect at the North and South Poles, which is
exactly correct.

See Also antipode | gc2sc | scxsc | gcxsc | rhxrh | crossfix | polyxpoly

3-298

gcxsc

Purpose Intersection points for great and small circle pairs

Syntax [newlat,newlong] = gcxsc(gclat,gclong,gcaz,sclat,sclong,
scrange)

[newlat,newlong] = gcxsc(...,units)

Description [newlat,newlong] =
gcxsc(gclat,gclong,gcaz,sclat,sclong,scrange) returns the
points of intersection of a great circle in great circle notation followed by
a small circle in small circle notation. For multiple pairings, the inputs
must be column vectors. The results are two-column matrices with the
coordinates of the intersection points. If the circles do not intersect, or
are identical, two NaNs are returned and a warning is displayed. If the
two circles are tangent, the single intersection point is repeated twice.

[newlat,newlong] = gcxsc(...,units) specifies the standard angle
unit string. The default value is 'degrees'.

For a pairing of a great circle with a small circle, there are four possible
intersection conditions: the circles are identical (possible because great
circles are a subset of small circles), they do not intersect, they are
tangent to each other (the small circle interior to the great circle) and
hence they intersect once, or they intersect twice.

Great circle notation consists of a point on the great circle and the
azimuth at that point along which the great circle proceeds.

Small circle notation consists of a center point and a radius in units of
angular arc length.

Examples Given a great circle passing through (43ºN,0º) and proceeding on an
azimuth of 10º, where does it intersect with a small circle centered at
(47ºN,3ºE) with an arc length radius of 12º?

[newlat,newlong] = gcxsc(43,0,10,47,3,12)

newlat =
35.5068 58.9143

newlong =

3-299

gcxsc

-1.6159 5.4039

See Also gc2sc | gcxgc | scxsc | rhxrh | crossfix | polyxpoly

3-300

geocentric2geodeticLat

Purpose Convert geocentric to geodetic latitude

Syntax phiI = geocentric2geodeticlat(ecc, phi_g)

Description phiI = geocentric2geodeticlat(ecc, phi_g) converts an array of
geocentric latitude in radians, phi_g, to geodetic latitude in radians,
phiI, on a reference ellipsoid with first eccentricity ecc.

For conversion to/from other types of auxiliary latitude and, optionally,
to work in degrees, use Mapping Toolbox function convertlat. For
conversion from 3-D geocentric coordinates, see ecef2geodetic.

See Also convertlat | ecef2geodetic | geodetic2geocentricLat

3-301

oblateSpheroid

Purpose Oblate ellipsoid of revolution

Description An oblate spheroid object encapsulates the interrelated intrinsic
properties of an oblate ellipsoid of revolution. An oblate spheroid is
symmetric about its polar axis and flattened at the poles, and includes
the perfect sphere as a special case.

Construction S = oblateSpheroid returns an oblate spheroid object.

Properties SemimajorAxis

Equatorial radius of spheroid, a

When set to a new value, the SemiminorAxis property scales
as needed to preserve the shape of the spheroid and the values
of shape-related properties including InverseFlattening and
Eccentricity.

The only way to change the SemimajorAxis property is to set it
directly.

DataType: Positive, finite scalar.

Default: 1

SemiminorAxis

Distance from center of spheroid to pole, b

The value is always less than or equal to SemimajorAxis
property. When set to a new value, the SemimajorAxis property
remains unchanged, but the shape of the spheroid changes, which
is reflected in changes in the values of InverseFlattening,
Eccentricity, and other shape-related properties.

DataType: Nonnegative, finite scalar.

Default: 0

InverseFlattening

3-302

oblateSpheroid

Reciprocal of flattening.

1/f = a/(a-b), where a and b are the semimajor and semiminor
axes. A value of 1/f = Inf designates a perfect sphere. As 1/f
value approaches 1, the spheroid approaches a flattened disk.
When set to a new value, other shape-related properties are
updated, including Eccentricity. The SemimajorAxis value is
unaffected by changes to 1/f, but the value of the SemiminorAxis
property adjusts to reflect the new shape.

DataType: Positive scalar in the interval [1 Inf].

Default: 1

Eccentricity

First eccentricity of spheroid, ecc = sqrt(a^2-b^2)/a

It is the normalized distance from the center to foci in the
meridional plane. A value of 0 designates a perfect sphere.
When set to a new value, other shape-related properties update,
including InverseFlattening. The SemimajorAxis value is
unaffected by changes to ecc, but the value of the SemiminorAxis
property adjusts to reflect the new shape.

DataType: Nonnegative scalar less than or equal to 1.

Default: 1

Flattening

Flattening of spheroid

f = (a-b)/a, where a and b are semimajor and semiminor axes
of spheroid.

Access: Read only

ThirdFlattening

Third flattening of spheroid

3-303

oblateSpheroid

n = (a-b)/(a+b), where a and b are the semimajor and
semiminor axes of spheroid.

Access: Read only

MeanRadius

Mean radius of spheroid, (2*a+b)/3

The MeanRadius property uses the same unit of length as the
SemimajorAxis and SemiminorAxis properties.

Access: Read only

SurfaceArea

Surface area of spheroid

The SurfaceArea is expressed in units of area consistent with the
unit of length used for theSemimajorAxis and SemiminorAxis
properties.

Access: Read only

Volume

Volume of spheroid

The Volume is expressed in units of volume consistent with the
unit of length used for the SemimajorAxis and SemiminorAxis
properties.

Access: Read only

Note When you define a spheroid in terms of semimajor and semiminor
axes (rather than semimajor axis and inverse flattening or semimajor
axis and eccentricity), a small loss of precision in the last few digits of
f, ecc, and n is possible. This is unavoidable, but does not affect the
results of practical computation.

3-304

oblateSpheroid

Methods
ecef2geodetic Transform geocentric (ECEF) to

geodetic coordinates

ecefOffset Cartesian ECEF offset between
geodetic positions

geodetic2ecef Transform geodetic to geocentric
(ECEF) coordinates

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects.

Examples Create GRS 80 ellipsoid

Create a GRS 80 ellipsoid using the oblateSpheroid class.

Start with a unit sphere by default.

s = oblateSpheroid

s =
oblateSpheroid

Properties:
SemimajorAxis: 1
SemiminorAxis: 1

InverseFlattening: Inf
Eccentricity: 0

Reset the semimajor axis to match the equatorial radius of the GRS 80
reference ellipsoid.

s.SemimajorAxis = 6378137

s =
oblateSpheroid

3-305

oblateSpheroid

Properties:
SemimajorAxis: 6378137
SemiminorAxis: 6378137

InverseFlattening: Inf
Eccentricity: 0

The result is a sphere with radius 6,378,137 meters.

Reset the inverse flattening to the standard value for GRS 80, resulting
in an oblate spheroid with a semiminor axis consistent with the value,
6,356,752.3141, tabulated in DMA Technical Memorandum 8358.1,
"Datums, Ellipsoids, Grids, and Grid Reference Systems."

s.InverseFlattening = 298.257222101

s =
oblateSpheroid

Properties:
SemimajorAxis: 6378137
SemiminorAxis: 6356752.31414036

InverseFlattening: 298.257222101
Eccentricity: 0.0818191910428158

See Also referenceEllipsoid | referenceSphere |

3-306

oblateSpheroid.geodetic2ecef

Purpose Transform geodetic to geocentric (ECEF) coordinates

Syntax [X,Y,Z] = geodetic2ecef(spheroid,lat,lon,h)
[X,Y,Z] = geodetic2ecef(___ , angleUnit)

Description [X,Y,Z] = geodetic2ecef(spheroid,lat,lon,h) returns
Earth-Centered Earth-Fixed (ECEF) spheroid-centric Cartesian
coordinates corresponding to geodetic coordinates lat, lon, h. Any of
the three numerical arguments can be scalar, even when the others are
nonscalar; but all nonscalar numeric arguments must match in size.

[X,Y,Z] = geodetic2ecef(___ , angleUnit) adds angleUnit which
specifies the units of inputs lat and lon.

Input
Arguments

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

lat - Geodetic latitudes
scalar value | vector | matrix | N-D array

Geodetic latitudes of one or more points, specified as a scalar
value, vector, matrix, or N-D array. Values must be in units
that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

lon - Longitudes
scalar value | vector | matrix | N-D array

Longitudes of one or more points, specified as a scalar value,
vector, matrix, or N-D array. Values must be in units that match
the input argument angleUnit, if supplied, and in degrees,
otherwise.

3-307

oblateSpheroid.geodetic2ecef

Data Types
single | double

h - Ellipsoidal heights
scalar value | vector | matrix | N-D array

Ellipsoidal heights of one or more points, specified as a scalar
value, vector, matrix, or N-D array. Values must be in units that
match the LengthUnit property of the spheroid object.

Data Types
single | double

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

X - ECEF x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the spheroid-centric
ECEF system, returned as a scalar value, vector, matrix, or N-D
array. Units are determined by the LengthUnit property of the
spheroid object.

Y - ECEF y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the spheroid-centric
ECEF system, returned as a scalar value, vector, matrix, or N-D
array. Units are determined by the LengthUnit property of the
spheroid object.

Z - ECEF y-coordinates
scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the spheroid-centric ECEF
system, returned as a scalar value, vector, matrix, or N-D

3-308

oblateSpheroid.geodetic2ecef

array. Units are determined by the LengthUnit property of the
spheroid object.

See Also oblateSpheroid.ecef2geodetic | oblateSpheroid.ecefOffset |

3-309

oblateSpheroid.ecef2geodetic

Purpose Transform geocentric (ECEF) to geodetic coordinates

Syntax [lat,lon,h] = ecef2geodetic(spheroid,X,Y,Z)
[lat,lon,h] = ecef2geodetic(___ , angleUnit)

Description [lat,lon,h] = ecef2geodetic(spheroid,X,Y,Z)returns geodetic
coordinates corresponding to coordinates X, Y, Z in an Earth-Centered
Earth-Fixed (ECEF) spheroid-centric Cartesian system. Any of the
three numerical arguments can be scalar, even when the others are
nonscalar; but all nonscalar numeric arguments must match in size.

[lat,lon,h] = ecef2geodetic(___ , angleUnit) adds angleUnit
which specifies the units of outputs lat and lon.

Input
Arguments

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

X - ECEF x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the spheroid-centric ECEF
system, specified as a scalar value, vector, matrix, or N-D array.
Values must be in units that match the LengthUnit property of
the spheroid object.

Data Types
single | double

Y - ECEF y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the spheroid-centric ECEF
system, specified as a scalar value, vector, matrix, or N-D array.
Values must be in units that match the LengthUnit property of
the spheroid object.

3-310

oblateSpheroid.ecef2geodetic

Data Types
single | double

Z - ECEF z-coordinates
scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the spheroid-centric ECEF
system, specified as a scalar value, vector, matrix, or N-D array.
Values must be in units that match the LengthUnit property of
the spheroid object.

Data Types
single | double

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

lat - Geodetic latitudes
scalar value | vector | matrix | N-D array

Geodetic latitudes of one or more points, returned as a scalar
value, vector, matrix, or N-D array. Units are determined by the
input argument angleUnit, if supplied; values are in degrees,
otherwise. When in degrees, they lie in the closed interval [-90 90].

lon - Longitudes
scalar value | vector | matrix | N-D array

Longitudes of one or more points, returned as a scalar value,
vector, matrix, or N-D array. Units are determined by the
input argument angleUnit, if supplied; values are in degrees,
otherwise. When in degrees, they lie in the interval [-180 180].

h - Ellipsoidal heights
scalar value | vector | matrix | N-D array

3-311

oblateSpheroid.ecef2geodetic

Ellipsoidal heights of one or more points, returned as a scalar
value, vector, matrix, or N-D array. Units are determined by the
LengthUnit property of the spheroid object

See Also oblateSpheroid.geodetic2ecef | oblateSpheroid.ecefOffset |

3-312

oblateSpheroid.ecefOffset

Purpose Cartesian ECEF offset between geodetic positions

Syntax [U,V,W] = ecefOffset(spheroid,lat1,lon1,h1,lat2,lon2,h2)
[U,V,W] = ecefOffset(___ , angleUnit)

Description [U,V,W] = ecefOffset(spheroid,lat1,lon1,h1,lat2,lon2,h2)
returns the components of the 3-D offset vector from an initial geodetic
position specified bylat1,lon1,h1 to a final position specified by
lat2,lon2,h2 with respect to an Earth-Centered Earth-Fixed (ECEF)
spheroid-centric Cartesian system. Any of the six numerical arguments
can be scalar, even when the others are nonscalar; but all nonscalar
numeric arguments must match in size.

[U,V,W] = ecefOffset(___ , angleUnit) adds angleUnit which
specifies the units of inputs lat1, lon1, lat2, and lon2.

Input
Arguments

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

lat1 - Initial geodetic latitudes
scalar value | vector | matrix | N-D array

Geodetic latitudes of one or more initial positions, specified as
a scalar value, vector, matrix, or N-D array. Values must be in
units that match the input argument angleUnit, if supplied, and
in degrees, otherwise.

Data Types
single | double

lon1 - Initial longitudes
scalar value | vector | matrix | N-D array

Longitudes of one or more initial positions, specified as a scalar
value, vector, matrix, or N-D array. Values must be in units that
match the input argument angleUnit, if supplied, and in degrees,
otherwise.

3-313

oblateSpheroid.ecefOffset

Data Types
single | double

h1 - Initial ellipsoidal heights
scalar value | vector | matrix | N-D array

Ellipsoidal heights of one or more initial positions, specified as
a scalar value, vector, matrix, or N-D array. Values must be in
units that match the LengthUnit property of the spheroid object.

Data Types
single | double

lat2 - Final geodetic latitudes
scalar value | vector | matrix | N-D array

Geodetic latitudes of one or more final positions, specified as
a scalar value, vector, matrix, or N-D array. Values must be in
units that match the input argument angleUnit, if supplied, and
in degrees, otherwise.

Data Types
single | double

lon2 - Final longitudes
scalar value | vector | matrix | N-D array

Longitudes of one or more final positions, specified as a scalar
value, vector, matrix, or N-D array. Values must be in units that
match the input argument angleUnit, if supplied, and in degrees,
otherwise.

Data Types
single | double

h2 - Final ellipsoidal heights
scalar value | vector | matrix | N-D array

Ellipsoidal heights of one or more final positions, specified as a
scalar value, vector, matrix, or N-D array. Values must be in
units that match the LengthUnit property of the spheroid object.

3-314

oblateSpheroid.ecefOffset

Data Types
single | double

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

U - Offset vector x-components in ECEF system
scalar value | vector | matrix | N-D array

x-components of one or more Cartesian offset vectors in the
spheroid-centric ECEF system, returned as a scalar value, vector,
matrix, or N-D array. Values equal the difference in ECEF
x-coordinates between initial and final positions. Units are
determined by the LengthUnit property of the spheroid object.

V - Offset vector y-components in ECEF system
scalar value | vector | matrix | N-D array

y-components of one or more Cartesian offset vectors in the
spheroid-centric ECEF system, returned as a scalar value, vector,
matrix, or N-D array. Values equal the difference in ECEF
y-coordinates between initial and final positions. Units are
determined by the LengthUnit property of the spheroid object.

W - Offset vector z-components in ECEF system
scalar value | vector | matrix | N-D array

z-components of one or more Cartesian offset vectors in the
spheroid-centric ECEF system, returned as a scalar value, vector,
matrix, or N-D array. Values equal the difference in ECEF
z-coordinates between initial and final positions. Units are
determined by the LengthUnit property of the spheroid object.

See Also oblateSpheroid.geodetic2ecef | oblateSpheroid.ecef2geodetic |

3-315

geodetic2aer

Purpose Geodetic to local spherical AER

Syntax [az,elev,slantRange] = geodetic2aer(lat,lon,h,lat0,lon0,h0,
spheroid)

[___] = geodetic2aer(___ ,angleUnit)

Description [az,elev,slantRange] =
geodetic2aer(lat,lon,h,lat0,lon0,h0,spheroid) returns
coordinates in a local spherical system corresponding to geodetic
coordinates lat, lon, h. Any of the first six numeric input arguments
can be scalar, even when the others are nonscalar; but all nonscalar
numeric arguments must match in size.

[___] = geodetic2aer(___ ,angleUnit) adds angleUnit which
specifies the units of inputs lat, lon, lat0, lon0, and outputs az,
elev.

Input
Arguments

lat - Geodetic latitudes
scalar value | vector | matrix | N-D array

Geodetic latitudes of one or more points, specified as a scalar value,
vector, matrix, or N-D array. Values must be in units that match the
input argument angleUnit, if supplied, and in degrees, otherwise.

Data Types
single | double

lon - Longitudes
scalar value | vector | matrix | N-D array

Longitudes of one or more points, specified as a scalar value, vector,
matrix, or N-D array. Values must be in units that match the input
argument angleUnit, if supplied, and in degrees, otherwise.

Data Types
single | double

h - Ellipsoidal heights

3-316

geodetic2aer

scalar value | vector | matrix | N-D array

Ellipsoidal heights of one or more points, specified as a scalar value,
vector, matrix, or N-D array. Values must be in units that match the
LengthUnit property of the spheroid object.

Data Types
single | double

lat0 - Geodetic latitude of local origin
scalar value | vector | matrix | N-D array

Geodetic latitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lat0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

lon0 - Longitude of local origin
scalar value | vector | matrix | N-D array

Longitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lon0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

h0 - Ellipsoidal height of local origin
scalar value | vector | matrix | N-D array

Ellipsoidal height of local origin (reference) point(s), specified as a
scalar value, vector, matrix, or N-D array. In many cases there is one

3-317

geodetic2aer

origin (reference) point, and the value of h0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

az - Azimuth angles
scalar value | vector | matrix | N-D array

Azimuth angles in the local spherical system, returned as a scalar
value, vector, matrix, or N-D array. Azimuths are measured clockwise
from north. Units are determined by the input argument angleUnit, if
supplied; values are in degrees, otherwise. When in degrees, they lie
in the half-open interval [0 360).

elev - Elevation angles
scalar value | vector | matrix | N-D array

Elevation angles in the local spherical system, returned as a scalar
value, vector, matrix, or N-D array. Elevations are with respect to a
plane perpendicular to the spheroid surface normal. Units determined
by the input argument angleUnit, if supplied; values are in degrees,
otherwise. When in degrees, they lie in the closed interval [-90 90].

3-318

geodetic2aer

slantRange - Distances from local origin
scalar value | vector | matrix | N-D array

Distances from origin in the local spherical system, returned as a scalar
value, vector, matrix, or N-D array. The straight-line, 3-D Cartesian
distance is computed. Units are determined by the LengthUnit property
of the spheroid input.

Examples Zermatt to the Matterhorn

Compute the azimuth (in degrees), elevation angle (in degrees), and
line of sight distance from Zermatt, Switzerland to the summit of the
Matterhorn (Monte Cervino). All distances and lengths are in meters.

Origin (reference point): Zermatt.

fmt = get(0,'Format');
format short g

lat0 = dm2degrees([46 1]) % convert degree-minutes to degrees
lon0 = dm2degrees([7 45])
hOrthometric0 = 1620;
hGeoid = 53;
h0 = hOrthometric0 + hGeoid

lat0 =

46.017

lon0 =

7.75

h0 =

1673

3-319

geodetic2aer

Point of Interest: Summit of Matterhorn.

lat = dms2degrees([45 58 35])
lon = dms2degrees([7 39 30])
hOrthometric = 4478;
hGeoid = 53;
h = hOrthometric + hGeoid

lat =

45.976

lon =

7.6583

h =

4531

Azimuth, elevation angle, and slant range (line of sight distance) from
Zermatt to Matterhorn summit.

[az,elev,slantRange] = geodetic2aer(...
lat,lon,h,lat0,lon0,h0,wgs84Ellipsoid)

format(fmt)

az =

237.8

elev =

3-320

geodetic2aer

18.755

slantRange =

8871.7

See Also aer2geodetic | ecef2aer | geodetic2enu | geodetic2ned

3-321

geodetic2ecef

Purpose Convert geodetic to geocentric (ECEF) coordinates

Syntax [x,y,z] = geodetic2ecef(phi,lambda,h,ellipsoid)

Description [x,y,z] = geodetic2ecef(phi,lambda,h,ellipsoid) converts
geodetic point locations specified by the coordinate arrays phi (geodetic
latitude in radians), lambda (longitude in radians), and h (ellipsoidal
height) to geocentric Cartesian coordinates x, y, and z. ellipsoid is
a referenceEllipsoid (oblateSpheroid) object, a referenceSphere
object, or a vector of the form [semimajor axis, eccentricity]. h
must use the same units as the semimajor axis; x, y, and z will be
expressed in these units, also.

Definitions The geocentric Cartesian coordinate system is fixed with respect to the
Earth, with its origin at the center of the ellipsoid and its x-, y-, and
z-axes intersecting the surface at the locations listed in the table below.

Axis Latitude where
axis intersects
surface

Longitude where
axis intersects
surface

Description

x 0 0 Equator/Prime
Meridian

y 0 90º E Equator/90º E
meridian

z 90º N NA North Pole

A common synonym is Earth-Centered, Earth-Fixed coordinates, or
ECEF.

See Also ecef2geodetic | ecef2lv | geodetic2geocentricLat | lv2ecef

3-322

geodetic2enu

Purpose Geodetic to local Cartesian ENU

Syntax [xEast,yNorth,zUp] = geodetic2enu(lat,lon,h,lat0,lon0,h0,
spheroid)

[xEast,yNorth,zUp] = geodetic2enu(___ ,angleUnit)

Description [xEast,yNorth,zUp] =
geodetic2enu(lat,lon,h,lat0,lon0,h0,spheroid) returns
coordinates in a local east-north-up (ENU) Cartesian system
corresponding to geodetic coordinates lat, lon, h. Any of the first six
numeric input arguments can be scalar, even when the others are
nonscalar; but all nonscalar numeric arguments must match in size.

[xEast,yNorth,zUp] = geodetic2enu(___ ,angleUnit) adds
angleUnit which specifies the units of inputs lat, lon, lat0, and
lon0.

Input
Arguments

lat - Geodetic latitudes
scalar value | vector | matrix | N-D array

Geodetic latitudes of one or more points, specified as a scalar value,
vector, matrix, or N-D array. Values must be in units that match the
input argument angleUnit, if supplied, and in degrees, otherwise.

Data Types
single | double

lon - Longitudes
scalar value | vector | matrix | N-D array

Longitudes of one or more points, specified as a scalar value, vector,
matrix, or N-D array. Values must be in units that match the input
argument angleUnit, if supplied, and in degrees, otherwise.

Data Types
single | double

h - Ellipsoidal heights

3-323

geodetic2enu

scalar value | vector | matrix | N-D array

Ellipsoidal heights of one or more points, specified as a scalar value,
vector, matrix, or N-D array. Values must be in units that match the
LengthUnit property of the spheroid object.

Data Types
single | double

lat0 - Geodetic latitude of local origin
scalar value | vector | matrix | N-D array

Geodetic latitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lat0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

lon0 - Longitude of local origin
scalar value | vector | matrix | N-D array

Longitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lon0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

h0 - Ellipsoidal height of local origin
scalar value | vector | matrix | N-D array

Ellipsoidal height of local origin (reference) point(s), specified as a
scalar value, vector, matrix, or N-D array. In many cases there is one

3-324

geodetic2enu

origin (reference) point, and the value of h0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

xEast - Local ENU x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the local ENU system, returned
as a scalar value, vector, matrix, or N-D array. Units are determined by
the LengthUnit property of the spheroid input.

yNorth - Local ENU y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the local ENU system, returned
as a scalar value, vector, matrix, or N-D array. Units are determined by
the LengthUnit property of the spheroid input.

zUp - Local ENU z-coordinates
scalar value | vector | matrix | N-D array

3-325

geodetic2enu

z-coordinates of one or more points in the local ENU system, returned
as a scalar value, vector, matrix, or N-D array. Units are determined by
the LengthUnit property of the spheroid input.

See Also ecef2enu | enu2geodetic | geodetic2aer | geodetic2ned

3-326

geodetic2ned

Purpose Geodetic to local Cartesian NED

Syntax [xNorth,yEast,zDown] = geodetic2enu(lat,lon,h,lat0,lon0,h0,
spheroid)

[___] = geodetic2enu(___ ,angleUnit)

Description [xNorth,yEast,zDown] =
geodetic2enu(lat,lon,h,lat0,lon0,h0,spheroid) returns
coordinates in a local north-east-down (NED) Cartesian system to
geodetic coordinates lat, lon, h. Any of the first six numeric input
arguments can be scalar, even when the others are nonscalar; but all
nonscalar numeric arguments must match in size.

[___] = geodetic2enu(___ ,angleUnit) adds angleUnit which
specifies the units of inputs lat, lon, lat0, and lon0.

Input
Arguments

lat - Geodetic latitudes
scalar value | vector | matrix | N-D array

Geodetic latitudes of one or more points, specified as a scalar value,
vector, matrix, or N-D array. Values must be in units that match the
input argument angleUnit, if supplied, and in degrees, otherwise.

Data Types
single | double

lon - Longitudes
scalar value | vector | matrix | N-D array

Longitudes of one or more points, specified as a scalar value, vector,
matrix, or N-D array. Values must be in units that match the input
argument angleUnit, if supplied, and in degrees, otherwise.

Data Types
single | double

h - Ellipsoidal heights
scalar value | vector | matrix | N-D array

3-327

geodetic2ned

Ellipsoidal heights of one or more points, specified as a scalar value,
vector, matrix, or N-D array. Values must be in units that match the
LengthUnit property of the spheroid object.

Data Types
single | double

lat0 - Geodetic latitude of local origin
scalar value | vector | matrix | N-D array

Geodetic latitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lat0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

lon0 - Longitude of local origin
scalar value | vector | matrix | N-D array

Longitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lon0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

h0 - Ellipsoidal height of local origin
scalar value | vector | matrix | N-D array

Ellipsoidal height of local origin (reference) point(s), specified as a
scalar value, vector, matrix, or N-D array. In many cases there is one
origin (reference) point, and the value of h0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in

3-328

geodetic2ned

units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

xNorth - Local NED x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the local NED system, returned
as a scalar value, vector, matrix, or N-D array. Units are determined by
the LengthUnit property of the spheroid input.

yEast - Local NED y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the local NED system, returned
as a scalar value, vector, matrix, or N-D array. Units are determined by
the LengthUnit property of the spheroid input.

zDown - Local NED z-coordinates
scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the local NED system, returned
as a scalar value, vector, matrix, or N-D array. Units are determined by
the LengthUnit property of the spheroid input.

3-329

geodetic2ned

See Also ecef2ned | ned2geodetic | geodetic2aer | geodetic2enu

3-330

geodetic2geocentricLat

Purpose Convert geodetic to geocentric latitude

Syntax phi_g = geodetic2geocentriclat(ecc, phi)

Description phi_g = geodetic2geocentriclat(ecc, phi) converts an array of
geodetic latitude in radians, phi, to geocentric latitude in radians,
phi_g, on a reference ellipsoid with first eccentricity ecc.

For conversion to/from other types of auxiliary latitude and, optionally,
to work in degrees, use Mapping Toolbox function convertlat. For
conversion to 3-D geocentric coordinates, see geodetic2ecef.

See Also convertlat | geocentric2geodeticLat | geodetic2ecef

3-331

geoloc2grid

Purpose Convert geolocated data array to regular data grid

Syntax [Z, refvec] = geoloc2grid(lat, lon, A, cellsize)

Description [Z, refvec] = geoloc2grid(lat, lon, A, cellsize) converts the
geolocated data array A, given geolocation points in lat and lon, to
produce a regular data grid, Z, and the corresponding three-element
referencing vector refvec. cellsize is a scalar that specifies the width
and height of data cells in the regular data grid, using the same angular
units as lat and lon. Data cells in Z falling outside the area covered
by A are set to NaN.

Tips geoloc2grid provides an easy-to-use alternative to gridding geolocated
data arrays with imbedm. There is no need to preallocate the output
map; there are no data gaps in the output (even if cellsize is chosen to
be very small), and the output map is smoother.

Examples % Load the geolocated data array 'map1'
% and grid it to 1/2-degree cells.
load mapmtx
cellsize = 0.5;
[Z, refvec] = geoloc2grid(lt1, lg1, map1, cellsize);

% Create a figure
f = figure;
[cmap,clim] = demcmap(map1);
set(f,'Colormap',cmap,'Color','w')

% Define map limits
latlim = [-35 70];
lonlim = [0 100];

% Display 'map1' as a geolocated data array in subplot 1
subplot(1,2,1)
ax = axesm('mercator','MapLatLimit',latlim,...

'MapLonLimit',lonlim,'Grid','on',...

3-332

geoloc2grid

'MeridianLabel','on','ParallelLabel','on');
set(ax,'Visible','off')
geoshow(lt1, lg1, map1, 'DisplayType', 'texturemap');

% Display 'Z' as a regular data grid in subplot 2
subplot(1,2,2)
ax = axesm('mercator','MapLatLimit',latlim,...

'MapLonLimit',lonlim,'Grid','on',...
'MeridianLabel','on','ParallelLabel','on');

set(ax,'Visible','off')
geoshow(Z, refvec, 'DisplayType', 'texturemap');

3-333

geopoint

Purpose Geographic point vector

Syntax p = geopoint()
p = geopoint(lat,lon)
p = geopoint(lat,lon,Name,Value)
p = geopoint(structArray)
p = geopoint(lat,lon,structArray)

Description A geopoint vector is a container object that holds geographic point
coordinates and attributes. The points are coupled, such that the size
of the latitude and longitude coordinate arrays are always equal and
match the size of any dynamically added attribute arrays. Each entry of
a coordinate pair and associated attributes, if any, represent a discrete
element in the geopoint vector.

Construction p = geopoint() constructs an empty geopoint vector, p, with these
default property settings:

p =

0x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: []

Longitude: []

p = geopoint(lat,lon) constructs a new geopoint vector and assigns
the Latitude and Longitude properties to the numeric array inputs,
lat and lon. For examples, see “geopoint vector Using Latitude and
Longitude Coordinates” on page 3-340 .

p = geopoint(lat,lon,Name,Value) constructs a geopoint vector
from input arrays lat and lon, and then adds dynamic properties to the
geopoint vector using the Name, Value argument pairs.

3-334

geopoint

• If a specified name is Metadata and the corresponding value is a
scalar structure, then the value is copied to the Metadata property.
Otherwise, an error is issued.

See “geopoint vector Using a Name-Value pair” on page 3-341 for
examples.

p = geopoint(structArray) constructs a new geopoint vector from
the fields of the structure, structArray.

• If structArray contains the field Lat, and does not contain a field
Latitude, then the Lat values are assigned to the Latitude property.

• If structArray contains both Lat and Latitude fields, then both
field values are assigned to p.

• If structArray contains the field, Lon, and does not contain a field,
Longitude, then the Lon values are assigned to the Longitude
property.

• If structArray contains both Lon and Longitude fields, then both
field values are assigned to p.

• If structArray is a scalar structure containing the field Metadata
and the field value is a scalar structure, then the Metadata field is
copied to the Metadata property. Otherwise, an error is issued if
the Metadata field is not a structure, or ignored if structArray is
not scalar.

• Other fields of structArray are assigned to p and become dynamic
properties. Field values in structArray that are not numeric or
strings or cell arrays of numeric or string values are ignored.

See “geopoint vector Using a Structure Array” on page 3-342 for an
example.

p = geopoint(lat,lon,structArray) constructs a new geopoint
vector and assigns the Latitude and Longitude properties to the
numeric arrays, lat and lon, and sets dynamic properties from the field
values of the structure, structArray.

3-335

geopoint

• If structArray contains the fields Lat, Latitude, Lon or Longitude,
then those field values are ignored.

• If structArray is a scalar structure containing the field Metadata,
and the field value is a scalar structure, then it is copied to the
Metadata property. Otherwise, an error is issued if the Metadata
field is not a structure, or ignored if structArray is not scalar.

See “geopoint vector Using Numeric Arrays and a Structure Array”
on page 3-343.

Input Arguments

lat

vector of latitude coordinates

Data Types
double | single

lon

vector of longitude coordinates

Data Types
double | single

structArray

structure containing fields to be assigned as dynamic properties
to p.

Name

Name of dynamic property

Data Types
char

Value

Property value associated with dynamic property Name. Values
may be numeric, logical, char, or a cell array of strings.

3-336

geopoint

Output Arguments

p

geopoint vector.

Properties Each element in a geopoint vector is considered a feature. Feature
properties contain one value (a scalar number or a string) for each
element in the geopoint vector. The Latitude and Longitude coordinate
properties are feature properties as there is one value for each feature.

Geometry and Metadata are collection properties. These properties
contain only one value per class instance. The term collection is used
to distinguish these two properties from other feature properties
which have values associated with each feature (element in a geopoint
vector). See “Metadata and Array Assignment” on page 3-356 for usage
examples.

You can attach new dynamic feature properties to the object by using
dot ‘.’ notation. This is similar to adding dynamic fields to a structure.
Dynamic feature properties apply to each individual feature in the
geopoint vector.

Geometry

String defining the type of geometry.

For geopoint, string is always 'point'.

Attributes:

Geometry string

Metadata

Metadata is a scalar structure containing information for the
entire set of geopoint vector elements. You can add any data type
to the structure.

Attributes:

3-337

geopoint

Metadata Scalar struct

Latitude

Vector of latitude coordinates. The values can be either a row
or column vector.

Attributes:

Latitude single | double vector

Longitude

Vector of longitude coordinates. The values can be either a row
or column vector.

Attributes:

Longitude single | double vector

Dynamic properties

You can attach new properties to the object using dot '.'
notation. The class type of the values for the dynamic properties
must be either numeric, logical, char, or a cell array of strings.

Methods append Append features to geopoint
vector

cat Concatenate geopoint vectors

disp Display geopoint vector

fieldnames Dynamic properties of geopoint
vector

isempty True if geopoint vector is empty

isfield Returns true if dynamic property
exists

3-338

geopoint

isprop Returns true if property exists

length Number of elements in geopoint
vector

properties Properties of a geopoint vector

rmfield Remove dynamic property from
geopoint vector

rmprop Remove properties from geopoint
vector

size Size of geopoint vector

struct Convert geopoint vector to scalar
structure

vertcat Vertical concatenation for
geopoint vectors

Copy
Semantics

To learn how Value classes affect copy operations, see Copying Objects.

Class
Behaviors

• If the Latitude, Longitude, or a dynamic property is set with more
values than features in the geopoint vector, then all other properties
expand in size using 0 for numeric values and empty string for cell
values.

• If the Latitude or Longitude property of the geopoint vector is
set with fewer values than contained in the object, then all other
properties shrink in size.

• If a dynamic property is set with fewer values than the number of
features contained in the object, then this dynamic property expands
to match the size of the other properties by inserting a 0 if the value
is numeric or an empty string if the value is a cell array.

• If either Latitude or Longitude is set to [], then both coordinate
properties are set to [] and all dynamic properties are removed.

3-339

geopoint

See “Manipulate a geopoint vector” on page 3-347 for examples of these
behaviors.

Examples geopoint vector Using Latitude and Longitude Coordinates

Construct a geopoint vector for one feature, and add a dynamic
property

lat = 51.519;
lon = -.13;
p = geopoint(lat,lon);
p.Name = 'London'

p =

1x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: 51.5190

Longitude: -0.1300
Name: 'London'

Construct a geopoint vector from a file

coast = load('coast');
p = geopoint(coast.lat, coast.long);
figure
worldmap world
geoshow(p.Latitude, p.Longitude)

3-340

geopoint

geopoint vector Using a Name-Value pair

Construct a geopoint vector by specifying Latitude, Longitude, and
Temperature where Temperature is part of a Name-Value pair.

point = geopoint(42, -72, 'Temperature', 89)

point =

1x1 geopoint vector with properties:

3-341

geopoint

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: 42

Longitude: -72
Temperature: 89

Specify two features using Name-Value pair arguments.

p = geopoint([51.519 48.871], [-.13 2.4131],...
'Name', {'London', 'paris'})

p =

2x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [51.5190 48.8710]

Longitude: [-0.1300 2.4131]
Name: {'London' 'paris'}

geopoint vector Using a Structure Array

Construct a geopoint vector from a geostruct.

Read in a structure containing Lat and Lon fields.

structArray = shaperead('worldcities', 'UseGeoCoords', true)

structArray =

318x1 struct array with fields:
Geometry
Lon
Lat

3-342

geopoint

Name

Assign the Lat and Lon fields to coordinate properties Latitude and
Longitude in the instantiated geopoint vector.

p = geopoint(structArray);
p(1:5) % show first 5 entries

ans =

5x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [5.2985 24.6525 5.6106 37.0613 9.0235]

Longitude: [-3.9509 54.7589 -0.2121 35.3894 38.7575]
Name: {'Abidjan' 'Abu Dhabi' 'Accra' 'Adana' 'Addis Ababa'}

The output displays the 'Latitude', 'Longitude', and dynamic
property 'Name' fields for the first five elements in the geopoint vector.

Add a Filename field to the Metadata structure and display it.

p.Metadata.Filename = 'worldcities.shp';
p.Metadata

ans =

Filename: 'worldcities.shp'

Metadata property pertains to all elements of a geopoint vector.

geopoint vector Using Numeric Arrays and a Structure Array

[structArray, A] = shaperead('worldcities', 'UseGeoCoords', true)

3-343

geopoint

structArray =

318x1 struct array with fields:
Geometry
Lon
Lat

A =

318x1 struct array with fields:
Name

Use the numeric arrays and the structure containing the list of names
to construct a geopoint vector.

p = geopoint([structArray.Lat], [structArray.Lon], A)

p =

318x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [1x318 double]

Longitude: [1x318 double]
Name: {1x318 cell}

Add Coordinate and Dynamic properties

An empty geopoint vector is generated from the default constructor.
populate the geopoint vector by adding properties from data fields in
structure structArray via assignment statements.

structArray = shaperead('worldcities', 'UseGeoCoords', true);
p = geopoint();
p.Latitude = [structArray.Lat];

3-344

geopoint

p.Longitude = [structArray.Lon];
p.Name = structArray.Name;
p

p =

318x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [1x318 double]

Longitude: [1x318 double]
Name: {1x318 cell}

Add Vew Values to an Existing geopoint vector

Append paderborn data to the geopoint vector of world cities.

structArray = shaperead('worldcities.shp', 'UseGeoCoords', true); % re
p = geopoint(structArray);
p(end) % display last of 318 elements in vector

ans =

1x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: 34.8519

Longitude: 113.8061
Name: 'Zhengzhou'

Add paderhorn to the end of the geopoint vector and display it.

lat = 51.715254; % coordiantes of paderhorn

3-345

geopoint

lon = 8.75213;
p = append(p, lat, lon, 'Name', 'paderborn');
p(end-1:end) % display penultimate and new last element

ans =

2x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [34.8519 51.7153]

Longitude: [113.8061 8.7521]
Name: {'Zhengzhou' 'paderborn'}

You can also add a point to the end of the vector using linear indexing.

Add Arlington, Massachusetts to the end of the vector. After the initial
assigment statement appends a value to the Latitude property vector,
all other property vectors are automatically expanded by one element.

p(end+1).Latitude = 42.417060; % add to end of vector
p(end).Longitude = -71.170200; % Longitude vector already expanded
p(end).Name = 'Arlington'; % Name property also expanded
p(end-1:end) % display penultimate and new last element

ans =

2x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [51.7153 42.4171]

Longitude: [8.7521 -71.1702]
Name: {'paderborn' 'Arlington'}

3-346

geopoint

Manipulate a geopoint vector

perform various successive operations

Construct a geopoint vector containing two features and then add two
dynamic properties.

lat = [51.519 48.871];
lon = [-.13 2.4131];
p = geopoint(lat, lon);

p.Name = {'London', 'paris'}; % Add character feature dynamic proper
p.ID = [1 2] % Add numeric feature dynamic property

p =

2x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [51.5190 48.8710]

Longitude: [-0.1300 2.4131]
Name: {'London' 'paris'}

ID: [1 2]

Add the coordinates for a third feature.

p(3).Latitude = 45.472;
p(3).Longitude = 9.184

p =

3x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'

3-347

geopoint

Metadata: [1x1 struct]
Feature properties:

Latitude: [51.5190 48.8710 45.4720]
Longitude: [-0.1300 2.4131 9.1840]

Name: {'London' 'paris' ''}
ID: [1 2 0]

Note that lengths of all feature properties are synchronized with default
values.

Set the values for the ID feature dynamic property with more values
than contained in Latitude or Longitude.

p.ID = 1:4

p =

4x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [51.5190 48.8710 45.4720 0]

Longitude: [-0.1300 2.4131 9.1840 0]
Name: {'London' 'paris' '' ''}

ID: [1 2 3 4]

Note that all feature properties are expanded to match in size.

Set the values for the ID feature dynamic property with fewer values
than contained in the Latitude or Longitude properties.

p.ID = 1:2

p =

4x1 geopoint vector with properties:

3-348

geopoint

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [51.5190 48.8710 45.4720 0]

Longitude: [-0.1300 2.4131 9.1840 0]
Name: {'London' 'paris' '' ''}

ID: [1 2 0 0]

The ID property values expand to match the length of the Latitude
and Longitude property values.

Set the value of either coordinate property (Latitude or Longitude)
with fewer values.

p.Latitude = [51.519 48.871]

p =

2x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [51.5190 48.8710]

Longitude: [-0.1300 2.4131]
Name: {'London' 'paris'}

ID: [1 2]

All properties shrink to match in size.

Remove the ID property by setting its value to [].

p.ID = []

p =

3-349

geopoint

2x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [51.5190 48.8710]

Longitude: [-0.1300 2.4131]
Name: {'London' 'paris'}

Remove all dynamic properties and set the object to empty by setting a
coordinate property value to [].

p.Latitude = []

p =

0x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: []

Longitude: []

Sort dynamic properties and Extract subsets

Sorting dynamic properties

Data is read in from the file. Initially the field names of the class are in
random order.

structArray = shaperead('tsunamis', 'UseGeoCoords', true); % Field names
p = geopoint(structArray)

p =

3-350

geopoint

162x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [1x162 double]

Longitude: [1x162 double]
Year: [1x162 double]

Month: [1x162 double]
Day: [1x162 double]

Hour: [1x162 double]
Minute: [1x162 double]
Second: [1x162 double]

Val_Code: [1x162 double]
Validity: {1x162 cell}

Cause_Code: [1x162 double]
Cause: {1x162 cell}

Eq_Mag: [1x162 double]
Country: {1x162 cell}

Location: {1x162 cell}
Max_Height: [1x162 double]

Iida_Mag: [1x162 double]
Intensity: [1x162 double]

Num_Deaths: [1x162 double]
Desc_Deaths: [1x162 double

Using the method fieldnames and typical MATLAB vector notation,
the field names in the geopoint vector are alphabetically sorted.

p = p(:, sort(fieldnames(p)))

p =

162x1 geopoint vector with properties:

Collection properties:

3-351

geopoint

Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [1x162 double]

Longitude: [1x162 double]
Cause: {1x162 cell}

Cause_Code: [1x162 double]
Country: {1x162 cell}

Day: [1x162 double]
Desc_Deaths: [1x162 double]

Eq_Mag: [1x162 double]
Hour: [1x162 double]

Iida_Mag: [1x162 double]
Intensity: [1x162 double]
Location: {1x162 cell}

Max_Height: [1x162 double]
Minute: [1x162 double]
Month: [1x162 double]

Num_Deaths: [1x162 double]
Second: [1x162 double]

Val_Code: [1x162 double]
Validity: {1x162 cell}

Year: [1x162 double]

Extract a subset of properties

Using typical MATLAB vector notation, a subset of data can be
extracted from the base geopoint vector and is itself a geopoint vector
albeit smaller in size.

subp = p(20:40,{'Location','Country','Year'}) % get subset of data

subp =

21x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'

3-352

geopoint

Metadata: [1x1 struct]
Feature properties:

Latitude: [1x21 double]
Longitude: [1x21 double]
Location: {1x21 cell}
Country: {1x21 cell}

Year: [1x21 double]

Note that the coordinate properties, Latitude and Longitude, as well as
the collection properties are retained in this subset of geopoint vectors.

Work with property Values

Set, get, and remove dynamic property values from a geopoint vector.

To set property values, use the () operator, or assign array values to
corresponding fields, or use dot '.' notation (object.property) to assign
new property values.

Assign arrays to fields

pts = geopoint();
pts.Latitude = [42 44 45];
pts.Longitude = [-72 -72.1 -71];
pts

pts =

3x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [42 44 45]

Longitude: [-72 -72.1000 -71]

3-353

geopoint

Use () to assign values to fields.

pts(3).Latitude = 45.5;
pts

pts =

3x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [42 44 45.5000]

Longitude: [-72 -72.1000 -71]

Use dot notation to create new dynamic properties

pts.Name = {'point1', 'point2', 'point3'}

pts =

3x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [42 44 45.5000]

Longitude: [-72 -72.1000 -71]
Name: {'point1' 'point2' 'point3'}

Get property values

pts.Name

ans =

3-354

geopoint

'point1' 'point2' 'point3'

Remove dynamic properties

To delete or remove dynamic properties, set them to [] or set the
Latitude or Longitude property to [].

pts.Temperature = 1:3

pts =

3x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [42 44 45.5000]

Longitude: [-72 -72.1000 -71]
Name: {'point1' 'point2' 'point3'}

Temperature: [1 2 3]

By setting the Temperature property to [], this dynamic property is
deleted.

pts.Temperature = []

pts =

3x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [42 44 45.5000]

Longitude: [-72 -72.1000 -71]

3-355

geopoint

Name: {'point1' 'point2' 'point3'}

To clear all fields in the geopoint vector, set the Latitude or Longitude
property to []

pts.Latitude = []

pts =

0x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: []

Longitude: []

Metadata and Array Assignment

Modify a geopoint object and its metadata.

If you typically store latitude and longitude coordinates in an N-by-2
or 2 by-M array, you can assign these numeric values to a geopoint
vector. If the coordinates are N-by-2, then the first column is assigned
to the Latitude property and the second column to the Longitude
property. If the coordinates are 2-by-M, then the first row is assigned to
the Latitude property and the second row to the Longitude property.

coast = load('coast');
ltln = [coast.lat coast.long]; % 9865x2 array
pts = geopoint; % null constructor
pts(1:numel(coast.lat)) = ltln; % assign array
pts.Metadata.Name = 'coastline';
pts
pts.Metadata

pts =

3-356

geopoint

9865x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [1x9865 double]

Longitude: [1x9865 double]

ans =

Name: 'coastline'

See Also gpxread | shaperead | mappoint | geoshape | mapshape

3-357

geopoint.append

Purpose Append features to geopoint vector

Syntax P = append(P,lat,lon)
P = append(P,lat,lon,Name,Value)

Description P = append(P,lat,lon) appends the latitude values in the numeric
array, lat to the Latitude property of the geopoint vector, P, and the
longitude values in the numeric array, lon, to the Longitude property
of P.

P = append(P,lat,lon,Name,Value) appends lat and lon values to
the geopoint vector. The method adds dynamic properties to the object
using Name for the names of the dynamic properties, and then assign
Value to them.

Input
Arguments

P

geopoint vector.

lat

Numeric vector of Latitude values.

lon

Numeric vector of Longitude values.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Name,Value

Parameter Name-Value pairs of the dynamic properties that are
to be added to the geopoint vector, P.

3-358

geopoint.append

Output
Arguments

P

Modified geopoint vector with additional entries in Latitude and
Longitude fields along with any new fields for dynamic properties
that you added.

Examples Append Values to Fields in a geopoint Vector

Append values to existing fields of a geopoint vector.

P = geopoint(42,-110, 'Temperature', 65);
P = append(P, 42.1, -110.4, 'Temperature', 65.5)

P =

2x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [42 42.1000]

Longitude: [-110 -110.4000]
Temperature: [65 65.5000]

Append Dynamic Property to a geopoint Vector

Append dynamic property, 'Pressure', to a geopoint vector.

P = geopoint(42,-110, 'Temperature', 65);
P = append(P, 42.2, -110.5, 'Temperature', 65.6, 'Pressure', 100.0)

P =

2x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

3-359

geopoint.append

Feature properties:
Latitude: [42 42.2000]

Longitude: [-110 -110.5000]
Temperature: [65 65.6000]

Pressure: [0 100]

See Also geopoint | geopoint.vertcat |

3-360

geopoint.cat

Purpose Concatenate geopoint vectors

Syntax P= cat(dim,P1, P2, ...)

Description P= cat(dim,P1, P2, ...) concatenates the geopoint vectors P1,P2
and so on along dimensions dim. dim must be 1.

Input
Arguments

P1, P2, ...

geopoint vectors to be concatenated.

Output
Arguments

P

Concatenated geopoint vector.

Examples Concatenate two geopoint vectors

Create two geopoint vectors and concatenate them to a single vector.

pt1 = geopoint(42,-110, 'Temperature', 65);
pt2 = geopoint(42.2, -110.5, 'Temperature', 65.6);
p = cat(1,pt1,pt2)

p =

2x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [42 42.2000]

Longitude: [-110 -110.5000]
Temperature: [65 65.6000]

See Also geopoint.vertcat |

3-361

geopoint.disp

Purpose Display geopoint vector

Syntax disp(P)

Description disp(P) prints the size of the geopoint vector, P, and its properties
and dynamic properties, if they exist. If the command window is large
enough, the values of the properties are also shown, otherwise only
their size is shown. You can control the display of the numerical values
by using the format command.

Input
Arguments

P

geopoint vector.

Examples Display a geopoint vector

Display a geopoint vector.

p = geopoint(shaperead('worldcities', 'UseGeo', true));
disp(p)
disp(p(1:2))

318x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [1x318 double]

Longitude: [1x318 double]
Name: {1x318 cell}

2x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:

3-362

geopoint.disp

Latitude: [5.2985 24.6525]
Longitude: [-3.9509 54.7589]

Name: {'Abidjan' 'Abu Dhabi'}

See Also formatgeopoint |

3-363

geopoint.fieldnames

Purpose Dynamic properties of geopoint vector

Syntax names = fieldnames(P)

Description names = fieldnames(P) returns the names of the dynamic properties
of the geopoint vector, P.

Input
Arguments

P

geopoint vector for which the properties are to be queried.

Output
Arguments

names

Names of the dynamic properties in the geopoint vector P

Examples Find dynamic properties

Return the dynamic properties of a geopoint vector

P = geopoint(shaperead('worldcities', 'UseGeo', true));
fieldnames(P)

ans =

'Name'

See Also geopoint.properties |

3-364

geopoint.isempty

Purpose True if geopoint vector is empty

Syntax TF = isempty(P)

Description TF = isempty(P) returns true if the geopoint vector, P, is empty and
false otherwise.

Input
Arguments

P

geopoint vector.

Examples Check if a geopoint vector is empty

Check if the geopoint vector is empty.

P = geopoint();
isempty(P)

ans =

1

See Also geopoint.end |

3-365

geopoint.isfield

Purpose Returns true if dynamic property exists

Syntax TF = isfield(P,name)
TF = isfield(P,names)

Description TF = isfield(P,name) returns true if the value specified by the string
name is a dynamic property of the geopoint vector, P.

TF = isfield(P,names) return true for each element of the cell array,
names, that is a dynamic property of P. TF is a logical array of the same
size as names.

Input
Arguments

P

geopoint vector.

name

Name of the dynamic property.

names

Cell array of names of dynamic properties.

Output
Arguments

TF

Boolean. 1 if P contains the specified fields or 0 otherwise.

Examples Check for fieldname

Check if a field is present in a geopoint vector.

p = geopoint(-33.961, 18.484, 'Name', 'Cape Town');
isfield(p, 'Latitude')
isfield(p, 'Name')

ans =

0

3-366

geopoint.isfield

ans =

1

See Also geopoint.isprop | geopoint.fieldnames |

3-367

geopoint.isprop

Purpose Returns true if property exists

Syntax TF = isprop(P,name)
TF = isprop(P,names)

Description TF = isprop(P,name) returns true if the value specified by the string,
name is a property of the geopoint vector, P.

TF = isprop(P,names) returns true for each element of the cell array
of strings, names, that is a property of P. TF is a logical array the same
size as names.

Input
Arguments

P

geopoint vector.

name

String specifying the property of the geopoint vector, P.

names

Cell array of strings specifying the property of the geopoint vector,
P.

Output
Arguments

TF

Boolean. 1 if the property exists with P ,0 otherwise.

Examples Check if property exists

This example shows how to check if a string is a property of a geopoint
vector.

p = geopoint(-33.961, 18.484, 'Name', 'Cape Town');
isprop(p, 'Latitude')
isprop(p, 'Name')

ans =

1

3-368

geopoint.isprop

ans =

1

See Also geopoint.isfield | geopoint.properties |

3-369

geopoint.length

Purpose Number of elements in geopoint vector

Syntax N = length(P)

Description N = length(P) returns the number of elements contained in the
geopoint vector, P. The result is equivalent to size(P,1).

Input
Arguments

P

geopoint vector.

Output
Arguments

N

Length of the geopoint vector, P.

Examples Find the length of the geopoint vector.

coast = load('coast');
p = geopoint(coast.lat, coast.long);
length(p)
length(coast.lat)

ans =

9865

ans =

9865

See Also geopoint.size |

3-370

geopoint.properties

Purpose Properties of a geopoint vector

Syntax prop = properties(P)
properties(P)

Description prop = properties(P) returns a cell of the property names of the
geopoint vector, P.

properties(P) displays the names of the properties of P.

Input
Arguments

P

geopoint vector.

Output
Arguments

prop

Cell variable consisting of property names of the geopoint vector,
P.

Examples Properties of a geopoint vector

Query for properties of a geopoint vector.

p = geopoint(shaperead('tsunamis', 'UseGeo', true));
properties(p)

Properties for class geopoint:

Geometry
Metadata
Latitude
Longitude
Year
Month
Day
Hour
Minute
Second

3-371

geopoint.properties

Val_Code
Validity
Cause_Code
Cause
Eq_Mag
Country
Location
Max_Height
Iida_Mag
Intensity
Num_Deaths
Desc_Deaths

See Also geopoint.fieldnames |

3-372

geopoint.rmfield

Purpose Remove dynamic property from geopoint vector

Syntax P = rmfield(P, fieldname)
P = rmfield(P, fields)

Description P = rmfield(P, fieldname) removes the field specified by the string,
fieldname , from the geopoint vector, P.

P = rmfield(P, fields) removes all the fields specified by the cell
array, fields.

Note rmfield cannot remove Latitude, Longitude and Metadata
fields and the string specified is case sensitive.

Input
Arguments

P

geopoint vector.

fieldname

Exact string representing the name of the property.

fields

Cell array of strings specifying the names of the properties.

Output
Arguments

P

Updated geopoint vector with the field(s) removed.

Examples Remove fields from a geopoint vector

Remove fields from a geopoint vector.

p = geopoint(shaperead('tsunamis', 'UseGeo', true));
p2 = rmfield(p, 'Geometry')

p2 =

3-373

geopoint.rmfield

162x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [1x162 double]

Longitude: [1x162 double]
Year: [1x162 double]

Month: [1x162 double]
Day: [1x162 double]

Hour: [1x162 double]
Minute: [1x162 double]
Second: [1x162 double]

Val_Code: [1x162 double]
Validity: {1x162 cell}

Cause_Code: [1x162 double]
Cause: {1x162 cell}

Eq_Mag: [1x162 double]
Country: {1x162 cell}

Location: {1x162 cell}
Max_Height: [1x162 double]

Iida_Mag: [1x162 double]
Intensity: [1x162 double]

Num_Deaths: [1x162 double]
Desc_Deaths: [1x162 double]

See Also geopoint.fieldnames | geopoint.rmprop |

3-374

geopoint.rmprop

Purpose Remove properties from geopoint vector

Syntax PF = rmprop(P,propname)
PF = rmprop(P,propnames)

Description PF = rmprop(P,propname) removes the property specified by the
string, propname from the geopoint vector, P.

PF = rmprop(P,propnames) removes all the properties specified in
the cell array, propnames, from the geopoint vector, P. If propnames
contains a coordinate property an error is issued.

Note rmprop cannot remove Latitude, Longitude and Metadata fields
and the string specified is case sensitive.

Input
Arguments

P

geopoint vector.

Output
Arguments

PF

Modified geopoint vector with the specified property(s) removed.

Examples Remove a property of a geopoint vector

Remove a property from a geopoint vector.

p = geopoint(shaperead('tsunamis', 'UseGeo', true));
p2 = rmprop(p, 'Validity')

p2 =

162x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'

3-375

geopoint.rmprop

Metadata: [1x1 struct]
Feature properties:

Latitude: [1x162 double]
Longitude: [1x162 double]

Year: [1x162 double]
Month: [1x162 double]

Day: [1x162 double]
Hour: [1x162 double]

Minute: [1x162 double]
Second: [1x162 double]

Val_Code: [1x162 double]
Cause_Code: [1x162 double]

Cause: {1x162 cell}
Eq_Mag: [1x162 double]

Country: {1x162 cell}
Location: {1x162 cell}

Max_Height: [1x162 double]
Iida_Mag: [1x162 double]

Intensity: [1x162 double]
Num_Deaths: [1x162 double]

Desc_Deaths: [1x162 double]

See Also geopoint.fieldnames |

3-376

geopoint.size

Purpose Size of geopoint vector

Syntax SZ = size(P)
SZ = size(P,1)
SZ = size(P, n)
[m,k] = size(P)

Description SZ = size(P) returns the vector [length(P), 1].

SZ = size(P,1) returns the length of P.

SZ = size(P, n) returns 1 for n >= 2.

[m,k] = size(P) returns length(P) for m and 1 for k.

Input
Arguments

P

geopoint vector.

n

Number of the dimension at which size of P is required.

Output
Arguments

SZ

Vector of the form [length(P), 1].

m

Length of P.

k

Length of second dimension of P. k is always 1.

Examples Size of a geopoint vector

Find the size of a geopoint vector.

coast = load('coast');
p = geopoint(coast.lat, coast.long);
size(p)

3-377

geopoint.size

ans =

9865 1

The second dimension is always 1.

See Also geopoint.length | size

3-378

geopoint.struct

Purpose Convert geopoint vector to scalar structure

Syntax S = struct(P)

Description S = struct(P) converts the geopoint vector, P, to a scalar structure, S.

Input
Arguments

P

geopoint vector.

Output
Arguments

S

Scalar structure of the geopoint vector P.

Examples Converting a geopoint vector into struct

This example shows how to convert a geopoint vector to struct.

S = shaperead('worldcities', 'UseGeo', true);
p = geopoint(S)
S2 = struct(p)
class(S2)

p =

318x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [1x318 double]

Longitude: [1x318 double]
Name: {1x318 cell}

S2 =

3-379

geopoint.struct

Geometry: 'point'
Metadata: [1x1 struct]
Latitude: [1x318 double]

Longitude: [1x318 double]
Name: {1x318 cell}

ans =

struct

See Also geopoint.properties |

3-380

geopoint.vertcat

Purpose Vertical concatenation for geopoint vectors

Syntax P = vertcat(P1,P2, ...)

Description P = vertcat(P1,P2, ...) vertically concatenates the geopoint vector,
P1, P2, and so on. If the class type of any property is a cell array, then
the resultant field in the output P will also be a cell array.

Input
Arguments

P1, P2, ...

geopoint vectors that need to be concatenated.

Output
Arguments

P

Concatenated geopoint vector.

Examples Concatenate geopoint vectors

Concatenate two geopoint vectors.

pt1 = geopoint(42, -110, 'Temperature', 65, 'Name', 'point1');
pt2 = geopoint(42.1, -110.4, 'Temperature', 65.5, 'Name', 'point2');
pts = vertcat(pt1, pt2)

pts =

2x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [42 42.1000]

Longitude: [-110 -110.4000]
Temperature: [65 65.5000]

Name: {'point1' 'point2'}

See Also geopoint.cat |

3-381

geoquadline

Purpose Geographic quadrangle bounding multi-part line

Syntax [latlim,lonlim] = geoquadline(lat,lon)

Description [latlim,lonlim] = geoquadline(lat,lon) returns the limits of the
tightest possible geographic quadrangle that bounds a line connecting
vertices with geographic coordinates specified by lat and lon.

Input
Arguments

lat - Latitudes along a line
vector

Latitudes along a line, specified as a vector representing an ordered
sequences of vertices, in units of degrees. The line may be broken into
multiple parts, delimited by values of NaN.

Data Types
single | double

lon - Longitudes along a line
vector

Longitudes along a line, specified as a vector representing an ordered
sequences of vertices, in units of degrees. The line may be broken into
multiple parts, delimited by values of NaN.

Data Types
single | double

Output
Arguments

latlim - Latitude limits
1–by-2 vector

Latitude limits of a geographic quadrangle, returned as a 1-by-2 vector
of the form [southern_limit northern_limit], in units of degrees.
The elements are in ascending order, and both lie in the closed interval
[-90 90].

lonlim - Latitude limits
1–by-2 vector

3-382

geoquadline

Longitude limits of a geographic quadrangle, returned as a 1-by-2 vector
of the form [western_limit eastern_limit], in units of degrees. The
limits are wrapped to the interval [-180 180]. They are not necessarily
in numerical ascending order.

Examples Bounding Quadrangle for the Brahmaputra River.

brahmaputra = shaperead('worldrivers.shp','Selector',{@(name) strcmp(n
[latlim, lonlim] = geoquadline(brahmaputra.Lat, brahmaputra.Lon)

latlim =

23.8285 30.3831

lonlim =

81.8971 95.4970

See Also bufgeoquad | geoquadpt | outlinegeoquad | ingeoquad

3-383

geoquadpt

Purpose Geographic quadrangle bounding scattered points

Syntax [latlim,lonlim] = geoquadpt(lat,lon)

Description [latlim,lonlim] = geoquadpt(lat,lon) returns the limits of the
tightest possible geographic quadrangle that bounds a set of points with
geographic coordinates lat and lon.

In most cases, tf = ingeoquad(lat,lon,latlim,lonlim) will return true,
but tf may be false for points on the edges of the quadrangle, due to
round off. tf will also be false for elements of lat that fall outside the
interval [-90 90] and elements of lon that are not finite.

Input
Arguments

lat - Point latitudes
vector | matrix | N-D array

Point latitudes, specified as a vector, matrix, or N-D array, in units
of degrees.

Data Types
single | double

lon - Point longitudes
vector | matrix | N-D array

Point longitudes, specified as a vector, matrix, or N-D array, in units
of degrees.

Data Types
single | double

Output
Arguments

latlim - Latitude limits
1–by-2 vector

Latitude limits of a geographic quadrangle, returned as a 1-by-2 vector
of the form [southern_limit northern_limit], in units of degrees.
The elements are in ascending order, and both lie in the closed interval
[-90 90].

3-384

geoquadpt

lonlim - Latitude limits
1–by-2 vector

Longitude limits of a geographic quadrangle, returned as a 1-by-2 vector
of the form [western_limit eastern_limit], in units of degrees. The
limits are wrapped to the interval [-180 180]. They are not necessarily
in numerical ascending order.

Examples Bounding Quadrangle Including Tokyo and Honolulu.

In this case the output quadrangle straddles the 180-degree meridian,
hence the elements of lonlim are in descending numerical order,
although they are ordered from west to east.

cities = shaperead('worldcities.shp','Selector',{@(name) any(strcmp(na
[latlim,lonlim] = geoquadpt([cities.Lat],[cities.Lon])

latlim =

21.3178 35.7082

lonlim =

139.6401 -157.8291

See Also bufgeoquad | geoquadline | outlinegeoquad | ingeoquad

3-385

georasterref

Purpose Construct spatialref.GeoRasterReference object

Syntax R = georasterref()
R = georasterref(Name,Value)
R = georasterref(W, rasterSize, rasterInterpretation)

Description R = georasterref() constructs a spatialref.GeoRasterReference
object with default property values.

R = georasterref(Name,Value) accepts a list of name-value pairs
that are used to assign selected properties when initializing a
spatialref.GeoRasterReference object.

R = georasterref(W, rasterSize, rasterInterpretation)
constructs a spatialref.GeoRasterReference object with the specified
raster size and interpretation properties, and with remaining properties
defined by W.

Input
Arguments

W

2-by-3 world file matrix

rasterSize

Two-element vector [M N] specifying the number of rows (M) and
columns (N) of the raster or image associated with the referencing
object. For convenience, you may assign a size vector having more than
two elements to RasterSize. This flexibility enables assignments like
R.RasterSize = size(RGB), for example, where RGB is M-by-N-by-3.
However, in such cases, only the first two elements of the size vector are
actually stored. The higher (non-spatial) dimensions are ignored.

rasterInterpretation

Controls handling of raster edges. The rasterInterpretation input is
optional, and can equal either 'cells' or 'postings'.

Default: 'cells'

3-386

georasterref

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

You can include any of the following properties, overriding their default
values as needed. Alternatively, you may omit any or all properties
when constructing your spatialref.GeoRasterReference object.
Then, you can customize the result by resetting properties from this
list one at a time.

Latlim

Limits in latitude of the geographic quadrangle bounding the
georeferenced raster. A two-element vector of the form:

[southern_limit northern_limit]

Default: [0.5 2.5]

Lonlim

Limits in longitude of the geographic quadrangle bounding the
georeferenced raster. A two-element vector of the form:

[western_limit eastern_limit]

Default: [0.5 2.5]

RasterSize

Two-element vector [M N] specifying the number of rows (M) and
columns (N) of the raster or image associated with the referencing
object. For convenience, you may assign a size vector having more than
two elements to RasterSize. This flexibility enables assignments like
R.RasterSize = size(RGB), for example, where RGB is M-by-N-by-3.

3-387

georasterref

However, in such cases, only the first two elements of the size vector are
actually stored. The higher (non-spatial) dimensions are ignored.

Default: [2 2]

RasterInterpretation

Controls handling of raster edges. A string that equals either 'cells'
or 'postings'.

Default: 'cells'

ColumnsStartFrom

Edge from which column indexing starts. A string that equals either
'south' or 'north'.

Default: 'south'

RowsStartFrom

Edge from which row indexing starts. A string that equals either
'west' or 'east'.

Default: 'west'

Output
Arguments

R

spatialref.GeoRasterReference object

Examples Construct a referencing object for a global raster comprising 180-by-360
one-degree cells, with rows that start at longitude –180, and with the
first cell located in the northwest corner.

% Override the default MATLAB display format.
% This is not strictly required, but tends to produce
% the most readable displays.
format short g

3-388

georasterref

% Construct a spatialref.GeoRasterReference object.
R = georasterref('RasterSize', [180 360], ...

'RasterInterpretation', 'cells', ...
'Latlim', [-90 90], 'Lonlim', [-180 180], ...
'ColumnsStartFrom', 'north')

Construct a referencing object for the DTED Level 0 file that includes
Sagarmatha (Mount Everest). The DTED columns run from south
to north and the first column runs along the western edge of the
(one-degree-by-one-degree) quadrangle, consistent with the default
values for 'ColumnsStartFrom' and 'RowsStartFrom'.

R = georasterref('Latlim', [27 28], 'Lonlim', [86 87], ...
'RasterSize', [121 121], ...
'RasterInterpretation', 'postings')

Repeat the second example with a different strategy: Create a default
object and then modify that object’s properties as needed.

R = georasterref;
R.RasterSize = [121 121];
R.RasterInterpretation = 'postings';
R.Latlim = [27 28];
R.Lonlim = [86 87]

Repeat the first example using a world file matrix as input.

W = [1 0 -179.5; ...
0 -1 89.5];

rasterSize = [180 360];
rasterInterpretation = 'cells';
R = georasterref(W, rasterSize, rasterInterpretation);

See Also maprasterref | spatialref.GeoRasterReference

3-389

spatialref.GeoRasterReference

Purpose Reference raster to geographic coordinates

Description A spatialref.GeoRasterReference object encapsulates the
relationship between a geographic coordinate system and a system
of intrinsic coordinates anchored to the columns and rows of a 2-D
spatially referenced raster grid or image. The raster must be sampled
regularly in latitude and longitude, and its columns and rows must be
aligned with meridians and parallels, respectively.

Construction Construct a GeoRasterReference object using either the:

• georasterref function (recommended)

• spatialref.GeoRasterReference class constructor

• refvecToGeoRasterReference or refmatToGeoRasterReference
conversion functions if you already have an equivalent referencing
vector or matrix

When invoked with no input argument, both georasterref and the
class constructor construct an object with these default property
settings:

Latlim: [0.5 2.5]
Lonlim: [0.5 2.5]

RasterSize: [2 2]
RasterInterpretation: 'cells'

AngleUnits: 'degrees'
ColumnsStartFrom: 'south'

RowsStartFrom: 'west'
DeltaLat: 1
DeltaLon: 1

RasterExtentInLatitude: 1
RasterExtentInLongitude: 1

XLimIntrinsic: [0.5 2.5]
YLimIntrinsic: [0.5 2.5]

CoordinateSystemType: 'geographic'

3-390

spatialref.GeoRasterReference

Properties Latlim

Latitude limits of the geographic quadrangle bounding the
georeferenced raster. A two-element vector of the form:

[southern_limit northern_limit]

Default: [0.5 2.5]

Lonlim

Longitude limits of the geographic quadrangle bounding the
georeferenced raster. A two-element vector of the form:

[western_limit eastern_limit]

Default: [0.5 2.5]

RasterSize

Two-element vector [M N] specifying the number of rows (M) and
columns (N) of the raster or image associated with the referencing
object. For convenience, you can assign a size vector having more
than two elements to RasterSize. This enables assignments
like R.RasterSize = size(RGB), where RGB is M-by-N-by-3.
In cases like this, only the first two elements of the size vector
are stored. Higher (nonspatial) dimensions are ignored. M and
N must be positive in all cases and must be 2 or greater when
RasterInterpretation is 'postings'.

Default: [2 2]

RasterInterpretation

Controls handling of raster edges. A string that equals 'cells'
or 'postings'.

Default: 'cells'

AngleUnits

3-391

spatialref.GeoRasterReference

Unit of angle used for angle-valued properties. A string that
equals 'degrees'.

ColumnsStartFrom

Edge from which column indexing starts. A string that equals
'south' or 'north'.

Default: 'south'

RowsStartFrom

Edge from which row indexing starts. A string that equals 'west'
or 'east'.

Default: 'west'

DeltaLat

Change in latitude with respect to intrinsic y. Amount by which
latitude increases or decreases with respect to an increase of one
unit in intrinsic y. Positive when columns start from south, and
negative when columns start from north. Its absolute value equals
the latitude extent of a single cell, when RasterInterpretation
is 'cells', or the latitude separation of adjacent sample points,
when RasterInterpretation is 'postings').

Cannot be set.

DeltaLon

Change in longitude with respect to intrinsic x. Amount by which
longitude increases or decreases with respect to an increase of
one unit in intrinsic x. Positive when rows start from west, and
negative when rows start from east. Its absolute value equals the
longitude extent of a single cell, when RasterInterpretation is
'cells', or the longitude separation of adjacent sample points,
when RasterInterpretation is 'postings'.

Cannot be set.

3-392

spatialref.GeoRasterReference

RasterExtentInLatitude

Latitude extent ("height") of the quadrangle covered by the raster.

Cannot be set.

RasterExtentInLongitude

Longitude extent ("width") of the quadrangle covered by the
raster.

Cannot be set.

XLimIntrinsic

Raster limits in intrinsic x. A two-element row vector [xMin
xMax]. For an M-by-N raster with RasterInterpretation equal
to 'postings', it equals [1 N]; and for 'cells', it equals [0.5,
N + 0.5].

Cannot be set.

YLimIntrinsic

Raster limits in intrinsic y. A two-element row vector [yMin
yMax]. For an M-by-N raster with RasterInterpretation equal
to 'postings', it equals [1 M]; and for 'cells', it equals [0.5,
M + 0.5].

Cannot be set.

CoordinateSystemType

Type of coordinate system to which the image or raster is
referenced. A constant string with value 'geographic'.

Methods contains True if raster contains
latitude-longitude points

geographicToIntrinsic Convert from geographic to
intrinsic coordinates

3-393

spatialref.GeoRasterReference

geographicToSub Geographic coordinates to row
and column subscripts

intrinsicToGeographic Convert from intrinsic to
geographic coordinates

intrinsicXToLongitude Convert from intrinsic x to
longitude

intrinsicYToLatitude Convert from intrinsic y to
latitude

latitudeToIntrinsicY Convert from latitude to intrinsic
y

longitudeToIntrinsicX Convert from longitude to
intrinsic x

sizesMatch True if object and raster or image
are size compatible

worldFileMatrix World file parameters for
transformation

Definitions Intrinsic Coordinate System

A 2-D Cartesian system with its x-axis running parallel to the rows
of a raster or image and its y-axis running parallel to the columns. x
increases by 1 from column to column, and y increases by 1 from row
to row.

Mapping Toolbox and Image Processing Toolbox™ use the convention
for the location of the origin relative to the raster cells or sampling
points such that, at a sample location or at the center of a cell, x has an
integer value equal to the column index. Likewise, at a sample location
or at the center of a cell, y has an integer value equal to the row index.
For details, see Image Coordinate Systems in the Image Processing
Toolbox documentation.

Examples Construct a spatialref.GeoRasterReference object and specify some
properties:

3-394

spatialref.GeoRasterReference

R = spatialref.GeoRasterReference;
R.RasterSize = [180 360];
R.Latlim = [-90 90];
R.Lonlim = [-180 180];
R.ColumnsStartFrom = 'north'

You can also specify inputs in the call to the constructor. To see
examples of this advanced syntax, at the command line type:

help spatialref.GeoRasterReference/GeoRasterReference

See Also georasterref | refmatToGeoRasterReference |
refvecToGeoRasterReference | spatialref.MapRasterReference

3-395

spatialref.GeoRasterReference.contains

Purpose True if raster contains latitude-longitude points

Syntax TF = R.contains(lat,lon)

Description TF = R.contains(lat,lon) returns a logical array TF having the
same size as lat and lon such that TF(k) is true if and only if the
point (lat(k),lon(k)) falls within the bounds of the raster associated
with referencing object R. Elements of lon can be wrapped arbitrarily
without affecting the result.

3-396

spatialref.GeoRasterReference.geographicToIntrinsic

Purpose Convert from geographic to intrinsic coordinates

Syntax [xIntrinsic, yIntrinsic] = R.geographicToIntrinsic(lat, lon)

Description [xIntrinsic, yIntrinsic] = R.geographicToIntrinsic(lat,
lon) returns the intrinsic coordinates (xIntrinsic, yIntrinsic) of
a set of points given their geographic coordinates (lat, lon), based
on the relationship defined by referencing object R. lat and lon must
have the same size, and all (non-NaN) elements of lat must fall within
the interval [-90 90] degrees. xIntrinsic and yIntrinsic have the
same size as lat and lon. The input can include points outside the
geographic quadrangle bounding the raster. As long as their latitudes
are valid, the locations of such points are extrapolated outside the
bounds of the raster in the intrinsic coordinate system.

3-397

spatialref.GeoRasterReference.geographicToSub

Purpose Geographic coordinates to row and column subscripts

Syntax [I,J] = R.geographicToSub(lat,lon)

Description [I,J] = R.geographicToSub(lat,lon) returns subscript arrays I
and J. When referencing object R has RasterInterpretation 'cells',
these are the row and column subscripts of the raster cells (or image
pixels) containing each element of a set of points given their geographic
coordinates (lat, lon). If R.RasterInterpretation is 'postings',
then the subscripts refer to the nearest sample point (posting).

lat and lon must have the same size. I and J will have the same size
as lat and lon. For an M-by-N raster, 1 <= I <= M and 1 <= J <= N,
except when a point lat(k),lon(k) falls outside the image, as defined
by R.contains(lat,lon). Then both I(k) and J(k) are NaN.

3-398

spatialref.GeoRasterReference.intrinsicToGeographic

Purpose Convert from intrinsic to geographic coordinates

Syntax [lat, lon] = R.intrinsicToGeographic(xIntrinsic, yIntrinsic)

Description [lat, lon] = R.intrinsicToGeographic(xIntrinsic,
yIntrinsic) returns the geographic coordinates (lat, lon) of a set of
points, given their intrinsic coordinates (xIntrinsic, yIntrinsic)
and based on the relationship defined by referencing object R.
xIntrinsic and yIntrinsic have the same size. lat and lon have the
same size as xIntrinsic and yIntrinsic.

The input can include points that fall outside the limits of the raster
(or image). Latitudes and longitudes for such points are linearly
extrapolated outside the geographic quadrangle bounding the raster.
However, for any point that extrapolates to a latitude beyond the poles
(latitude < −90 degrees or latitude > 90 degrees), the values of lat and
lon are set to NaN.

3-399

spatialref.GeoRasterReference.intrinsicXToLongitude

Purpose Convert from intrinsic x to longitude

Syntax lon = R.intrinsicXToLongitude(xIntrinsic)

Description lon = R.intrinsicXToLongitude(xIntrinsic) returns the longitude
of the meridian corresponding to the line x = xIntrinsic, based on
the relationship defined by referencing object R. The input can include
values that fall completely outside the intrinsic x-limits of the raster
(or image). In this case, longitude is extrapolated outside the longitude
limits. NaN-valued elements of xIntrinsic map to NaNs in lon.

3-400

spatialref.GeoRasterReference.intrinsicYToLatitude

Purpose Convert from intrinsic y to latitude

Syntax lat = R.intrinsicYToLatitude(yIntrinsic)

Description lat = R.intrinsicYToLatitude(yIntrinsic) returns the latitude of
the small circle corresponding to the line y = yIntrinsic, based on the
relationship defined by the referencing object R. The input can include
values that fall completely outside the intrinsic y-limits of the raster
(or image). In this case latitude is extrapolated outside the latitude
limits, but for input values that extrapolate to latitudes beyond the
poles (latitude < –90 degrees or latitude > 90 degrees), the value of lat
is set to NaN. NaN-valued elements of yIntrinsic map to NaNs in lat.

3-401

spatialref.GeoRasterReference.latitudeToIntrinsicY

Purpose Convert from latitude to intrinsic y

Syntax yIntrinsic = R.latitudeToIntrinsicY(lat)

Description yIntrinsic = R.latitudeToIntrinsicY(lat) returns the intrinsic
Y value of the line corresponding to the small circle at latitude lat,
based on the relationship defined by referencing object R. The input
can include values that fall completely outside the latitude limits of
the raster (or image). In this case, yIntrinsic is either extrapolated
outside the intrinsic Y limits, for elements of lat that fall within the
interval [-90 90] degrees, or set to NaN, for elements of lat that do
not correspond to valid latitudes. NaN-valued elements of lat map to
NaNs in yIntrinsic.

3-402

spatialref.GeoRasterReference.longitudeToIntrinsicX

Purpose Convert from longitude to intrinsic x

Syntax xIntrinsic = R.longitudeToIntrinsicX(lon)

Description xIntrinsic = R.longitudeToIntrinsicX(lon) returns the intrinsic
x value of the line corresponding to the meridian at longitude lon,
based on the relationship defined by referencing object R. The input
can include values that fall completely outside the longitude limits of
the raster (or image). In this case, xIntrinsic is extrapolated outside
the intrinsic x limits. NaN-valued elements of lon map to NaNs in
xIntrinsic.

3-403

spatialref.GeoRasterReference.sizesMatch

Purpose True if object and raster or image are size compatible

Syntax TH = R.sizesMatch(A)

Description TH = R.sizesMatch(A) returns true if the size of the raster or image
A is consistent with the RasterSize property of referencing object R.
That is:

R.RasterSize == [size(A,1) size(A,2)]

3-404

spatialref.GeoRasterReference.worldFileMatrix

Purpose World file parameters for transformation

Syntax W = R.worldFileMatrix

Description W = R.worldFileMatrix returns a 2-by-3 world file matrix. Each of the
six elements in W matches one of the lines in a world file corresponding
to the transformation defined by referencing object R.

Given W with the form:

W = [A B C;
D E F]

a point (xi, yi) in intrinsic coordinates maps to a point (lat, lon) in
geographic coordinates like this:

lon = A * (xi 1) + B * (yi 1) + C
lat = D * (xi 1) + E * (yi 1) + F

More compactly:

[lon lat]' = W * [xi 1 yi 1 1]'

The −1s allow the world file matrix to work with the Mapping Toolbox
convention for intrinsic coordinates, which is consistent with the
1-based indexing used throughout MATLAB.

W is stored in a world file with one term per line in column-major order:
A, D, B, E, C, F. That is, a world file contains the elements of W in
this order:

W(1,1)
W(2,1)
W(1,2)
W(2,2)
W(1,3)
W(2,3)

More compactly:

3-405

spatialref.GeoRasterReference.worldFileMatrix

[lon lat]' = W * [(xi-1)(yi-1) 1]'

The previous expressions hold for a general affine transformation. But
in the matrix returned by this method B, D, W(2,1) and W(1,2) are
identically 0 because longitude depends only on intrinsic x and latitude
depends only on intrinsic y.

See Also worldfileread | worldfilewrite

3-406

geoshape

Purpose Geographic shape vector

Syntax s = geoshape()
s = geoshape(lat,lon)
s = geoshape(lat,lon,Name,Value)
s = geoshape(structArray)
s = geoshape(lat,lon,structArray)

Description A geoshape vector is an object that represents geographic vector features
with either point, line, or polygon topology. The features consist of
latitude and longitude coordinates and associated attributes. If these
attributes vary spatially they are termed Vertex properties. These
elements of the geoshape vector are coupled such that the length of the
latitude and longitude coordinate property values are always equal in
length to any additional dynamic Vertex properties. Attributes which
only pertain to the overall feature (point, line, polygon) are termed
Feature properties. Feature properties are not linked to the auto-sizing
mechanism of the Vertex properties. Both of the property types can be
dynamically added to a geoshape vector using the standard dot notation.

A geoshape vector is always a column vector.

Construction s = geoshape() constructs an empty geoshape vector, s, with the
following default property settings.

s =

0x1 geoshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
Latitude: []

Longitude: []

For an additional example see: “Constructor: geoshape()” on page 3-414

3-407

geoshape

s = geoshape(lat,lon) constructs a geoshape vector and sets the
Latitude and Longitude property values equal to vectors lat and lon.
lat and lon may be either numeric vectors of class single or double, or
cell arrays containing numeric vectors of class single or double. For an
example, see “Constructor: geoshape(lat,lon)” on page 3-415.

s = geoshape(lat,lon,Name,Value) constructs a geoshape vector
from the input lat and lon vectors, and then adds dynamic properties
to the geoshape vector using the Name, Value argument pairs.

• If Value is in a cell array containing numeric, logical or cell array
of strings, then this property is designated as a Vertex property.
Otherwise, this property is designated as a Feature property.

• If the specified Name is Metadata and the corresponding Value is
a scalar structure, then Value is copied to the Metadata property.
Otherwise, an error is issued.

For an example, see: “Constructor: geoshape(lat,lon,Name,Value)” on
page 3-415.

s = geoshape(structArray) constructs a geoshape vector from the
fields of the structure array, structArray.

• If structArray contains the field Lat, and does not contain a field
Latitude, then the Latitude property values are set equal to the
Lat field values. If structArray contains the field, Lon, and does not
contain a field Longitude, then the Longitude property values are
set equal to the Lon field values.

• If structArray contains both Lat and Latitude fields, then the
Latitude property values are set equal to the Latitude field values
and a Lat dynamic property is created whose values are set equal to
the Lat field values. Similar behavior occurs for Longitude and Lon
field combinations if present in structArray.

• If structArray is a scalar structure which contains the field
Metadata and the field value is a scalar structure, then the Metadata
field is copied to the Metadata property. If structArray is a scalar

3-408

geoshape

structure and the Metadata field is present and is not a scalar
structure, then an error is issued. If structArray is not scalar then
the Metadata field is ignored.

• Other fields of structArray are assigned to s and become dynamic
properties. Field values in structArray that are not numeric,
strings, logical, or cell arrays of numeric, logical, or string values
are ignored.

For an example, see “Constructor: geoshape(structArray)” on page
3-416.

s = geoshape(lat,lon,structArray) constructs a new geoshape
vector and sets the Latitude and Longitude properties equal to
the numeric vectors, lat and lon, and sets the field values of struct
structArray as dynamic properties.

• If structArray contains the fields Lat, Latitude, Lon or Longitude,
then those field values are ignored since the Latitude and Longitude
property values are set by the lat and lon input vectors.

• If structArray is a scalar structure and contains the field Metadata,
and the field value is a scalar structure, then it is copied to the
Metadata property value. Otherwise, an error is issued if the
Metadata field is not a structure, or ignored if structArray is not
scalar.

For an example, see “Constructor: geoshape(lat,lon,structArray)” on
page 3-417.

Input Arguments

lat

vector of latitude coordinates

Data Types
double | single | cell

lon

3-409

geoshape

vector of longitude coordinates

Data Types
double | single | cell

structArray

An array of structures containing fields to be assigned as dynamic
properties.

Name

Name of dynamic property

Data Types
char

Value

Property value associated with dynamic property Name. The class
type of the values for the Feature dynamic properties may be
either numeric, logical, char, or a cell array of strings. Values for
the Vertex dynamic properties may be either numeric, logical, cell
array of strings, or a cell array of numeric, logical, or cell array
of strings.

Output Arguments

s

geoshape vector.

Properties geoshape class is a general class that represents a variety of geographic
features. The class permits features to have more than one vertex and
can thus represent lines and polygons in addition to multipoints. The
class has the following property types.

3-410

geoshape

Types of Properties Description

Collection Properties Collection properties contain only one value
per class instance. This is in contrast to the
other two property types which can have
attribute values associated with each feature
or with each vertex in a set that defines a
feature. Geometry and Metadata are the only
two Collection properties.

Vertex Properties Vertex properties provide a scalar number or
a string for each vertex in a geoshape object.
Vertex properties are suitable for attributes
that vary spatially from point to point (vertex
to vertex) along a line. Examples of such
spatially varying attributes could be elevation,
speed, temperature, or time. Latitude and
Longitude are vertex properties since they
contain a scalar number for each vertex in
a geoshape vector. Attribute values can be
dynamically associated with each vertex by
using dot notation. This is similar to adding
dynamic fields to a structure. The dynamically
added vertex property values of an individual
feature match its Latitude and Longitude
values in length.

Feature Properties Feature properties provide one value (a
scalar number or a string) for each feature
in a geoshape vector. They are suitable
for properties, such as name, owner, serial
number, age, etc., that describe a given feature
(an element of a geoshape vector) as a whole.
Like Vertex properties, Feature properties can
be added dynamically.Geometry

The Geometry property is a string that denotes the shape type for
all the features in the geoshape vector. As a Collection Property
there is only one value per object instance. Its purpose is purely

3-411

geoshape

informational; the three allowable string values for Geometry do
not change class behavior. Additionally, the class does not provide
validation for line or polygon topologies.

Default value for Geometry is `line'.

Geometry 'point', 'line',
'polygon'

Metadata

Metadata is a scalar structure containing information for all
the features. You can add any data type to the structure. As a
Collection Property type, only one instance per object is allowed.

Metadata Scalar struct

Latitude

Vector of latitude coordinates. The values can be either a row or
column vector, but are stored as a row vector.

Attributes:

Latitude single | double vector

Longitude

Vector of longitude coordinates. The values can be either a row or
column vector, but are stored as a row vector.

Attributes:

Longitude single | double vector

Methods
append Append features to geoshape

vector

cat Concatenate geoshape vectors

3-412

geoshape

disp Display geoshape vector

fieldnames Dynamic properties of geoshape
vector

isempty True if geoshape vector is empty

isfield True if dynamic property exists

isprop True if property exists

length Number of elements in geoshape
vector

properties Properties of a geoshape vector

rmfield Remove dynamic property from
geoshape vector

rmprop Remove properties from geoshape
vector

size Size of geoshape vector

struct Convert geoshape vector to scalar
structure

vertcat Vertical concatenation for
geoshape vectors

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Class
Behaviors

• The following examples show how to build geoshape vectors with
single or multiple features.

“Single Line Feature” on page 3-417

“Multiple Point Features” on page 3-419

• You can attach dynamic feature and vertex properties to a geoshape
vector by either adding them at construction or by using the dot (.)
notation after construction. This is similar to adding new fields

3-413

geoshape

to a structure. The following examples highlight the two ways by
which a geoshape vector with the same features can be created. In
each example the data is read from the same file into a structure
array. The first example dynamically adds the features to a geoshape
object created with the default constructor. The second example uses
the structure array as an argument to constructor which builds the
geoshape vector.

“Dynamically Adding Multiple Line Features” on page 3-420

“Multiple Line Features Using a Constructor” on page 3-422

• The geoshape vector can be indexed like any MATLAB vector. You
can access any element of the vector to obtain a specific feature. The
following examples demonstrate this behavior.

“Indexing: Appending to a Point geoshape vector” on page 3-424

“Indexing: Sorting and Modifying Dynamic Features” on page 3-427

“Indexing: an Extended Example” on page 3-430

• The following example demonstrates the behavior of differing vector
representations of the Latitude and Longitude properties.

“Row and Column Vectors for Latitude and Longitude” on page
3-432

• If either Latitude or Longitude is set to [], then both coordinate
properties are set to [] and all dynamic Vertex or Feature properties
are removed.

• If a Vertex or Feature property is set to [], then it is removed from
the object.

Examples Constructor: geoshape()

Construct a default geoshape vector, dynamically set the Latitude and
Longitude property values, and dynamically add Vertex property Z.

s = geoshape();
s(1).Latitude = 0:45:90;

3-414

geoshape

s(1).Longitude = [10 10 10];
s(1).Z = [10 20 30]

s =

1x1 geoshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
Latitude: [0 45 90]

Longitude: [10 10 10]
Z: [10 20 30]

Constructor: geoshape(lat,lon)

Construct a geoshape vector from latitude and longitude values.

s = geoshape([42 43 45], [10 11 15])

s =

1x1 geoshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
Latitude: [42 43 45]

Longitude: [10 11 15]

Constructor: geoshape(lat,lon,Name,Value)

Construct a geoshape vector with one feature from a single position
coordinate, and a Name,Value pair defining a ’Temperature’ Feature
property.

point = geoshape(42, -72, 'Temperature', 89);
point.Geometry = 'point'

3-415

geoshape

point =

1x1 geoshape vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Vertex properties:
Latitude: 42

Longitude: -72
Feature properties:

Temperature: 89

When Value is a cell array containing numeric, logical, or cell array of
strings, it is construed as a Vertex property. Otherwise the Name-Value
pair is designated as being a Feature property.

Constructor: geoshape(structArray)

Construct a geoshape vector from a structure array.

structArray = shaperead('worldrivers', 'UseGeoCoords', true);
shape = geoshape(structArray)

s =

128x1 geoshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(128 features concatenated with 127 delimiters)

Latitude: [1x5542 double]
Longitude: [1x5542 double]

Feature properties:
Name: {1x128 cell}

3-416

geoshape

Constructor: geoshape(lat,lon,structArray)

Construct a geoshape vector using cell arrays to define multifeatures
and a structure array to define a set of Feature properties.

[structArray2, structNames] = shaperead('worldrivers', 'UseGeoCoords',
s = geoshape({structArray2.Lat}, {structArray2.Lon}, structNames)

s =

128x1 geoshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(128 features concatenated with 127 delimiters)

Latitude: [1x5542 double]
Longitude: [1x5542 double]

Feature properties:
Name: {1x128 cell}

Single Line Feature

Construct a geoshape vector with one feature from latitude and
longitude coordinates. Dynamically add a Feature property and display
it.

coast = load('coast')
s = geoshape(coast.lat, coast.long);

s.Name = 'coastline'

figure
worldmap world
geoshow(s.Latitude, s.Longitude)

coast =

3-417

geoshape

lat: [9865x1 double]
long: [9865x1 double]

s =

1x1 geoshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
Latitude: [1x9865 double]

Longitude: [1x9865 double]
Feature properties:

Name: 'coastline'

Note that the Feature property Name applies to the entire set of vertices
defined by the Geometry property as representing a `line'.

3-418

geoshape

Multiple Point Features

Construct a geoshape vector from latitude, longitude, and temperature
values and define them as point features.

lat = {42, 42.3};
lon = {-72, -72.85};
temperature = {89, 87.5};
s = geoshape(lat, lon, 'Temperature', temperature);
s.Geometry = 'point'

3-419

geoshape

Note that the number of temperature entries match the number of
lat and lon entries which causes this attribute to be classified as a
Vertex property.

s =

2x1 geoshape vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Vertex properties:
(2 features concatenated with 1 delimiter)

Latitude: [42 NaN 42.3000]
Longitude: [-72 NaN -72.8500]

Temperature: [89 NaN 87.5000]

Dynamically Adding Multiple Line Features

Construct a geoshape vector containing 128 elements by setting
Latitude and Longitude property values and then dynamically adding
a new Feature property.

The entire structure array, structArray, contains 128 elements; each
element defines a river as a line using multiple location vertices.

structArray = shaperead('worldrivers', 'UseGeoCoords', true)

structArray =

128x1 struct array with fields:
Geometry
BoundingBox
Lon
Lat
Name

3-420

geoshape

Display one element in the 128 element structure array.

structArray(1) %

ans =

Geometry: 'Line'
BoundingBox: [2x2 double]

Lon: [126.7796 126.5321 126.3121 126.2383 126.0362 NaN]
Lat: [73.4571 73.0669 72.8343 72.6010 72.2894 NaN]

Name: 'Lena

Note that the Lat and Lon vectors are terminated with a NaN delimiter.

Dynamically add Vertex properties from each entry in the structure
array. Then add a Feature property: the name of each of the 128 rivers
in shape.

shape = geoshape();

for k=1:length(shape)
shape(k).Latitude = structArray(k).Lat;
shape(k).Longitude = structArray(k).Lon;

end

shape.Name = {structArray.Name}

shape =

128x1 geoshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(128 features concatenated with 127 delimiters)

Latitude: [1x5542 double]
Longitude: [1x5542 double]

3-421

geoshape

Feature properties:
Name: {1x128 cell}

Note that the features are concatenated with a NaN delimiter.

Since the default value of the Geometry Collection property is 'line'
there is no need to set it explicitly in this example.

Multiple Line Features Using a Constructor

Construct a geoshape vector from a structure array.

Read in structure array containing 128 elements which define world
rivers. Display one element of the array.

structArray = shaperead('worldrivers', 'UseGeoCoords', true)
structArray(1)

ans =

Geometry: 'Line'
BoundingBox: [2x2 double]

Lon: [126.7796 126.5321 126.3121 126.2383 126.0362 NaN]
Lat: [73.4571 73.0669 72.8343 72.6010 72.2894 NaN]

Name: 'Lena'

Note that the Lat and Lon vectors are terminated with NaN delimiters
which used to separate the Vertex feature data in the geoshape class.

The structure array contains all the data needed to construct the 128
element geoshape vector.

shape = geoshape(structArray)

shape =

128x1 geoshape vector with properties:

Collection properties:

3-422

geoshape

Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(128 features concatenated with 127 delimiters)

Latitude: [1x5542 double]
Longitude: [1x5542 double]

Feature properties:
Name: {1x128 cell}

Display only the first 5 feature elements of the geoshape vector.

shape(1:5)

ans =

5x1 geoshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(5 features concatenated with 4 delimiters)

Latitude: [1x52 double]
Longitude: [1x52 double]

Feature properties:
Name: {'Lena' 'Lena' 'Mackenzie' 'Mackenzie' 'Kolyma'}

Note that indexing of the first five elements of the geoshape vector
displays the corresponding number of Feature properties in Name.

Add a filename field to the Metadata structure which is a Collection
property and thus applies to all features in the object.

shape.Metadata.Filename = 'worldcities.shp';
shape.Metadata

ans =

3-423

geoshape

Filename: 'worldcities.shp'

Indexing: Appending to a Point geoshape vector

Append a single point and a shape to a geoshape vector.

Create a geoshape vector containing a single feature of the locations
of world cities.

S = shaperead('worldcities.shp', 'UseGeoCoords', true);
cities = geoshape([S.Lat], [S.Lon], 'Name', {{S.Name}});
cities.Geometry = 'point';

Append Paderborn Germany to the geoshape vector.

lat = 51.715254;
lon = 8.75213;
cities(1).Latitude(end+1) = lat;
cities(1).Longitude(end) = lon;
cities(1).Name{end} = 'Paderborn'

cities =

1x1 geoshape vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Vertex properties:
Latitude: [1x319 double]

Longitude: [1x319 double]
Name: {1x319 cell}

The length of each vertex property grows by 1 when Latitude(end+1) is
set. The remaining properties are indexed with end.

You can display the last point by constructing a geopoint vector.

paderborn = geopoint(cities.Latitude(end), cities.Longitude(end), ...

3-424

geoshape

'Name', cities.Name{end})

paderborn =

1x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: 51.7153

Longitude: 8.7521
Name: 'Paderborn'

Create a new geoshape vector with two new features containing the
cities in the northern and southern hemispheres. Add a Location
dynamic feature property to distinguish the different classifications.

northern = cities(1).Latitude >= 0;
southern = cities(1).Latitude < 0;
index = {northern; southern};
location = {'Northern Hemisphere', 'Southern Hemisphere'};
hemispheres = geoshape();
for k = 1:length(index)

hemispheres = append(hemispheres, ...
cities.Latitude(index{k}), cities.Longitude(index{k}), ...
'Name', {cities.Name(index{k})}, 'Location', location{k});

end
hemispheres.Geometry = 'point'

hemispheres =

2x1 geoshape vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

3-425

geoshape

Vertex properties:
(2 features concatenated with 1 delimiter)

Latitude: [1x320 double]
Longitude: [1x320 double]

Name: {1x320 cell}
Feature properties:

Location: {'Northern Hemisphere' 'Southern Hemisphere'}

Plot the northern cities in red and the southern cities in blue.

hemispheres.Color = {'red', 'blue'};
figure;worldmap('world')
geoshow('landareas.shp')
for k=1:2

geoshow(hemispheres(k).Latitude, hemispheres(k).Longitude, ...
'DisplayType', hemispheres.Geometry, ...
'MarkerEdgeColor', hemispheres(k).Color)

end

3-426

geoshape

Indexing: Sorting and Modifying Dynamic Features

This example illustrates working with the dynamic features of a
geoshape vector.

Construct a geoshape vector with the dynamic properties sorted.

shape = geoshape(shaperead('tsunamis', 'UseGeoCoords', true));
shape.Geometry = 'point';
shape = shape(:, sort(fieldnames(shape)))

3-427

geoshape

shape =

162x1 geoshape vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Vertex properties:
(162 features concatenated with 161 delimiters)

Latitude: [1x323 double]
Longitude: [1x323 double]

Feature properties:
Cause: {1x162 cell}

Cause_Code: [1x162 double]
Country: {1x162 cell}

Day: [1x162 double]
Desc_Deaths: [1x162 double]

Eq_Mag: [1x162 double]
Hour: [1x162 double]

Iida_Mag: [1x162 double]
Intensity: [1x162 double]
Location: {1x162 cell}

Max_Height: [1x162 double]
Minute: [1x162 double]
Month: [1x162 double]

Num_Deaths: [1x162 double]
Second: [1x162 double]

Val_Code: [1x162 double]
Validity: {1x162 cell}

Year: [1x162 double

Modify the geoshape vector to contain only the dynamic properties,
Year, Month, Day, Hour, Minute.

shape = shape(:, {'Year', 'Month', 'Day', 'Hour', 'Minute'})

3-428

geoshape

shape =

162x1 geoshape vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Vertex properties:
(162 features concatenated with 161 delimiters)

Latitude: [1x323 double]
Longitude: [1x323 double]

Feature properties:
Year: [1x162 double]

Month: [1x162 double]
Day: [1x162 double]

Hour: [1x162 double]
Minute: [1x162 double]

Display the first 5 elements.

shape(1:5)

ans =

5x1 geoshape vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Vertex properties:
(5 features concatenated with 4 delimiters)

Latitude: [-3.8000 NaN 19.5000 NaN -9.0200 NaN 42.1500 NaN 19.100
Longitude: [128.3000 NaN -156 NaN 157.9500 NaN 143.8500 NaN -155]

Feature properties:
Year: [1950 1951 1951 1952 1952]

Month: [10 8 12 3 3]
Day: [8 21 22 4 17]

3-429

geoshape

Hour: [3 10 NaN 1 3]
Minute: [23 57 NaN 22 58]

Indexing: an Extended Example

This example illustrates how to construct a two-element geoshape
vector containing GPS track log data.

Read multiple GPS track log data from a file. trk1 and trk2 are
geopoint objects.

trk1 = gpxread('sample_tracks')
trk2 = gpxread('sample_tracks', 'Index', 2);

trk1 =

1851x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
Latitude: [1x1851 double]

Longitude: [1x1851 double]
Elevation: [1x1851 double]

Time: {1x1851 cell}

To construct a geoshape vector with multiple features, place the
coordinates into cell arrays.

lat = {trk1.Latitude, trk2.Latitude};
lon = {trk1.Longitude, trk2.Longitude};

To create dynamic vertex properties (a property with a value at each
coordinate), place the elevation and time values into cell arrays.

elevation = {trk1.Elevation, trk2.Elevation};
time = {trk1.Time, trk2.Time};

3-430

geoshape

Construct a geoshape vector containing two track log features that
include Elevation and Time as dynamic Vertex properties.

tracks = geoshape(lat, lon, 'Elevation', elevation, 'Time', time)

tracks =

2x1 geoshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(2 features concatenated with 1 delimiter)

Latitude: [1x2592 double]
Longitude: [1x2592 double]
Elevation: [1x2592 double]

Time: {1x2592 cell}

Each Latitude and Longitude coordinate pair has associated
Elevation and Time values which are Vertex properties.

To construct a geoshape vector containing a dynamic Feature
property, use an array that is the same length as the coordinate cell
array. For example, construct a geoshape vector as before and add a
MaximumElevation dynamic Feature property.

tracks_max = geoshape(lat, lon, 'Elevation', elevation, 'Time', time,
'MaximumElevation', [max(trk1.Elevation) max(trk2.Elevation)])

tracks_max =

2x1 geoshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:

3-431

geoshape

(2 features concatenated with 1 delimiter)
Latitude: [1x2592 double]

Longitude: [1x2592 double]
Elevation: [1x2592 double]

Time: {1x2592 cell}
Feature properties:

MaximumElevation: [92.4240 76.1000]

The Feature property value has only two numeric values, one for each
feature.

Row and Column Vectors for Latitude and Longitude

If you typically store latitude and longitude coordinate values in a
N-by-2 or 2-by-M array, you can assign a geoshape vector to these
numeric values.

If the values are stored in a N-by-2 array, then the Latitude property
values are assigned to the first column and the Longitude property
values are assigned to the second column.

coast = load('coast');
pts = [coast.lat coast.long];
shape = geoshape();
shape(1) = pts

shape =

1x1 geoshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
Latitude: [1x9865 double]

Longitude: [1x9865 double]

3-432

geoshape

If the values are stored in a 2-by-M array, then the Latitude property
values are assigned to the first row and the Longitude property values
are assigned to the second row.

pts = [coast.lat'; coast.long'];
shape = geoshape();
shape(1) = pts

shape =

1x1 geoshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
Latitude: [1x9865 double]

Longitude: [1x9865 double]

See Also gpxread | shaperead | mappoint | geopoint | mapshape

3-433

geoshape.append

Purpose Append features to geoshape vector

Syntax s = append(s,lat,lon)
s = append(s,lat,lon,Name,Value)

Description s = append(s,lat,lon) appends the vector, lat, to the Latitude
property values of the geoshape vector, s, and the vector, lon, to the
Longitude property values of s. lat and lon are either vectors of class
single or double or cell arrays containing numeric arrays of class single
or double.

s = append(s,lat,lon,Name,Value) appends the lat and lon vectors
to the Latitude and Longitude property values of the geoshape
vector, s, and appends the values specified in the Name,Value pairs to
the corresponding dynamic properties specified by the names in the
Name,Value pairs if the properties are present in the object. Otherwise,
the method adds dynamic properties to the object using the Name for the
dynamic property names and assigns the corresponding Value.

Input
Arguments

s

geoshape vector.

lat

Numeric vector of Latitude values.

lon

Numeric vector of Longitude values.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Name,Value

3-434

geoshape.append

Parameter Name-Value pairs of the dynamic properties that are
to be added to the geoshape vector, s.

Output
Arguments

s

Modified geoshape vector with additional entries in Latitude and
Longitude fields along with any new fields for dynamic properties
that you added.

Examples Append Values to Fields in a geoshape vector

Append values to existing fields of a geoshape vector

lat1 = [42, 42.2, 43];
lon1 = [-110, -110.3, -110.5];
temp1 = [65, 65.1, 68];
s = geoshape(lat1,lon1,'Temperature',{temp1})

s =

1x1 geoshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
Latitude: [42 42.2000 43]

Longitude: [-110 -110.3000 -110.5000]
Temperature: [65 65.1000 68]

Now append data representing another feature.

lat2 = [43, 43.1, 44, 44.1];
lon2 = [-110.1, -111, -111.12, -110.8];
temp2 = [66, 66.1, 68.3, 69];
s = append(s,lat2,lon2,'Temperature', {temp2})

s =

3-435

geoshape.append

2x1 geoshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(2 features concatenated with 1 delimiter)

Latitude: [42 42.2000 43 NaN 43 43.1000 44 44.1000]
Longitude: [-110 -110.3000 -110.5000 NaN -110.1000 -111 -111.1200 -

Temperature: [65 65.1000 68 NaN 66 66.1000 68.3000 69]

Note that the geoshape vector grew from 1x1 to 2x1 in length.

See Also geoshape | geoshape.vertcat |

3-436

geoshape.cat

Purpose Concatenate geoshape vectors

Syntax s= cat(dim,s1, s2, ...)

Description s= cat(dim,s1, s2, ...) concatenates the geoshape vectors s1,s2
and so on along dimensions dim. dim must be 1.

Input
Arguments

s1, s2, ...

geoshape vectors to be concatenated.

Output
Arguments

s

Concatenated geoshape vector.

Examples Concatenate two geoshape vectors

Create two geoshape vectors and concatenate them into a single vector.

s1 = geoshape(42,-110, 'Temperature', 65);
s2 = geoshape(42.2, -110.5, 'Temperature', 65.6);
s1s2 = cat(1,s1,s2)

s1s2 =

2x1 geoshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(2 features concatenated with 1 delimiter)

Latitude: [42 NaN 42.2000]
Longitude: [-110 NaN -110.5000]

Feature properties:
Temperature: [65 65.6000]

See Also geoshape.vertcat |

3-437

geoshape.disp

Purpose Display geoshape vector

Syntax disp(s)

Description disp(s) prints the size of the geoshape vector, s, and its properties
and dynamic properties, if they exist. If the command window is large
enough, the values of the properties are also shown, otherwise only
their size is shown. You can control the display of the numerical values
by using the format command.

Input
Arguments

s

geoshape vector.

Examples Display a geoshape vector

Display a geoshape vector.

s = geoshape(shaperead('worldcities', 'UseGeo', true));
disp(s)
disp(s(1:2))

318x1 geoshape vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Vertex properties:
(318 features concatenated with 317 delimiters)

Latitude: [1x635 double]
Longitude: [1x635 double]

Feature properties:
Name: {1x318 cell}

2x1 geoshape vector with properties:

Collection properties:
Geometry: 'point'

3-438

geoshape.disp

Metadata: [1x1 struct]
Vertex properties:
(2 features concatenated with 1 delimiter)

Latitude: [5.2985 NaN 24.6525]
Longitude: [-3.9509 NaN 54.7589]

Feature properties:
Name: {'Abidjan' 'Abu Dhabi'}

See Also formatgeoshape |

3-439

geoshape.fieldnames

Purpose Dynamic properties of geoshape vector

Syntax names = fieldnames(s)

Description names = fieldnames(s) returns the names of the dynamic properties
of the geoshape vector, s.

Input
Arguments

s

geoshape vector for which the properties are to be queried.

Output
Arguments

names

Names of the dynamic properties in the geoshape vector s

Examples Find dynamic properties

Return the dynamic properties of a geoshape vector

s = geoshape(shaperead('worldcities', 'UseGeo', true));
fieldnames(s)

ans =

'Name'

See Also geoshape.properties |

3-440

geoshape.isempty

Purpose True if geoshape vector is empty

Syntax tf = isempty(s)

Description tf = isempty(s) returns true if the geoshape vector, s, is empty and
false otherwise.

Input
Arguments

s

geoshape vector.

Output
Arguments

tf

Boolean. 1 if s is empty or 0 if not.

Examples Check if a geoshape vector is empty

Check if the geoshape vector is empty.

s = geoshape();
isempty(s)

ans =

1

See Also geoshape.end |

3-441

geoshape.isfield

Purpose True if dynamic property exists

Syntax tf = isfield(s,name)
tf = isfield(s,names)

Description tf = isfield(s,name) returns true if the value specified by the string
name is a dynamic property of the geoshape vector, s.

tf = isfield(s,names) return true for each element of the cell array,
names, that is a dynamic property of s. tf is a logical array of the
same size as names.

Input
Arguments

s

geoshape vector.

name

Name of the dynamic property.

names

Cell array of names of dynamic properties.

Output
Arguments

tf

Boolean. 1 if s contains the specified fields or 0 otherwise.

Examples Check for fieldname

Check if a field is present in a geoshape vector.

s = geoshape(-33.961, 18.484, 'Name', 'Cape Town')
isfield(s, 'Latitude')
isfield(s, 'Name')

s =

1x1 geoshape vector with properties:

3-442

geoshape.isfield

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
Latitude: -33.9610

Longitude: 18.4840
Feature properties:

Name: 'Cape Town'

ans =

0

ans =

1

Note that Latitude returns 0 because it is not a dynamically added
property.

See Also geoshape.isprop | geoshape.fieldnames |

3-443

geoshape.isprop

Purpose True if property exists

Syntax tf = isprop(s,name)
tf = isprop(s,names)

Description tf = isprop(s,name) returns true if the value specified by the string,
name is a property of the geoshape vector, s.

tf = isprop(s,names) returns true for each element of the cell array
of strings, names, that is a property of s. tf is a logical array the same
size as names.

Input
Arguments

s

geoshape vector.

name

String specifying the property of the geoshape vector, s.

names

Cell array of strings specifying the property of the geoshape
vector, s.

Output
Arguments

tf

Boolean. 1 if the property exists with s ,0 otherwise.

Examples Check if property exists

This example shows how to check if a string is a property of a geoshape
vector.

s = geoshape(-33.961, 18.484, 'Name', 'Cape Town');
isprop(s, 'Latitude')
isprop(s, 'Name')

ans =

1

3-444

geoshape.isprop

ans =

1

See Also geoshape.isfield | geoshape.properties |

3-445

geoshape.length

Purpose Number of elements in geoshape vector

Syntax N = length(s)

Description N = length(s) returns the number of elements contained in the
geoshape vector, s. The result is equivalent to size(s,1).

Input
Arguments

s

geoshape vector.

Output
Arguments

N

Length of the geoshape vector, s.

Examples Find the length of the geoshape vector.

coast = load('coast');
s = geoshape(coast.lat, coast.long);
length(s)
length(coast.lat)

ans =

1

ans =

9865

See Also geoshape.size |

3-446

geoshape.properties

Purpose Properties of a geoshape vector

Syntax prop = properties(s)
properties(s)

Description prop = properties(s) returns a cell of the property names of the
geoshape vector, s.

properties(s) displays the names of the properties of s.

Input
Arguments

s

geoshape vector.

Output
Arguments

prop

Cell variable consisting of property names of the geoshape vector,
s.

Examples Properties of a geoshape vector

Query for properties of a geoshape vector.

s = geoshape(shaperead('tsunamis', 'UseGeo', true));
properties(s)

Properties for class geoshape:

Geometry
Metadata
Latitude
Longitude
Year
Month
Day
Hour
Minute
Second

3-447

geoshape.properties

Val_Code
Validity
Cause_Code
Cause
Eq_Mag
Country
Location
Max_Height
Iida_Mag
Intensity
Num_Deaths
Desc_Deaths

See Also geoshape.fieldnames |

3-448

geoshape.rmfield

Purpose Remove dynamic property from geoshape vector

Syntax s = rmfield(s, fieldname)
s = rmfield(s, fields)

Description s = rmfield(s, fieldname) removes the field specified by the string,
fieldname , from the geoshape vector, s.

s = rmfield(s, fields) removes all the fields specified by the cell
array, fields.

Note rmfield cannot remove Latitude, Longitude, Metadata and
Geometry fields. The specified string, ‘fieldname, is case sensitive.

Input
Arguments

s

geoshape vector.

fieldname

Exact string representing the name of the property.

fields

Cell array of strings specifying the names of the properties.

Output
Arguments

s

Updated geoshape vector with the field(s) removed.

Examples Remove fields from a geoshape vector

Remove a field from a geoshape vector.

s = geoshape(shaperead('tsunamis', 'UseGeo', true));
tf = isfield(s,'Intensity')
s2 = rmfield(s,'Intensity');
tf = isfield(s2,'Intensity')

3-449

geoshape.rmfield

tf =

1

tf =

0

See Also geoshape.fieldnames | geoshape.rmprop |

3-450

geoshape.rmprop

Purpose Remove properties from geoshape vector

Syntax sf = rmprop(s,propname)
sf = rmprop(s,propnames)

Description sf = rmprop(s,propname) removes the property specified by the
string, propname from the geoshape vector, s.

sf = rmprop(s,propnames) removes all the properties specified in
the cell array, propnames, from the geoshape vector, s. If propnames
contains a coordinate property an error is issued.

Note rmprop cannot remove Latitude, Longitude, Metadata and
Geometry fields. The specified string, propname, is case sensitive.

Input
Arguments

s

geoshape vector.

Output
Arguments

sf

Modified geoshape vector with the specified property(s) removed.

Examples Remove a property of a geoshape vector

Remove a property from a geoshape vector.

s = geoshape(shaperead('tsunamis', 'UseGeo', true));
tf = isfield(s,'Validity')
s2 = rmprop(s, 'Validity');
tf = isfield(s2,'Validity')

tf =

1

3-451

geoshape.rmprop

tf =

0

See Also geoshape.fieldnames |

3-452

geoshape.size

Purpose Size of geoshape vector

Syntax val = size(s)
val = size(s,1)
val = size(s, n)
[m,k] = size(s)

Description val = size(s) returns the vector [length(val), 1].

val = size(s,1) returns the length of s.

val = size(s, n) returns 1 for n >= 2.

[m,k] = size(s) returns length(s) for m and 1 for k.

Input
Arguments

s

geoshape vector.

n

Number of the dimension at which size of s is required.

Output
Arguments

val

Vector of the form [length(s), 1].

m

Length of s.

k

Length of second dimension of s. k is always 1.

Examples Size of a geoshape vector

Find the size of a geoshape vector.

structArray = shaperead('worldrivers', 'UseGeoCoords', true);
s= geoshape(structArray);
structSize = size(structArray)

3-453

geoshape.size

sSize = size(s)

structSize =

128 1

sSize =

128 1

The second dimension is always 1.

See Also geoshape.length | size

3-454

geoshape.struct

Purpose Convert geoshape vector to scalar structure

Syntax structArray = struct(s)

Description structArray = struct(s) converts the geoshape vector, s, to a scalar
structure array, structArray.

Input
Arguments

s

geoshape vector.

Output
Arguments

structArray

Scalar structure of the geoshape vector s.

Examples Converting a geoshape vector into struct

This example shows how to convert a geoshape vector to struct.

structArray = shaperead('worldcities', 'UseGeo', true)
s= geoshape(structArray);
structArray2 = struct(s)

structArray =

318x1 struct array with fields:
Geometry
Lon
Lat
Name

structArray2 =

Geometry: 'point'
Metadata: [1x1 struct]
Latitude: [1x635 double]

3-455

geoshape.struct

Longitude: [1x635 double]
Name: {1x318 cell}

See Also geoshape.properties |

3-456

geoshape.vertcat

Purpose Vertical concatenation for geoshape vectors

Syntax s = vertcat(s1,s2, ...)

Description s = vertcat(s1,s2, ...) vertically concatenates the geoshape
vector, s1, s2, and so on. If the class type of any property is a cell
array, then the resultant field in the output s will also be a cell array.

Input
Arguments

s1, s2, ...

geoshape vectors to be concatenated.

Output
Arguments

s

Concatenated geoshape vector.

Examples Concatenate geoshape vectors

Concatenate two geoshape vectors.

s1 = geoshape(42, -110, 'Temperature', 65, 'Name', 'point1');
s2 = geoshape(42.1, -110.4, 'Temperature', 65.5, 'Name', 'point2');
s = vertcat(s1, s2)

s =

2x1 geoshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(2 features concatenated with 1 delimiter)

Latitude: [42 NaN 42.1000]
Longitude: [-110 NaN -110.4000]

Feature properties:
Temperature: [65 65.5000]

Name: {'point1' 'point2'}

3-457

geoshape.vertcat

See Also geopoint.cat |

3-458

geoshow

Purpose Display map latitude and longitude data

Syntax geoshow(lat,lon)
geoshow(s)
geoshow(lat,lon,Z)
geoshow(Z,R)
geoshow(lat,lon,image)
geoshow(lat,lon,A,cmap)
geoshow(image,R)
geoshow(A,cmap,R)
geoshow(ax,...)
geoshow('Parent',ax,...)
geoshow(filename)
geoshow(...,Name,Value)
h = geoshow(...)

Description geoshow(lat,lon) projects and displays the latitude and longitude
vectors lat and lon using the projection stored in the axes. If there is
no projection, lat and lon are projected using a default Plate Carrée
projection. The default behavior for geoshow is to display lat and lon
as lines.

geoshow(s) displays the vector geographic features stored in s as
points, multipoints, lines, or polygons according to the Geometry field
of s. If s includes lat and lon fields, then the coordinate values are
projected to map coordinates. If s includes X and Y fields, then the
coordinate values are plotted as preprojected map coordinates, and
a warning is issued.

geoshow(lat,lon,Z) projects and displays a geolocated data grid.

geoshow(Z,R) projects and displays a regular data grid, Z.

geoshow(lat,lon,image) or geoshow(lat,lon,A,cmap) projects
and displays a geolocated image as a texturemap on a zero-elevation
surface. lat, lon, and the image array must match in size. Examples of
geolocated images include a color composite from a satellite swath or an
image originally referenced to a different coordinate system.

3-459

geoshow

geoshow(image,R) or geoshow(A,cmap,R) projects and displays an
image georeferenced to latitude-longitude through the referencing
matrix R. The image is shown as a texturemap on a zero-elevation
surface.

geoshow(ax,...) and geoshow('Parent',ax,...) set the parent
axes to ax.

geoshow(filename) projects and displays data from the file specified
according to the type of file format.

geoshow(...,Name,Value) specifies parameters and corresponding
values that modify the type of display or set MATLAB graphics
properties. Parameter names can be abbreviated, and case does not
matter.

h = geoshow(...) returns a handle to a MATLAB graphics object.

Tips • When calling shaperead to read files that contain coordinates in
latitude and longitude, be sure to specify the shaperead argument
pair 'UseGeoCoords',true. If you do not include this argument,
shaperead will create a mapstruct, with coordinate fields labelled X
and Y instead of Lon and Lat. In such cases, geoshow assumes that
the geostruct is in fact a mapstruct containing projected coordinates,
warns, and calls mapshow to display the geostruct data without
projecting it.

• If you do not want geoshow to draw on top of an existing map, create
a new figure or subplot before calling it.

• When you display vector data in a map axes using geoshow, you
should not subsequently change the map projection using setm.
You can, however, change the projection with setm for raster data.
For more information, see “Changing Map Projections when Using
geoshow”.

• If you display a polygon, do not set 'EdgeColor' to either 'flat' or
'interp'. This combination may result in a warning.

• When projecting data onto a map axes, geoshow uses the projection
stored with the map axes. When displaying on a regular axes, it

3-460

geoshow

constructs a default Plate Carrée projection with a scale factor of
180/pi, enabling direct readout of coordinates in degrees.

• geoshow can generally be substituted for displaym. However, there
are limitations where display of specific objects is concerned. See the
remarks under updategeostruct for further information.

• You can access geoshow through the Plot Selector workspace tool,

which is represented by this icon . In
your workspace, select the data you want to display. The Plot Selector

icon changes to look like this: .
Scroll down to geoshow(s): Plot a geostruct array.

When you display raster data in a map using geoshow, columns near the
eastern or western edge may fail to display. This is seldom noticeable,
except when the raster is very coarse relative to the displayed area. To
include additional columns in the display, it might help to:

• Resize the grid to a finer mesh

• Make sure the cell boundaries and map limits align

• Expand the map limits

Input
Arguments

lat,lon

Latitude and longitude vectors. lat and lon must be of equal length.
The vectors may contain embedded NaNs to delimit individual lines or
polygon parts.

Z

M-by-N array. May contain NaN values.

s

Geographic data structure.

image

3-461

geoshow

Grayscale, logical, or truecolor image.

A

Indexed image.

cmap

Colormap.

R

spatialref.GeoRasterReference object, referencing vector, or
referencing matrix. If R is a spatialref.GeoRasterReference object,
its RasterSize property must be consistent with size(Z).

If R is a referencing vector, it must be a 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to or from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel. Nearest-neighbor
interpolation is used by default. NaN is returned for points outside
the grid limits or for which lat or lon contain NaN. All angles are in
units of degrees.

If R is a spatialref.GeoRasterReference object with raster
interpretation 'postings', then the 'image' and 'texturemap'
display types are not accepted.

ax

Axes object.

filename

3-462

geoshow

Name of file.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

SymbolSpec

A structure returned by makesymbolspec that specifies the
symbolization rules to be used for displaying vector data. It is used only
for vector data stored in geographic data structures. In cases where
both SymbolSpec and one or more graphics properties are specified, the
graphics properties override any settings in the symbolspec structure.

To change the default symbolization rule for a Name,Value pair in the
symbolspec, prefix the word 'Default' to the graphics property name.

DisplayType

Type of graphic display for the data. You can set any MATLAB Graphics
line, patch, and surface properties. You can also set any Mapping
Toolbox contour properties. See the table for links to the documentation
on these properties.

Data
Type

DisplayType Type of Property

'point' line marker

On the MATLAB Line Properties
reference page, under Line Property
Descriptions, see Marker.

Vector

3-463

geoshow

Data
Type

DisplayType Type of Property

'multipoint' line marker

On the MATLAB Line Properties
reference page, under Line Property
Descriptions, see Marker.

'line' (default) line

See the MATLAB Line Properties
reference page.

'polygon' patch

See the MATLAB Patch Properties
reference page.

Image 'image' surface

See the MATLAB Surface Properties
reference page.

'surface' surface

See the MATLAB Surface Properties
reference page.

'mesh' surface

See the MATLAB Surface Properties
reference page.

'texturemap' surface

See the MATLAB Surface Properties
reference page.

Grid

'contour' contour

See the Mapping Toolbox contourm
reference page.

3-464

geoshow

If DisplayType is 'texturemap', geoshow constructs a surface with
ZData values set to 0.

When using the filename argument, the DisplayType parameter is
automatically set, according to the following table:

Format DisplayType

Shape file 'point', 'line', or 'polygon'

GeoTIFF 'image'

TIFF/JPEG/PNG with a
world file

'image'

ARC ASCII GRID 'surface' (can be overridden)

SDTS raster 'surface' (can be overridden)

Output
Arguments

h

Handle to a MATLAB graphics object or, in the case of polygons, a
modified patch object. If a geostruct or shapefile name is input, geoshow
returns the handle to an hggroup object with one child per feature in
the geostruct or shapefile, excluding any features that are completely
trimmed away. In the case of a polygon geostruct or shapefile, each
child is a modified patch object; otherwise it is a line object.

Class
Support

Display Type Supported Class Types

Image logical, uint8, uint16, and double

Surface single and double

Texture map All numeric types and logical

Examples Display world land areas using a default Plate Carree projection:

figure
geoshow('landareas.shp', 'FaceColor', [0.5 1.0 0.5]);

3-465

geoshow

Override the symbolspec default rule:

% Create a worldmap of North America.
figure
worldmap('na');

% Read the USA high resolution data.
states = shaperead('usastatehi', 'UseGeoCoords', true);

% Create a symbolspec to make Alaska and Hawaii polygons red.
symspec = makesymbolspec('Polygon', ...

{'Name', 'Alaska', 'FaceColor', 'red'}, ...
{'Name', 'Hawaii', 'FaceColor', 'red'});

% Display all the other states in blue.
geoshow(states, 'SymbolSpec', symspec, ...

'DefaultFaceColor', 'blue', ...
'DefaultEdgeColor', 'black');

3-466

geoshow

Create a worldmap of Korea and display the korea data grid as a
texture map:

load korea
figure;
worldmap(map, refvec)

% Display the Korean data grid as a texture map.
geoshow(gca,map,refvec,'DisplayType','texturemap');
demcmap(map)

% Display the land area boundary as black lines.
S = shaperead('landareas','UseGeoCoords',true);
geoshow([S.Lat], [S.Lon],'Color','black');

3-467

geoshow

Display the EGM96 geoid heights, masking out land areas:

load geoid
% Create a figure with an Eckert projection.
figure
axesm eckert4;
framem; gridm;
axis off

% Display the geoid as a texture map.
geoshow(geoid, geoidrefvec, 'DisplayType', 'texturemap');

% Create a colorbar and title.
hcb = colorbar('southoutside');
set(get(hcb,'Xlabel'),'String','EGM96 Geoid Heights in Meters.')

3-468

geoshow

% Mask out all the land.
geoshow('landareas.shp', 'FaceColor', 'black');

Display the EGM96 geoid heights as a 3-D surface using the Eckert IV
projection:

load geoid

% Create the figure with an Eckert projection.
figure
axesm eckert4;
axis off

% Display the geoid as a surface.
h = geoshow(geoid, geoidrefvec, 'DisplayType','surface');

% Add light and material.
light; material(0.6*[1 1 1]);

% View as a 3-D surface.

3-469

geoshow

view(3)
axis normal
tightmap

Display the moon albedo image projected using Plate Carree and in
an orthographic projection:

load moonalb

% Projection not specified. Uses Plate Carree.
figure
geoshow(moonalb,moonalbrefvec)

3-470

geoshow

% Orthographic projection
figure
axesm ortho
geoshow(moonalb, moonalbrefvec, 'DisplayType', 'texturemap')
colormap(gray(256))
axis off

3-471

geoshow

Read and display the San Francisco South 24K DEM data:

filenames = gunzip('sanfranciscos.dem.gz', tempdir);
demFilename = filenames{1};

% Read every point of the 1:24,000 DEM file.
[lat, lon,Z] = usgs24kdem(demFilename,2);

% Delete the temporary gunzipped file.
delete(demFilename);

% Move all points at sea level to -1 to color them blue.
Z(Z==0) = -1;

% Compute the latitude and longitude limits for the DEM.
latlim = [min(lat(:)) max(lat(:))];
lonlim = [min(lon(:)) max(lon(:))];

3-472

geoshow

% Display the DEM values as a texture map.
figure
usamap(latlim, lonlim)
geoshow(lat, lon, Z, 'DisplayType','texturemap')
demcmap(Z)
daspectm('m',1)

% Overlay black contour lines onto the texturemap.
geoshow(lat, lon, Z, 'DisplayType', 'contour', ...

'LineColor', 'black');

% View the DEM values in 3-D.
figure
usamap(latlim, lonlim)
geoshow(lat, lon, Z, 'DisplayType', 'surface')

3-473

geoshow

demcmap(Z)
daspectm('m',1)
view(3)

See Also axesm | makesymbolspec | mapshow | mapview | updategeostruct

How To • “Displaying Vector Data with Mapping Toolbox Functions”

• “Understanding Raster Geodata”

3-474

geotiff2mstruct

Purpose Convert GeoTIFF information to map projection structure

Syntax mstruct = geotiff2mstruct(proj)

Description mstruct = geotiff2mstruct(proj) converts the GeoTIFF projection
structure, proj, to the map projection structure, mstruct. The unit of
length of the mstruct projection is meter.

The GeoTIFF projection structure, proj, must reference
a projected coordinate system, as indicated by a value of
'ModelTypeProjected' in the ModelType field. If ModelType has the
value 'ModelTypeGeographic' then it doesn’t make sense to convert to
a map projection structure and an error is issued.

Examples % Compare inverse transform of points using projinv and minvtran.
% Obtain the projection structure of 'boston.tif'.
proj = geotiffinfo('boston.tif');

% Convert the corner map coordinates to latitude and longitude.
x = proj.CornerCoords.X;
y = proj.CornerCoords.Y;
[latProj, lonProj] = projinv(proj, x, y);

% Obtain the mstruct from the GeoTIFF projection.
mstruct = geotiff2mstruct(proj);

% Convert the units of x and y to meter to match projection units.
x = unitsratio('meter','sf') * x;
y = unitsratio('meter','sf') * y;

% Convert the corner map coordinates to latitude and longitude.
[latMstruct, lonMstruct] = minvtran(mstruct, x, y);

% Verify the values are within a tolerance of each other.
abs(latProj - latMstruct) <= 1e-7
abs(lonProj - lonMstruct) <= 1e-7

3-475

geotiff2mstruct

ans =
1 1 1 1

ans =
1 1 1 1

See Also axesm | defaultm | geotiffinfo | projfwd | projinv | projlist

3-476

geotiffinfo

Purpose Information about GeoTIFF file

Syntax info = geotiffinfo(filename)
info = geotiffinfo(url)

Description info = geotiffinfo(filename) returns a structure whose fields
contain image properties and cartographic information about a
GeoTIFF file.

info = geotiffinfo(url) reads the GeoTIFF image from a URL.

Input
Arguments

filename

String that specifies the name of the GeoTIFF file. Include the folder
name in filename or place the file in the current folder or in a folder
on the MATLAB path. If the named file includes the extension .TIF or
.TIFF (either upper- or lowercase), you can omit the extension from
filename.

If the named file contains multiple GeoTIFF images, info is a structure
array with one element for each image in the file. For example, info(3)
would contain information about the third image in the file. If multiple
images exist in the file, it is assumed that each image has the same
cartographic information and image width and height.

url

URL that includes the protocol type (e.g., “http://”).

Output
Arguments

info

Structure whose fields contain image properties and cartographic
information about a GeoTIFF file. The info structure contains these
fields:

Filename String containing the name of the file or URL.

FileModDate String containing the modification date of the
file.

3-477

geotiffinfo

FileSize Integer indicating the size of the file in bytes.

Format String containing the file format, which should
always be 'tiff'.

FormatVersion String or number specifying the file format
version.

Height Integer indicating the height of the image in
pixels.

Width Integer indicating the width of the image in
pixels.

BitDepth Integer indicating the number of bits per pixel.

ColorType String indicating the type of image:
'truecolor' for a true-color (RGB) image,
'grayscale' for a grayscale image, or
'indexed' for an indexed image.

ModelType String indicating the type of coordinate
system used to georeference the
image: 'ModelTypeProjected',
'ModelTypeGeographic',
'ModelTypeGeocentric', or ''.

PCS String indicating the projected coordinate
system.

Projection String describing the EPSG identifier for the
underlying projection method.

MapSys String indicating the map system, if applicable:
'STATE_PLANE_27’, 'STATE_PLANE_83',
'UTM_NORTH', 'UTM_SOUTH', or ''.

Zone Double indicating the UTM or State Plane
Zone number, empty ([]) if not applicable or
unknown.

CTProjection String containing the GeoTIFF identifier for
the underlying projection method.

3-478

geotiffinfo

ProjParm N-by-1 double containing projection parameter
values. The identity of each element is specified
by the corresponding element of ProjParmId.
Lengths are in meters, angles in decimal
degrees.

ProjParmId N-by-1 cell array listing the projection
parameter identifier for each corresponding
numerical element of ProjParm:

Projection Parameter Identifiers

• 'ProjNatOriginLatGeoKey'

• 'ProjNatOriginLongGeoKey'

• 'ProjFalseEastingGeoKey'

• 'ProjFalseNorthingGeoKey'

• 'ProjFalseOriginLatGeoKey'

• 'ProjFalseOriginLongGeoKey'

• 'ProjCenterLatGeoKey'

• 'ProjCenterLongGeoKey'

• 'ProjAzimuthAngleGeoKey'

• 'ProjRectifiedGridAngleGeoKey'

• 'ProjScaleAtNatOriginGeoKey'

• 'ProjStdParallel1GeoKey'

• 'ProjStdParallel2GeoKey'

GCS String indicating the geographic coordinate
system.

Datum String indicating the projection datum type,
such as 'North American Datum 1927' or
'North American Datum 1983'.

3-479

geotiffinfo

Ellipsoid String indicating the ellipsoid name as defined
by the ellipsoid.csv EPSG file.

SemiMajor Double indicating the length of the semimajor
axis of the ellipsoid, in meters.

SemiMinor Double indicating the length of the semiminor
axis of the ellipsoid, in meters.

PM String indicating the prime meridian location,
for example, 'Greenwich' or 'Paris'.

PmLongToGreenwich Double indicating the decimal degrees of
longitude between this prime meridian and
Greenwich. Prime meridians to the west of
Greenwich are negative.

UOMLength String indicating the units of length used in the
projected coordinate system.

UOMLengthInMeters Double defining the UOMLength unit in meters.

UOMAngle String indicating the angular units used for
geographic coordinates.

UOMAngleInDegrees Double defining the UOMAngle unit in degrees.

TiePoints Structure containing the image tiepoints. The
structure contains these fields:

• ImagePoints — Structure containing row
and column coordinates of each image
tiepoint. The ImagePoints structure
contains these fields:

Fields in ImagePoints Structure

Row— Double array of size 1-by-N.

Col— Double array of size 1-by-N.

3-480

geotiffinfo

• WorldPoints — Structure containing the x
and y world coordinates of the tiepoints. The
WorldPoints structure contains these fields:

Fields in WorldPoints Structure

X — Double array of size 1-by-N.

Y — Double array of size 1-by-N.

PixelScale 3-by-1 double array that specifies the X, Y, Z
pixel scale values.

SpatialRef spatialref.MapRasterReference object if
ModelType is 'ModelTypeProjected', or a
spatialref.GeoRasterReference object if
ModelType is 'ModelTypeGeographic'.
If ModelType is empty, a warning
is issued and SpatialRef is a
spatialref.MapRasterReference object.
SpatialRef is empty if ModelType is
'ModelTypeGeocentric', if the spatial
referencing is ambiguously defined by
the GeoTiff file, or if ModelType is
'ModelTypeGeographic' and the geometric
transformation type is 'affine'.

RefMatrix 3-by-2 double referencing matrix that must be
unambiguously defined by the GeoTIFF file.
Otherwise it is empty ([]).

BoundingBox 2-by-2 double array that specifies the minimum
(row 1) and maximum (row 2) values for each
dimension of the image data in the GeoTIFF
file.

3-481

geotiffinfo

CornerCoords Structure with six fields that contains
coordinates of the outer corners of the GeoTIFF
image. Each field is a 1-by-4 double array, or
empty ([]) if unknown. The arrays contain the
coordinates of the outer corners of the corner
pixels, starting from the (1,1) corner and
proceeding clockwise:

Coordinates of the Outer Corners

• X — Easting coordinates in the projected
coordinate system. X equals Lon (below) if
ModelType is 'ModelTypeGeographic'

• Y — Northing coordinates in the projected
coordinate system. Y equals Lat (below) if
ModelType is 'ModelTypeGeographic'

• Row— Row coordinates of the corner.

• Col— Column coordinates of the corner.

• Lat — Latitudes of the corner.

• Lon— Longitudes of the corner.

GeoTIFFCodes Structure containing raw numeric values
for those GeoTIFF fields that are encoded
numerically in the file. These raw values,
converted to a string elsewhere in the info
structure, are provided here for reference.

GeoTIFFCodes Fields

• Model

• PCS

• GCS

• UOMLength

• UOMAngle

3-482

geotiffinfo

• Datum

• PM

• Ellipsoid

• ProjCode

• Projection

• CTProjection

• ProjParmId

• MapSys

Each is scalar, except for ProjParmId, which is
a column vector.

GeoTIFFTags Structure containing field names that match
the GeoTIFF tags in the file. At least one
GeoTIFF tag must be present in the file or an
error is issued. The following fields may be
included:

GeoTIFF Tag Fields

• ModelPixelScaleTag: 1-by-3 double

• ModelTiepointTag: 1-by-6 double

• ModelTransformationTag: 1-by-16 double

• GeoKeyDirectoryTag: scalar structure

• GeoAsciiParamsTag: string

• GeoDoubleParamsTag: 1-by-N double

The GeoKeyDirectoryTag contains field names
that match the names of the "GeoKeys". For

3-483

geotiffinfo

more information about the "GeoKeys" refer to
the GeoTIFF specification.

ImageDescription String describing the image. If no description
is included in the file, the field is omitted.

Examples Return information about the boston.tif file:

info = geotiffinfo('boston.tif')

info =
Filename: [1x76 char]

FileModDate: '24-May-2007 11:08:15'
FileSize: 38729900

Format: 'tif'
FormatVersion: []

Height: 2881
Width: 4481

BitDepth: 8
ColorType: 'truecolor'
ModelType: 'ModelTypeProjected'

PCS: 'NAD83 / Massachusetts Mainland'
Projection: 'SPCS83 Massachusetts Mainland zone (meters)'

MapSys: 'STATE_PLANE_83'
Zone: 2001

CTProjection: 'CT_LambertConfConic_2SP'
ProjParm: [7x1 double]

ProjParmId: {7x1 cell}
GCS: 'NAD83'

Datum: 'North American Datum 1983'
Ellipsoid: 'GRS 1980'
SemiMajor: 6378137
SemiMinor: 6.3568e+006

PM: 'Greenwich'
PMLongToGreenwich: 0

UOMLength: 'US survey foot'
UOMLengthInMeters: 0.3048

3-484

http://www.remotesensing.org/geotiff/spec/geotiff6.html#6.2

geotiffinfo

UOMAngle: 'degree'
UOMAngleInDegrees: 1

TiePoints: [1x1 struct]
PixelScale: [3x1 double]
SpatialRef: [1x1 spatialref.MapRasterReference]
RefMatrix: [3x2 double]

BoundingBox: [2x2 double]
CornerCoords: [1x1 struct]
GeoTIFFCodes: [1x1 struct]
GeoTIFFTags: [1x1 struct]

ImageDescription: '"GeoEye"'

See Also geotiffread | geotiffwrite | projfwd | projinv | projlist

3-485

geotiffread

Purpose Read GeoTIFF file

Syntax [A, R] = geotiffread(filename)
[X, cmap, R] = geotiffread(filename)
[A, refmat, bbox] = geotiffread(filename)
[X, cmap, refmat, bbox] = geotiffread(filename)
[...] = geotiffread(filename, idx)
[...] = geotiffread(url, ...)

Description [A, R] = geotiffread(filename) reads a georeferenced grayscale,
RGB, or multispectral image or data grid from the GeoTIFF file specified
by filename into A and constructs a spatial referencing object, R.

[X, cmap, R] = geotiffread(filename) reads an indexed image
into X and the associated colormap into cmap, and constructs a spatial
referencing object, R. Colormap values in the image file are rescaled
into the range [0,1].

[A, refmat, bbox] = geotiffread(filename) reads a georeferenced
grayscale, RGB, or multispectral image or data grid into A; the
corresponding referencing matrix into refmat; and the bounding box
into bbox.

[X, cmap, refmat, bbox] = geotiffread(filename) reads an
indexed image into X, the associated colormap into cmap, the referencing
matrix into refmat, and the bounding box into bbox. The referencing
matrix must be unambiguously defined by the GeoTIFF file, otherwise
it and the bounding box are returned empty.

[...] = geotiffread(filename, idx) reads one image from a
multi-image GeoTIFF file.

[...] = geotiffread(url, ...) reads the GeoTIFF image from
a URL.

Tips • geotiffread imports pixel data using the TIFF-reading capabilities
of the MATLAB function imread and likewise shares any limitations
of imread. Consult the imread documentation for information on
TIFF image support.

3-486

geotiffread

Input
Arguments

filename

String that specifies the name of the GeoTIFF file. filename can
include the folder name. Otherwise, the file must be in the current
folder or in a folder on the MATLAB path. If the named file includes
the extension '.TIF' or '.TIFF' (either upper or lowercase), you can
omit the extension from filename.

idx

Integer value that specifies the order that the image appears in the file.
For example, if idx is 3, geotiffread reads the third image in the file.

Default: First image in the file

url

Internet URL. The URL must include the protocol type (e.g., "http://").

Output
Arguments

A

Two-dimensional array, if the file contains a grayscale image or
data grid. An M-by-N-by-P array, if the file contains a color image,
multispectral image, hyperspectral image, or data grid. The class of A
depends on the storage class of the pixel data in the file, which is related
to the BitsPerSample property as returned by the imfinfo function.

R

spatialref.GeoRasterReference object if the image or data
grid is referenced to a geographic coordinate system, or a
spatialref.MapRasterReference object if it is referenced to a
projected coordinate system.

X

Indexed image

cmap

3-487

geotiffread

Colormap

refmat

Referencing matrix

bbox

Bounding box

Examples Read and display the Boston GeoTIFF image:

[boston, R] = geotiffread('boston.tif');
figure
mapshow(boston, R);
axis image off

boston.tif copyright © GeoEye™, all rights reserved.

3-488

geotiffread

See Also geoshow | geotiffinfo | geotiffwrite | imread | mapshow

3-489

geotiffwrite

Purpose Write GeoTIFF file

Syntax geotiffwrite(filename,A,R)
geotiffwrite(filename,X,cmap,R)
geotiffwrite(...,Name,Value)

Description geotiffwrite(filename,A,R) writes a georeferenced image or data
grid, A, spatially referenced by R, into an output file, filename.

geotiffwrite(filename,X,cmap,R) writes the indexed image in X and
its associated colormap, cmap, to filename. X is spatially referenced
by R.

geotiffwrite(...,Name,Value) writes a georeferenced image or data
grid with additional options that control various characteristics of the
output file specified by one or more Name,Value pair arguments.

Tips • If you are working with image coordinates in a projected coordinate
system and R is a spatialref.MapRasterReference object
or a referencing matrix, set the 'GeoKeyDirectoryTag' or
'CoordRefSysCode' argument, accordingly. See “Name-Value Pair
Arguments” on page 3-491 for more information.

Input
Arguments

filename

Character string that specifies the output file name and location. If
your filename includes an extension, it must be '.tif' or '.TIF'. The
output file is a tiled GeoTIFF file if the input, A, is at least 160-by-160
in size. Otherwise, the output file is organized as rows-per-strip.

A

M-by-N array (grayscale image or data grid) or M-by-N-by-P array
(color or hyperspectral image, or data grid). The coordinates of A are
geographic and in the 'WGS 84' coordinate system, unless you specify
'GeoKeyDirectoryTag' or 'CoordRefSysCode' and indicate a different
coordinate system.

3-490

geotiffwrite

R

spatialref.GeoRasterReference object, referencing matrix, or
referencing vector; or spatialref.MapRasterReference object or
referencing matrix. Provides spatial referencing information.

X

Indexed image

cmap

Colormap

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The argument names are case insensitive.

CoordRefSysCode

Scalar, positive, integer-valued number that specifies the coordinate
reference system code for the coordinates of the data. You can specify
coordinates in either a geographic or a projected coordinate system, and
you can use a string, such as 'EPSG:4326'. If you specify the coordinate
system with a string, include the 'EPSG:' prefix. See “References” on
page 3-501 for a link to the GeoTiff Specification or the EPSG data files
(pcs.csv and gcs.csv) for the code numbers.

If you specify both the 'GeoKeyDirectoryTag' and the
'CoordRefSysCode', the coordinate system code in the
'CoordRefSysCode' takes precedence over the coordinate system key
found in the 'GeoKeyDirectoryTag'. If one value specifies a geographic
coordinate system and the other value specifies a projected coordinate
system, you receive an error.

3-491

geotiffwrite

If you do not specify a value for this argument, the default value is
4326, indicating that the coordinates are geographic and in the 'WGS
84' geographic coordinate system.

Default: 4326

GeoKeyDirectoryTag

Structure that specifies the GeoTIFF coordinate reference system
and meta-information. The structure contains field names that
match the GeoKey names in the GeoTIFF specification. The field
names are case insensitive. The structure can be obtained from the
GeoTIFF information structure, returned by geotiffinfo, in the
field, GeoTIFFTags.GeoKeyDirectoryTag. If you set certain fields of
the 'GeoKeyDirectoryTag' to inconsistent settings, you receive an
error message.

The GTRasterTypeGeoKey field is ignored, if specified. The value
for this GeoKey is derived from R. If you set certain fields of the
'GeoKeyDirectoryTag' to inconsistent settings, you receive an error
message. For instance, if R is either a spatialref.GeoRasterReference
object or a refvec and you specify a ProjectedCSTypeGeoKey field or you
set the GTModelTypeGeoKey field to 1 (projected coordinate system), you
receive an error. Likewise, if R is a spatialref.MapRasterReference
object and you do not specify a ProjectedCSTypeGeoKey field or a
'CoordRefSysCode', or the GTModelTypeGeoKey field is set to 2
(geographic coordinate system), you receive an error message.

TiffTags

Structure that specifies values for the TIFF tags in the output file. The
field names of the structure match the TIFF tag names supported by
the Tiff class. The field names are case insensitive.

You cannot set most TIFF tags using the structure input.

TiffTags Exceptions

• BitsPerSample

3-492

geotiffwrite

• SampleFormat

• SamplesPerPixel

• StripByteCounts

• StripOffsets

• SubFileType

• SubIFD

• TileByteCounts

• TileOffsets

• ColorMap

• ImageLength

• ImageWidth

• GeoAsciiParamsTag

• GeoDoubleParamsTag

• GeoKeyDirectoryTag

• ModelPixelScaleTag

• ModelTiepointTag

• ModelTransformationTag

The function sets several TIFF tags. The field names corresponding to
the TIFF tag, their corresponding field values set by the function, their
permissible values (if different from the Tiff class), and their data type
are noted in the following table.

3-493

geotiffwrite

Automatic TIFF Tags

Field Name Description

Compression String indicating the type of image compression. The
default is 'PackBits'. Other permissible values are
'LZW', 'Deflate', and 'none'.

Numeric values, Tiff.Compression.LZW,
Tiff.Compression.PackBits,
Tiff.Compression.Deflate, or
Tiff.Compression.None can also be used.

PhotometricInterpretation String indicating the type of photometric
interpretation. The field name can be shortened to
Photometric. The value is set based on the input
image characteristic, using the following algorithm:
If A is [M-by-N-by-3] and is class type uint8
or uint16, then the value is 'RGB'. For all other
sizes and data types, the value is 'MinIsBlack'.
If the X, CMAP syntax is supplied, the value is
'Palette'. If the value is set to 'RGB' and A is not
[M-by-N-by-3], an error is issued. Permissible values
are 'MinIsBlack', 'RGB', 'Palette', 'Separated'.
The numeric values, Tiff.Photometric.MinIsBlack,
Tiff.Photometric.RGB, Tiff.Photometric.Palette,
Tiff.Photometric.Separated can also be used.

Software A string indicating the software maker of the file. The
value is set to the string value 'MATLAB, Mapping
Toolbox, The MathWorks, Inc.'. To remove the
value, set the tag to the empty string ('').

RowsPerStrip A scalar positive integer-valued number specifying the
desired rows per strip in the output file. RowsPerStrip
is set to the value of 1 if the size of A is less than
[160-by-160]. An error is issued if both RowsPerStrip
and TileWidth and/or TileLength are specified.

3-494

geotiffwrite

Field Name Description

TileWidth A scalar positive integer-valued number and a multiple
of 16 specifying the width of the tiles. TileWidth is set
if the size of A is greater than [160-by-160]. If so, the
value is such that a maximum of [10-by-10] tiles are
created. An error is issued if both RowsPerStrip and
TileWidth are specified.

TileLength A scalar positive integer-valued number and a multiple
of 16 specifying the length of the tiles. TileLength is
set if the size of A is greater than [160-by-160]. If so,
the value is such that a maximum of [10-by-10] tiles
are created. An error is issued if both RowsPerStrip
and TileLength are specified.

Class
Support

The input array, A, can be any numeric class or logical. The indexed
image, X, must be class uint8 or uint16. The colormap array, cmap,
must be class double.

Examples Write an image with geographic coordinates from a JPEG file to a
GeoTIFF file:

basename = 'boston_ovr';
imagefile = [basename '.jpg'];
RGB = imread(imagefile);
worldfile = getworldfilename(imagefile);
R = worldfileread(worldfile, 'geographic', size(RGB));
filename = [basename '.tif'];
geotiffwrite(filename, RGB, R)
figure
usamap(RGB, R)
geoshow(filename)

3-495

geotiffwrite

Write a WMS image to a GeoTIFF file:

nasa = wmsfind('nasa', 'SearchField', 'serverurl');
layerName = 'bluemarbleng';
layer = nasa.refine(layerName, 'SearchField', 'layername', ...

'MatchType', 'exact');
[A, R] = wmsread(layer(1));
filename = [layerName '.tif'];
geotiffwrite(filename, A, R)
figure
worldmap world
geoshow(filename)

3-496

geotiffwrite

Write the Concord orthophotos to a single GeoTIFF file:

% Read the two adjacent orthophotos and combine them.
X_west = imread('concord_ortho_w.tif');
X_east = imread('concord_ortho_e.tif');
X = [X_west X_east];

% Construct referencing objects for the orthophotos and for their
% combination.
R_west = worldfileread('concord_ortho_w.tfw', 'planar', size(X_west));
R_east = worldfileread('concord_ortho_e.tfw', 'planar', size(X_east));
R = R_west;
R.XLimWorld = [R_west.XLimWorld(1) R_east.XLimWorld(2)];
R.RasterSize = size(X);

% Write the combined image to a GeoTIFF file. Use the code number,
% 26986, indicating the PCS_NAD83_Massachusetts Projected Coordinate
% System.
coordRefSysCode = 26986;

3-497

geotiffwrite

filename = 'concord_ortho.tif';
geotiffwrite(filename, X, R, 'CoordRefSysCode', coordRefSysCode);
figure
mapshow(filename)

Write the first 1024 columns and last 1024 rows of a GeoTIFF file to
a new GeoTIFF file:

[A, R] = geotiffread('boston.tif');
row = [size(A,1)-1024+1 size(A,1)];
col = [1 1024];
subImage = A(row(1):row(2), col(1):col(2), :);
xi = col + [-.5 .5];
yi = row + [-.5 .5];
[xlim, ylim] = R.intrinsicToWorld(xi, yi);
subR = R;
subR.RasterSize = size(subImage);

3-498

geotiffwrite

subR.XLimWorld = sort(xlim);
subR.YLimWorld = sort(ylim);
info = geotiffinfo('boston.tif');
filename = 'boston_subimage.tif';
geotiffwrite(filename, subImage, subR, ...
'GeoKeyDirectoryTag', info.GeoTIFFTags.GeoKeyDirectoryTag);
figure
mapshow(filename);

Write the Mount Washington SDTS DEM terrain data to GeoTIFF. The
data are referenced to Universal Transverse Mercator (UTM), Zone
19, in the North American Datum of 1927. This corresponds to the
GeoTIFF PCS_NAD27_UTM_zone_19N code number 26719. Set the

3-499

geotiffwrite

raster interpretation to 'postings' because the data is USGS DEM.
This corresponds to the GeoTIFF raster type PixelIsPoint.

[Z, refmat] = sdtsdemread('9129CATD.ddf');
R = refmatToMapRasterReference(refmat, size(Z));
R.RasterInterpretation = 'postings';
key.GTModelTypeGeoKey = 1; % Projected Coordinate System (PCS)
key.GTRasterTypeGeoKey = 2; % PixelIsPoint
key.ProjectedCSTypeGeoKey = 26719;
filename = '9129.tif';
geotiffwrite(filename, Z, R, 'GeoKeyDirectoryTag', key);

% Plot the outline of the state of New Hampshire in UTM.
S = shaperead('usastatelo', 'UseGeoCoords', true, 'Selector',...

{@(name) any(strcmp(name,{'New Hampshire'})), 'Name'});
proj = geotiffinfo(filename);
[x, y] = projfwd(proj, [S.Lat], [S.Lon]);
figure
mapshow(x,y)

% Display the GeoTIFF DEM file.
hold on
h = mapshow(filename, 'DisplayType', 'surface');
demcmap(get(h,'ZData'))

3-500

geotiffwrite

References Check the GeoTIFF specification for values of the following parameters:

• 'CoordRefSysCode' value for geographic coordinate systems

• 'CoordRefSysCode' value for projected coordinate systems

• GeoKey field names for the 'GeoKeyDirectoryTag'

The 'CoordRefSysCode' values may also be obtained from the EPSG
data files (pcs.csv and gcs.csv) in the folder:

matlabroot/toolbox/map/mapproj/projdata/epsg_csv

See Also geotiffinfo | geotiffread | imread | imwrite | Tiff.

3-501

http://www.remotesensing.org/geotiff/spec/geotiff6.html#6.3.2.1
http://www.remotesensing.org/geotiff/spec/geotiff6.html#6.3.3.1
http://www.remotesensing.org/geotiff/spec/geotiff6.html#6.2

getm

Purpose Map object properties

Syntax mat = getm(h)
mat = getm(h,MapPropertyName)
getm('MapProjection')
getm('axes')
getm('units')

Description mat = getm(h) returns the map structure of the map axes specified by
its handle. If the handle of a child of the map axes is specified, only
its properties are returned.

mat = getm(h,MapPropertyName) returns the specified property value.

getm('MapProjection') lists all available projections.

getm('axes') lists the map axes properties by property name.

getm('units') lists the available units.

Examples Create a default map axes and query a property value:

axesm('mercator','AngleUnits','degrees')
getm(gca,'MapParallels')

ans =
0

See Also axesm | setm

3-502

getseeds

Purpose Interactively assign seeds for data grid encoding

Syntax [row,col,val] = getseeds(map,R,nseeds)
[row,col,val] = getseeds(map,R,nseeds,seedval)
mat = getseeds(...)

Description [row,col,val] = getseeds(map,R,nseeds) allows user to identify
geographical objects while customizing a raster map. It prompts the
user for mouse click positions of objects and assigns them a code value.
The user is prompted for the value to seed at each location. The outputs
are the row and column of the seed location and the value assigned at
that location. R is either a 1-by-3 vector containing elements:

[cells/degree northern_latitude_limit western_longitude_limit]

or a 3-by-2 referencing matrix that transforms raster row and column
indices to/from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel.

[row,col,val] = getseeds(map,R,nseeds,seedval) assigns the
value seedval to each location supplied. If seedval is a scalar then
the same value is assigned at each location. Otherwise, if seedval is
a vector it must be length(nseeds) and each entry is assigned to the
corresponding location. getseeds operates on the current axes (gca).

mat = getseeds(...) returns a single output matrix where mat =
[row col val].

Examples Demonstrate this for yourself by typing the following and interactively
selecting points:

load topo
axesm('gortho','grid','on')

3-503

getseeds

seedmat = getseeds(topo,topolegend,3)

When you have selected three points, you are prompted for their values.
The regular data grid need not be displayed to execute getseeds on it.

See Also encodem

3-504

getworldfilename

Purpose Derive worldfile name from image filename

Syntax worldfilename = getworldfilename(imagefilename)

Description worldfilename = getworldfilename(imagefilename) returns the
name of the corresponding worldfile derived from the name of an image
file.

The worldfile and the image file have the same base name. If
imagefilename follows the “.3” convention, then you create the worldfile
extension by removing the middle letter and appending the letter 'w'.

If imagefilename has an extension that does not follow the “.3”
convention, then a 'w' is appended to the full image name to construct
the worldfile name.

If imagefilename has no extension, then '.wld' is appended to
construct a worldfile name.

Examples Given the following image filenames, worldfilename would return
these worldfile names:

Image File Name Worldfile Name

myimage.tif myimage.tfw

myimage.jpeg myimage.jpegw

myimage myimage.wld

See Also mapshow | mapview | worldfileread | worldfilewrite

3-505

globedem

Purpose Read Global Land One-km Base Elevation (GLOBE) data

Syntax [Z,refvec] = globedem(filename,scalefactor)
[Z,refvec] = globedem(filename,scalefactor,latlim,lonlim)
[Z,refvec] = globedem(foldername,scalefactor,latlim,lonlim)

Description [Z,refvec] = globedem(filename,scalefactor) reads the GLOBE
DEM files and returns the result as a regular data grid. The filename
is given as a string that does not include an extension. GLOBEDEM
first reads the ESRI header file found in the subfolder '/esri/hdr/'
and then the binary data file filename. If the files are not found on the
MATLAB path, they can be selected interactively. scalefactor is an
integer that when equal to 1 gives the data at its full resolution. When
scalefactor is an integer n larger than 1, every nth point is returned.
The map data is returned as an array of elevations and associated
three-element referencing vector. Elevations are given in meters above
mean sea level, using WGS 84 as a horizontal datum.

[Z,refvec] = globedem(filename,scalefactor,latlim,lonlim)
allows a subset of the map data to be read. The limits of the desired
data are specified as vectors of latitude and longitude in degrees. The
elements of latlim and lonlim must be in ascending order.

[Z,refvec] = globedem(foldername,scalefactor,latlim,lonlim)
reads and concatenates data from multiple files within a GLOBE folder
tree. The foldername input is a string with the name of the folder that
contains both the uncompressed data files and the ESRI header files.

Background GLOBE, the Global Land One-km Base Elevation data, was compiled
by the National Geophysical Data Center from more than 10 different
sources of gridded elevation data. GLOBE can be considered a higher
resolution successor to TerrainBase. The data set consists of 16 tiles,
each covering 50 by 90 degrees. Tiles require as much as 60 MB of
storage. Uncompressed tiles take between 100 and 130 MB.

Tips The globedem function reads data from GLOBE Version 1.0. The data
is for elevations only. Elevations are given in meters above mean sea

3-506

globedem

level using WGS 84 as a horizontal datum. Areas with no data, such as
the oceans, are coded with NaNs.

The data set and documentation are available over the Internet.

Note For details on locating map data for download over the
Internet, see the following documentation at the MathWorks Web site:
http://www.mathworks.com/help/map/finding-geospatial-data.html .

Examples Determine the file that contains the area around Cape Cod.

latlim = [41 42.5]; lonlim = [-73 -69.9];
globedems(latlim,lonlim)

ans =
'f10g'

Extract every 20th point from the tile covering the northeastern United
States and eastern Canada. Provide an empty file name, and select
the file interactively.

[Z,refvec] = globedem([],20);
size(Z)

ans =
300 540

Extract a subset of the data for Massachusetts at the full resolution.

latlim = [41 42.5]; lonlim = [-73 -69.9];
[Z,refvec] = globedem('f10g',1,latlim,lonlim);
size(Z)

ans =
181 373

3-507

http://www.mathworks.com/help/map/finding-geospatial-data.html

globedem

Replace the NaNs in the ocean with -1 to color them blue.

Z(isnan(Z)) = -1;

Extract some data for southern Louisiana in an area that straddles two
tiles. Provide the name of the folder containing the data files, and let
globedem determine which files are required, read from the files, and
concatenate the data into a single regular data grid.

latlim =[28.61 31.31]; lonlim = [-91.24 -88.62];
globedems(latlim,lonlim)

ans =
'e10g'
'f10g'

[Z,refvec] =
globedem('d:\externalData\globe\elev',1,latlim,lonlim);
size(Z)

ans =
325.00 315.00

References See Web site for the National Oceanic and Atmospheric Administration,
National Geophysical Data Center

See Also demdataui | dted | gtopo30 | satbath | tbase | usgsdem

3-508

globedems

Purpose GLOBE data filenames for latitude-longitude quadrangle

Syntax tileNames = globedems(latlim,lonlim)
tileNames = globedems(lat,lon)

Description tileNames = globedems(latlim,lonlim) returns a cell array of the
tile names covering the geographic region for GLOBEDEM digital
elevation maps. The region is specified by two-element vectors of
latitude and longitude limits in units of degrees.

tileNames = globedems(lat,lon) returns a cell array of the tile
names covering the geographic region for GLOBEDEM digital elevation
maps. The region is specified by scalar latitude and longitude points,
in units of degrees.

Background GLOBE, the Global Land One-km Base Elevation data, was compiled
by the National Geophysical Data Center from more than 10 different
sources of gridded elevation data. The data set consists of 16 tiles, each
covering 50 by 90 degrees. Determining which tiles are needed to cover
a particular region generally requires consulting an index map. This
function takes the place of such a reference by returning the file names
for a given geographic region.

Tips The globedems function reads data from the format GLOBE Version
1.0. globedem first reads the corresponding ESRI header file found in
the subdirectory '/esri/hdr/' and then the binary data file (with no
extension).

Examples Which tiles are needed for southern Louisiana?

latlim =[28.61 31.31];
lonlim = [-91.24 -88.62];
globedems(latlim,lonlim)

ans =
'e10g'
'f10g'

3-509

globedems

See Also globedem

3-510

gpxread

Purpose Read GPX file

Syntax P = gpxread(filename)
P = gpxread(URL)
P = gpxread(...,Name,Value)

Description P = gpxread(filename) reads point data from a GPS Exchange
Format (GPX) file, filename, and returns an n-by-1 geopoint vector, P
where n is the length of P.

P = gpxread(URL) reads the GPX data from a URL. The URLmust include
the protocol type (for example, http://).

The function searches first for waypoint, next for route, and then for
track features. It returns the data of the first type found. The Metadata
property of P contains any additional track or route metadata. For all
feature types, the Metadata property contains a FeatureType field with
a string value corresponding to the feature type ('waypoint', 'track',
or 'route') read from the file. If the file does not have feature type
data, the function returns an empty geopoint vector.

If multiple feature types exist, the function displays only data from
the first type returned. If the file contains waypoints, then P contains
the waypoints. If the file contains only routes, then P contains the
route points. If the file contains only track logs, then P contains
the track points. If the file contains only track logs with multiple
track segments, then the coordinates of the segments are concatenated
together and contain NaN separators. NaN denotes numeric elements
not found in the file. The empty string ('') is used to denote string
elements not found in the file.

P = gpxread(...,Name,Value) reads point data from a GPX file
with additional options, specified by one or more name-value pair
arguments, that control various characteristics of the import. Name is
the argument name and Value is the corresponding value. Name must
appear inside single quotes ('') and is case insensitive. You can specify
several name-value pair arguments in any order.

3-511

gpxread

Tips • Excluding extensions, GPX version 1.1 is fully supported. If any
other version is detected, a warning is issued. However, in most
cases, version 1.0 GPX files can be read successfully unless they
contain certain metadata tags.

• The GPX file must conform to version 1.1: See GPX 1.1 Schema
Documentation.

Input
Arguments

filename

String that specifies the name of the GPX file to open. filename can
include the directory path. Otherwise, the file must be in the current
folder or in a folder on the MATLAB path. If the named file includes
the extension '.gpx' (either uppercase or lowercase), you can omit the
extension from filename.

URL

URL of file location. URL must include the protocol type.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

FeatureType

String that specifies type of feature to read from file. FeatureType can
be one of the following case-insensitive strings: 'track', 'route',
'waypoint', or 'auto'. If the specified feature type is not found, then P
is returned as an empty geopoint vector.

DataType: String.

Default: 'auto'.

Index

3-512

http://www.topografix.com/GPX/1/1/
http://www.topografix.com/GPX/1/1/

gpxread

Scalar, positive, integer-valued number that specifies track or route
number to read from file. If the value of index is greater than the total
number of tracks or routes, then P is returned as an empty geopoint
vector. If the Index value is supplied, and the file contains only
waypoint data, then the value is ignored.

Default: 1

Output
Arguments

P

geopoint vector.

Definitions waypoint

A point of interest, or named feature on a map.

track

An ordered list of waypoints that describe a path.

route

An ordered list of waypoints representing a series of turn points leading
to a destination.

Examples Read and Display Waypoints

Read and display waypoints from the boston_placenames.gpx file.
Overlay the points onto the bostion.tif image.

Read the image and convert the length of the X and Y limits to meters
for use with the projection structure, which uses meters.

p = gpxread('boston_placenames');
[A,R] = geotiffread('boston');
proj = geotiffinfo('boston');
mstruct = geotiff2mstruct(proj);
R.XLimWorld = R.XLimWorld * proj.UOMLengthInMeters;
R.YLimWorld = R.YLimWorld * proj.UOMLengthInMeters;
figure('Renderer', 'zbuffer');

3-513

gpxread

axesm(mstruct)
mapshow(A,R);

Display the names and positions of each point.

for k=1:length(p)
textm(p(k).Latitude, p(k).Longitude, p(k).Name, ...

'Color',[0 0 0],'BackgroundColor',[0.9 0.9 0],...
'Interpreter','none');

end

3-514

gpxread

geoshow(p.Latitude, p.Longitude, 'DisplayType', 'point');
xlim(R.XLimWorld)
ylim(R.YLimWorld)

Working with Route Data

Read and display a route from Boston Logan International Airport to
The MathWorks®, Inc. in Natick, MA.

route = gpxread('sample_route');

3-515

gpxread

Compute latlim and lonlim.

border = [-.05 .05];
latlim = [min(route.Latitude) max(route.Latitude)] + border;
lonlim = [min(route.Longitude) max(route.Longitude)] + border;

Display the route and the positions of each point containing turn-by-turn
directions. Insert the turns into a legend.

directions = route(~cellfun(@isempty, route.Description));
turns = directions.Description;
figure('Renderer', 'zbuffer')
ax = usamap(latlim, lonlim)
setm(ax, 'MLabelParallel', 43.5)
geoshow(route.Latitude, route.Longitude)
for k=1:length(directions)

textm(directions(k).Latitude, directions(k).Longitude, ...
turns{k}, 'Visible', 'off', 'FontSize',2);

end
pos = get(gcf, 'Position');
pos(1:2) = [300 300];
set(gcf, 'Position', pos .* [1 1 1.25 1.25]);
legend(handlem('text'), turns{:}, 'Location', 'SouthOutside')
geoshow(directions.Latitude, directions.Longitude, ...

'DisplayType', 'point');

3-516

gpxread

Working with Track Data

Read and display multiple track logs.

3-517

gpxread

Read the track logs from sample_tracks.gpx.

trk1 = gpxread('sample_tracks');
trk2 = gpxread('sample_tracks', 'Index', 2);

Display the track logs.

lat = [trk1.Latitude trk2.Latitude];
lon = [trk2.Longitude trk2.Longitude];
latlim = [min(lat) max(lat)];
lonlim = [min(lon) max(lon)];
figure; usamap(latlim, lonlim)
geoshow(trk1.Latitude, trk1.Longitude);
geoshow(trk2.Latitude, trk2.Longitude, 'Color', 'red');

3-518

gpxread

Display the track logs near the MathWorks campus in Natick.

latlim = [min(trk1.Latitude) max(trk1.Latitude)];
lonlim = [min(trk1.Longitude) max(trk1.Longitude)];
figure;axesm('lambert', ...

'MapLatLimit', latlim, 'MapLonLimit', lonlim);
h1 = geoshow(trk1.Latitude, trk1.Longitude);
h2 = geoshow(trk2.Latitude, trk2.Longitude, 'Color', 'red');
legend([h1 h2], trk1.Metadata.Name, trk2.Metadata.Name, ...

'Location', 'SouthOutside')

3-519

gpxread

Working with Mixed Data

Read and display waypoints and a track log from the sample_mixed.gpx
file.

wpt = gpxread('sample_mixed');
trk = gpxread('sample_mixed', 'FeatureType', 'track');

Display the waypoints and track log.

lat = [trk.Latitude wpt.Latitude];

3-520

gpxread

lon = [trk.Longitude wpt.Longitude];
border = [-.05 .05];
latlim = [min(lat) max(lat)] + border;
lonlim = [min(lon) max(lon)] + border;
figure; usamap(latlim, lonlim)
geoshow(trk.Latitude, trk.Longitude);

Display the names and positions of each point.

h1 = geoshow(wpt(1).Latitude, wpt(1).Longitude, ...

3-521

gpxread

'DisplayType', 'point');
h2 = geoshow(wpt(2).Latitude, wpt(2).Longitude, ...

'DisplayType', 'point', 'Marker', 'd');
names = wpt.Name;
legend([h1 h2], names{:});
pos = get(gcf, 'Position');
pos(1:2) = [300 300];
set(gcf, 'Position', pos .* [1 1 1.25 1.25]);

3-522

gpxread

Elevation and Time Area Maps

Display elevation and time area maps and calculate cumulative ground
distance using track logs.

3-523

gpxread

Read the track log from the sample_mixed.gpx file.

trk = gpxread('sample_mixed', 'FeatureType', 'track');

Time values are stored as strings in the GPX file. Use datenum to
convert the strings to serial date numbers. Compute the time-of-day
in hours-minutes-seconds.

timeStr = strrep(trk.Time, 'T', ' ');
timeStr = strrep(timeStr, '.000Z', '');
trk.DateNumber = datenum(timeStr, 31);
day = fix(trk.DateNumber(1));
trk.TimeOfDay = trk.DateNumber - day;

Display an area plot of the elevation and time values.

figure
area(trk.TimeOfDay, trk.Elevation)
datetick('x', 13, 'keepticks', 'keeplimits')
ylabel('elevation (meters)')
xlabel('time(Z) hours:minutes:seconds')
title({'Elevation Area Plot', datestr(day)});

3-524

gpxread

Calculate and display ground track distance. Convert distance in
meters to distance in U.S. survey miles.

e = wgs84Ellipsoid;
lat = trk.Latitude;
lon = trk.Longitude;
d = distance(lat(1:end-1), lon(1:end-1), lat(2:end), lon(2:end), e);
d = d * unitsratio('sm', 'meter');

Display the cumulative ground track distance and elapsed time.

3-525

gpxread

trk.ElapsedTime = trk.TimeOfDay - trk.TimeOfDay(1);
figure
line(trk.ElapsedTime(2:end), cumsum(d))
datetick('x', 13)
ylabel('cumulative ground track distance (statute mile)')
xlabel('elapsed time (hours:minutes:seconds)')
title({'Cumulative Ground Track Distance in Miles', datestr(day), ...

['Total Distance in Miles: ' num2str(sum(d))]});

3-526

gpxread

See Also geopoint | shaperead

3-527

gradientm

Purpose Calculate gradient, slope and aspect of data grid

Syntax [ASPECT, SLOPE, gradN, gradE] = gradientm(Z, R)
[...] = gradientm(lat, lon, Z)
[...] = gradientm(..., ellipsoid)
[...] = gradientm(lat, lon, Z, ellipsoid, units)

Description [ASPECT, SLOPE, gradN, gradE] = gradientm(Z, R) computes the
slope, aspect and north and east components of the gradient for a
regular data grid Z with three-element referencing vector refvec. If the
grid contains elevations in meters, the resulting aspect and slope are in
units of degrees clockwise from north and up from the horizontal. The
north and east gradient components are the change in the map variable
per meter of distance in the north and east directions. The computation
uses finite differences for the map variable on the default earth ellipsoid.

R can be a spatialref.GeoRasterReference object, a referencing
vector, or a referencing matrix.

If R is a spatialref.GeoRasterReference object, its RasterSize
property must be consistent with size(Z).

If R is a referencing vector, it must be a 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to or from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel. Nearest-neighbor
interpolation is used by default. NaN is returned for points outside
the grid limits or for which lat or lon contain NaN. All angles are in
units of degrees.

3-528

gradientm

[...] = gradientm(lat, lon, Z) does the computation for a
geolocated data grid. lat and lon, the latitudes and longitudes of the
geolocation points, are in degrees.

[...] = gradientm(..., ellipsoid) uses the reference ellipsoid
specified by the input ellipsoid, which can be a referenceSphere,
referenceEllipsoid, or oblateSpheroid object, or a vector of the form
[semimajor_axis eccentricity]. If the map contains elevations in
the same units of length as the semimajor axis of the ellipsoid, the slope
and aspect are in units of degrees. This calling form is most useful for
computations on bodies other than the earth.

[...] = gradientm(lat, lon, Z, ellipsoid, units) specifies the
angle units of the latitude and longitude inputs. If omitted, 'degrees'
are assumed. For elevation maps in the same units as ellipsoid(1),
the resulting slope and aspect are in the specified units. The components
of the gradient are the change in the map variable per unit of length,
using the same length unit as the semimajor axis of the ellipsoid.

Tips Coarse digital elevation models can considerably underestimate the
local slope. For the preceding map, the elevation points are separated
by about 10 kilometers. The terrain between two adjacent points is
modeled as a linear variation, while actual terrain can vary much more
abruptly over such a distance.

Examples Compute and display the slope for the 30 arc-second (10 km) Korea
elevation data. Slopes in the Sea of Japan are up to 8 degrees at this
grid resolution.

load korea
[aspect, slope, gradN, gradE] = gradientm(map, refvec);
worldmap(slope, refvec)
geoshow(slope, refvec, 'DisplayType', 'texturemap')
cmap = cool(10);
demcmap('inc', slope, 1, [], cmap)
colorbar
latlim = getm(gca,'maplatlimit');
lonlim = getm(gca,'maplonlimit');

3-529

gradientm

land = shaperead('landareas',...
'UseGeoCoords', true, 'BoundingBox', [lonlim' latlim']);

geoshow(land, 'FaceColor', 'none')
set(gca, 'Visible', 'off')

See Also viewshed

How To • “Geolocated Data Grids”

3-530

grepfields

Purpose Identify matching fields in fixed record length files

Syntax grepfields(filename,searchstring)
grepfields(filename,searchstring,casesens)
grepfields(filename,searchstring,casesens,startcol)
grepfields(filename,searchstring,casesens,startfield,fields)
grepfields(filename,searchstring,casesens,startfield,fields,

machineformat)
indx = grepfields(...)

Description grepfields(filename,searchstring) displays lines in the file that
begin with the search string. The file must have fixed-length records
with line endings.

grepfields(filename,searchstring,casesens), with casesens
'matchcase', specifies a case-sensitive search. If omitted or 'none',
the search string matches regardless of the case.

grepfields(filename,searchstring,casesens,startcol) searches
starting with the specified column. startcol is an integer between
1 and the bytes per record in the file. In this calling form, the file is
regarded as a text file with line endings.

grepfields(filename,searchstring,casesens,startfield,fields)
searches within the specified field. startfield is an integer between 1
and the number of fields per record. The format of the file is described
by the fields structure. See readfields for recognized fields structure
entries. In this calling form, the file can be binary and lack line endings.
The search is within startfield, which must be a character field.

grepfields(filename,searchstring,casesens,startfield,fields,
machineformat) opens the file with the specified machine format.
machineformat must be recognized by fopen.

indx = grepfields(...) returns the record numbers of matched
records instead of displaying them on screen.

3-531

grepfields

Examples Write a binary file and read it:

fid = fopen('testbin','wb');
for i = 1:3
fwrite(fid,['character' num2str(i)],'char');
fwrite(fid,i,'int8');
fwrite(fid,[i i],'int16');
fwrite(fid,i,'integer*4');
fwrite(fid,i,'real*8');

end
fclose(fid);

fs(1).length = 10;fs(1).type = 'char';fs(1).name = 'field 1';
fs(2).length = 1;fs(2).type = 'int8';fs(2).name = 'field 2';
fs(3).length = 2;fs(3).type = 'int16';fs(3).name = 'field 3';
fs(4).length = 1;fs(4).type = 'integer*4';fs(4).name = 'field 4';
fs(5).length = 1;fs(5).type = 'float64';fs(5).name = 'field 5';

Find the record matching the string 'character2'. The record contains
binary data, which cannot be properly displayed.

grepfields('testbin','character2','none',1,fs)
character2? ? ? ?@

indx = grepfields('testbin','character2','none',1,fs)
indx =

2

Read the formatted file containing the following:

--
character data 1 1 2 3 1e6 10D6

character data 2 11 22 33 2e6 20D6

character data 3111222333 3e6 30D6
--

3-532

grepfields

fs(1).length = 16;fs(1).type = 'char';fs(1).name = 'field 1';
fs(2).length = 3;fs(2).type = '%3d';fs(2).name = 'field 2';
fs(3).length = 1;fs(3).type = '%4g';fs(3).name = 'field 3';
fs(4).length = 1;fs(4).type = '%5D'; fs(4).name = 'field 4';
fs(5).length = 1;fs(5).type = 'char';fs(5).name = '';

Find the records that match at the beginning of the line.

grepfields('testfile1','character')
character data 1 1 2 3 1e6 10D6
character data 2 11 22 33 2e6 20D6
character data 3111222333 3e6 30D6

grepfields('testfile1','character data 2')
character data 2 11 22 33 2e6 20D6

Find the records that match, starting the search in column 11.

grepfields('testfile1','data 2','none',11)
character data 2 11 22 33 2e6 20D6

Search record number 1.

grepfields('testfile1','character data 2','none',1,fs)
character data 2 11 22 33 2e6 20D6

Limitations Searches are limited to fields containing character data.

Tips See readfields for a complete discussion of the format and contents
of the fields argument.

See Also readfields | fopen

3-533

gridm

Purpose Toggle and control display of graticule lines

Syntax gridm
gridm('on')
gridm('off')
gridm('reset')
gridm(linespec)
gridm(MapAxesPropertyName, PropertyValue,...)
h = gridm(...)

Description gridm toggles the display of a latitude-longitude graticule. The choice of
meridians and parallels, as well as their graphics properties, depends
on the property settings of the map axes.

gridm('on') creates the graticule, if it does not yet exist, and makes it
visible.

gridm('off') makes the graticule invisible.

gridm('reset') redraws the graticule using the current map axes
properties.

gridm(linespec) uses any valid linespec string to control the
graphics properties of the lines in the graticule.

gridm(MapAxesPropertyName, PropertyValue,...) sets the
appropriate graticule properties to the desired values. For a description
of these property names and values, see the “Properties That Control
the Grid” on page 3-59 section of the axesm reference page.

h = gridm(...) returns the handles of the graticule lines. If both
parallels and meridians exist, then h is a two-element vector: h(1) is
the handle to the line comprising the parallels, and h(2) is the handle
to the line comprising the meridians.

Tips • You can also create or alter map grid properties using the axesm
or setm functions.

• By default the Clipping property is set to 'off'. Override this setting
with the following code:

3-534

gridm

hgrat = gridm('on');
set(hgrat,'Clipping','on')

See Also axesm | setm

3-535

grid2image

Purpose Display regular data grid as image

Syntax grid2image(Z,R)
grid2image(Z,R,'PropertyName',PropertyValue,...)
h = grid2image(...)

Description grid2image(Z,R) displays a regular data grid Z as an image. The
image is displayed in unprojected form, with longitude as x and latitude
as y, producing considerable distortion away from the Equator. Z can
be M-by-N or M-by-N-by-3, and can contain double, uint8, or uint16
data. The grid is georeferenced to latitude-longitude by R, which can be
a spatialref.GeoRasterReference object, a referencing vector, or a
referencing matrix.

If R is a spatialref.GeoRasterReference object, its
RasterSize property must be consistent with size(Z) and its
RasterInterpretation must be 'cells'.

If R is a referencing vector, it must be a 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to/from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel.

grid2image(Z,R,'PropertyName',PropertyValue,...) uses the
specified image properties to display the map. See the image function
reference page for a list of properties that can be changed.

h = grid2image(...) returns the handle of the image object displayed.

3-536

grid2image

Examples Display a regular data grid as an image.

load topo
R = georasterref('RasterSize', size(topo), ...

'Latlim', [-90 90], 'Lonlim', [0 360]);
figure; grid2image(topo, R)

See Also image | mapshow | mapview | meshm | surfacem | surfm

3-537

grn2eqa

Purpose Convert from Greenwich to equal area coordinates

Syntax [x,y] = grn2eqa(lat,lon)
[x,y] = grn2eqa(lat,lon,origin)
[x,y] = grn2eqa(lat,lon,origin,ellipsoid)
[x,y] = grn2eqa(lat,lon,origin,units)
mat = grn2eqa(lat,lon,origin...)

Description [x,y] = grn2eqa(lat,lon) converts the Greenwich coordinates lat
and lon to the equal-area coordinate points x and y.

[x,y] = grn2eqa(lat,lon,origin) specifies the location in the
Greenwich system of the x-y origin (0,0). The two-element vector origin
must be of the form [latitude, longitude]. The default places the
origin at the Greenwich coordinates (0º,0º).

[x,y] = grn2eqa(lat,lon,origin,ellipsoid) specifies the
ellipsoidal model of the figure of the Earth using ellipsoid. ellipsoid
is a referenceSphere, referenceEllipsoid, or oblateSpheroid
object, or a vector of the form [semimajor_axis eccentricity]. The
ellipsoid is spherical by default.

[x,y] = grn2eqa(lat,lon,origin,units) specifies the units for the
inputs, where units is any valid angle units string. The default value is
'degrees'.

mat = grn2eqa(lat,lon,origin...) packs the outputs into a single
variable.

The grn2eqa function converts data from Greenwich-based
latitude-longitude coordinates to equal-area x-y coordinates. The
opposite conversion can be performed with eqa2grn.

Examples lats = [56 34]; longs = [-140 23];
[x,y] = grn2eqa(lats,longs)

x =
-2.4435 0.4014

y =

3-538

grn2eqa

0.8290 0.5592

See Also eqa2grn | hista

3-539

gshhs

Purpose Read Global Self-Consistent Hierarchical High-Resolution Shoreline

Syntax S = gshhs(filename)
S = gshhs(filename, latlim, lonlim)
indexfilename = gshhs(filename, 'createindex')

Description S = gshhs(filename) reads GSHHS vector data for the entire world
from filename. GSHHS files must have names of the form gshhs_x.b,
wdb_borders_x.b, or wdb_rivers_x.b, where x is one of the letters c,
l, i, h or f, corresponding to increasing resolution (and file size). The
result returned in S is a polygon or line geographic data structure array
(a geostruct, with 'Lat' and 'Lon' coordinate fields).

S = gshhs(filename, latlim, lonlim) reads a subset of the vector
data from filename. The limits of the desired data are specified as
two-element vectors of latitude, latlim, and longitude, lonlim, in
degrees. The elements of latlim and lonlim must be in ascending
order. Longitude limits range from [-180 195]. If latlim is empty the
latitude limits are [-90 90]. If lonlim is empty, the longitude limits
are [-180 195].

indexfilename = gshhs(filename, 'createindex') creates an
index file for faster data access when requesting a subset of a larger
dataset. The index file has the same name as the GSHHS data file,
but with the extension 'i', instead of 'b' and is written in the same
folder as filename. The name of the index file is returned, but no
coastline data are read. A call using this option should be followed by an
additional call to gshhs to import actual data. On that and subsequent
calls, gshhs detects the presence of the index file and uses it to access
records by location much faster than it would without an index.

3-540

gshhs

Output
Structure

The output structure S contains the following fields. All latitude and
longitude values are in degrees.

Field Name Field Contents

'Geometry' 'Line' or 'Polygon'

'BoundingBox' [minLon minLat; maxLon maxLat]

'Lon' Coordinate vector

'Lat' Coordinate vector

'South' Southern latitude boundary

'North' Northern latitude boundary

'West' Western longitude boundary

'East' Eastern longitude boundary

'Area' Area of polygon in square kilometers

'Level' Scalar value ranging from 1 to 4, indicates level
in topological hierarchy

'LevelString' 'land', 'lake', 'island_in_lake',
'pond_in_island_in_lake', or ''

'NumPoints' Number of points in the polygon

'FormatVersion' Format version of data file. Positive integer for
versions 3 and later; empty for versions 1 and 2.

'Source' Source of data: 'WDBII' or 'WVS'

'CrossesGreenwich'Scalar flag: true if the polygon crosses the prime
meridian; false otherwise

'GSHHS_ID' Unique polygon scalar id number, starting at 0

For releases 2.0 and higher (FormatVersion 7 and higher), the following
additional fields are included in the output structure:

3-541

gshhs

Field Name Field Contents

'RiverLake' Scalar flag: true if the polygon is the fat part
of a major river and the Level value is set to 2;
false otherwise.

'AreaFull' Area of original full-resolution polygon in units

1
10

2km .

'Container' ID of container polygon that encloses this
polygon. Set to -1 to indicate none.

'Ancestor' ID of ancestor polygon in the full resolution set
that was the source of this polygon. Set to -1 to
indicate none.

For Release 2.2 and higher (FormatVersion 9 and higher) the following
additional field is included in the output structure:

Field Name Field Contents

'CrossesDateline' Scalar flag: true if the polygon crosses the
dateline; false otherwise.

Tips • If you are extracting data within specified geographic limits and
using data other than coarse resolution, consider creating an index
file first. Also, to speed rendering when mapping very large amounts
of data, you might want to plot the data as NaN-clipped lines rather
than as patches.

• When you specify latitude-longitude limits, polygons that completely
fall outside those limits are excluded, but no trimming of features that
partially traverse the region is performed. If you want to eliminate
data outside of a rectangular region of interest, you can use maptrimp
with the Lat and Lon fields of the geostruct returned by gshhs to clip
the data to your region and still maintain polygon topology.

3-542

gshhs

• You can read the WDB rivers and borders datasets but the
LevelString field will be empty. The Level values vary from feature
to feature but the interpretations of these values are not documented
as part of the GSHHS distribution and are therefore not converted
to strings.

• The following examples use publicly available GSHHS data
files that do not ship with the Mapping Toolbox software. For
details on locating GSHHS data for download over the Internet,
see the following documentation at the MathWorks Web site:
http://www.mathworks.com/help/map/finding-geospatial-data.html .

Background The Global Self-Consistent Hierarchical High-Resolution Shoreline was
created by Paul Wessel of the University of Hawaii and Walter H.F.
Smith of the NOAA Geosciences Lab. At the full resolution the data
requires 85 MB uncompressed, but lower resolution versions are also
provided. This database includes coastlines, major rivers, and lakes.
The GSHHS data in various resolutions is available over the Internet
from the National Oceanic and Atmospheric Administration, National
Geophysical Data Center Web site.

Version 3 (Release 1.3) of the gshhs_c.b (coarse) data set ships with
the toolbox in the toolbox/map/mapdata folder. For details, type

type gshhs_c.txt

at the MATLAB command prompt. The gshhs function has been
qualified on GSHHS releases 1.1 through 2.1 (version 8). It should
also be able to read newer versions, if they adhere to the same header
format as releases 2.0 and 2.1.

Examples Example 1

Read the entire coarse data set (located on the MATLAB path in
matlabroot/toolbox/map/mapdata):

filename = gunzip('gshhs_c.b.gz', tempdir);
world = gshhs(filename{1});

3-543

http://www.mathworks.com/help/map/finding-geospatial-data.html

gshhs

Display as a coastline:

figure
worldmap world
geoshow([world.Lat], [world.Lon])

Display each level in a different color.

levels = [world.Level];
land = (levels == 1);
lake = (levels == 2);
island = (levels == 3);
figure
worldmap world
geoshow(world(land), 'FaceColor', [0 1 0])
geoshow(world(lake), 'FaceColor', [0 0 1])
geoshow(world(island),'FaceColor', [1 1 0])

3-544

gshhs

After creating an index file, read and display Africa as a green polygon;
note that gshhs detects and uses the index file automatically:

indexname = gshhs(filename{1}, 'createindex');
figure
worldmap Africa
projection = gcm;
latlim = projection.maplatlimit;
lonlim = projection.maplonlimit;
africa = gshhs(filename{1}, latlim, lonlim);
geoshow(africa, 'FaceColor', 'green')
setm(gca, 'FFaceColor', 'cyan')

3-545

gshhs

Delete the temporary files:

delete(filename{1})
delete(indexname)

Example 2

Read the intermediate resolution database for South America:

s = gshhs('gshhs_i.b',[-60 -15],[-90 -30])

Example 3

Read the full-resolution file for East and West Falkland Islands (Islas
Malvinas):

s = gshhs('gshhs_f.b',[-55 -50],[-65 -55])

Example 4

Create the index file for the high-resolution database:

gshhs('gshhs_h.b','createindex')

3-546

gshhs

See Also dcwdata | geoshow | maptrimp | shaperead | vmap0data | worldmap

3-547

gtextm

Purpose Place text on map using mouse

Syntax h = gtextm(string)
h = gtextm(string,PropertyName,PropertyValue,...)

Description h = gtextm(string) places the text object string at the position
selected by mouse input. When this function is called, the current map
axes are brought up and the cursor is activated for mouse-click position
entry. The text object’s handle is returned.

h = gtextm(string,PropertyName,PropertyValue,...) allows the
specification of any properties supported by the MATLAB text function.

Examples Create map axes:

axesm('sinusoid','FEdgeColor','red')
gtextm('hello world','FontWeight','bold')

Click inside the frame and the text appears.

See Also axesm | textm

3-548

gtopo30

Purpose Read 30-arc-second global digital elevation data (GTOPO30)

Syntax [Z,refvec] = gtopo30(tilename)
[Z,refvec] = gtopo30(tilename,samplefactor)
[Z,refvec] = gtopo30(tilename,samplefactor,latlim,lonlim)
[Z,refvec] = gtopo30(foldername, ...)

Description [Z,refvec] = gtopo30(tilename) reads the GTOPO30 tile specified
by tilename and returns the result as a regular data grid. tilename is
a string which does not include an extension and indicates a GTOPO30
tile in the current folder or on the MATLAB path. If tilename is empty
or omitted, a file browser will open for interactive selection of the
GTOPO30 header file. The data is returned at full resolution with the
latitude and longitude limits determined from the GTOPO30 tile. The
data grid, Z, is returned as an array of elevations. Elevations are given
in meters above mean sea level using WGS84 as a horizontal datum.
refvec is the associated referencing vector.

[Z,refvec] = gtopo30(tilename,samplefactor) reads a subset of
the elevation data from tilename. samplefactor is a scalar integer,
which when equal to 1 reads the data at its full resolution. When
samplefactor is an integer n greater than one, every nth point is read.
If samplefactor is omitted or empty, it defaults to 1.

[Z,refvec] = gtopo30(tilename,samplefactor,latlim,lonlim)
reads a subset of the elevation data from tilename using the latitude
and longitude limits latlim and lonlim specified in degrees. latlim is
a two-element vector of the form:

[southern_limit northern_limit]

Likewise, lonlim has the form:

[western_limit eastern_limit]

If latlim and lonlim are omitted, the coordinate limits are determined
from the file. The latitude and longitude limits are snapped outward
to define the smallest possible rectangular grid of GTOPO30 cells that

3-549

gtopo30

fully encloses the area defined by the input limits. Any cells in this grid
that fall outside the extent of the tile are filled with NaN.

[Z,refvec] = gtopo30(foldername, ...) is similar to the syntaxes
above except that GTOPO30 data are read and concatenated from
multiple tiles within a GTOPO30 CD-ROM or folder structure. The
foldername input is a string with the name of the folder which contains
the GTOPO30 tile folders or GTOPO30 tiles. Within the tile folders are
the uncompressed data files. The foldername for CD-ROMs distributed
by the USGS is the device name of the CD-ROM drive. As with the case
with a single tile, any cells in the grid specified by latlim and lonlim
are NaN filled if they are not covered by a tile within foldername.
samplefactor if omitted or empty defaults to 1. latlim if omitted or
empty defaults to [-90 90]. lonlim if omitted or empty defaults to
[-180 180].

For details on locating GTOPO30 data for download over the Internet,
see http://www.mathworks.com/help/map/finding-geospatial-data.html .

Examples Example 1

Extract and display full resolution data for the state of Massachusetts:

% Read the stateline polygon boundary and calculate boundary limits.
Massachusetts = shaperead('usastatehi','UseGeoCoords',true, ...

'Selector',{@(name) strcmpi(name,'Massachusetts'),'Name'});
latlim = [min(Massachusetts.Lat(:)) max(Massachusetts.Lat(:))];
lonlim = [min(Massachusetts.Lon(:)) max(Massachusetts.Lon(:))];

% Read the GTOPO30 data at full resolution.
[Z,refvec] = gtopo30('W100N90',1,latlim,lonlim);

% Display the data grid and overlay the stateline boundary.
figure
usamap(Z,refvec);
geoshow(Z,refvec,'DisplayType','surface')
demcmap(Z)
geoshow(Massachusetts,'DisplayType','polygon',...

'facecolor','none','edgecolor','y')

3-550

http://www.mathworks.com/help/map/finding-geospatial-data.html

gtopo30

Example 2

% Extract every 20th point from a tile.
% Provide an empty filename and select the file interactively.
[Z,refvec] = gtopo30([],20);

Example 3

% Extract data for Thailand, an area which straddles two tiles.
% The data is on CD number 3 distributed by the USGS.
% The CD-device is 'F:\'
latlim = [5.22 20.90];
lonlim = [96.72 106.38];
gtopo30s(latlim,lonlim)
% Extract every fifth data point for Thailand.
% Specify actual folder or mapped drive if not "F:\'
[Z,refvec] = gtopo30('F:\',5,latlim,lonlim);
worldmap(Z,refvec);
geoshow(Z,refvec,'DisplayType','surface')
demcmap(Z)

3-551

gtopo30

Example 4

% Extract every 10th point from a column of data 5 degrees around
% the prime meridian. The current folder contains GTOPO30 data.
[Z,refvec] = gtopo30(pwd,10,[],[-5 5]);

See Also gtopo30s | globedem | dted | satbath | tbase | usgsdem

3-552

gtopo30s

Purpose GTOPO30 data filenames for latitude-longitude quadrangle

Syntax tileNames = gtopo30s(latlim,lonlim)
tileNames = gtopo30s(lat,lon)

Description tileNames = gtopo30s(latlim,lonlim) returns a cell array of the tile
names covering the geographic region for GTOPO30 digital elevation
maps (also referred to as “30-arc second” DEMs). latlim and lonlim
specify the region as two-element vectors of latitude and longitude
limits in units of degrees.

tileNames = gtopo30s(lat,lon) returns a cell array of the tile names
covering the geographic region for GTOPO30 digital elevation maps.
lat and lon specify the region as scalar latitude and longitude points.

See Also gtopo30

3-553

handlem

Purpose Handles of displayed map objects

Syntax handlem or handlem('taglist')
handlem('prompt')
h = handlem(object)
h = handlem(tagstr)
h = handlem('object',axesh) or handlem(tagstr,axesh)
h = handlem(...,axesh,'searchmethod')
h = handlem(handles)

Description handlem or handlem('taglist') displays a dialog box for selecting
objects that have their Tag property set.

handlem('prompt') displays a dialog box for selecting objects based on
the object strings listed below.

h = handlem(object) returns the handles of those objects in the current
axes specified by the input string, object. The options for the object
string are defined by the following list:

'all' All children

'clabel' Contour labels

'contour' hggroups containing contours

'fillcontour' hggroups containing filled contours

'frame' Map frame

'grid' Map grid lines

'hggroup' All hggroup objects

'hidden' Hidden objects

'image' Untagged image objects

'light' Untagged light objects

'line' Untagged line objects

3-554

handlem

'map' All objects on the map, excluding the frame and
grid

'meridian' Longitude grid lines

'mlabel' Longitude labels

'parallel' Latitude grid lines

'plabel' Latitude labels

'patch' Untagged patch objects

'scaleruler' Scaleruler objects

'surface' Untagged surface objects

’'text'’ Untagged text objects

'tissot' Tissot indicatrices

'visible' Visible objects

h = handlem(tagstr) returns the handles for any objects whose tags
match the string tagstr.

h = handlem('object',axesh) or handlem(tagstr,axesh) searches
within the axes specified by the input handle axesh.

h = handlem(...,axesh,'searchmethod') controls the method used
to match the object input. If omitted, 'exact' is assumed. Search
method 'strmatch' searches for matches that start at the beginning of
the tag. Search method 'findstr' searches anywhere within the tag
for the object string.

h = handlem(handles) returns those elements of an input vector of
handles that are still valid.

A prefix of 'all' may be applied to strings defining a Handle Graphics®

object type (text, line, patch, light, surface, or image) to find all object
handles that meet the type criteria (for example, 'allimage'). Without
the 'all' prefix, only handles with an empty tag are returned.

See Also findobj

3-555

hidem

Purpose Hide specified graphic objects on map axes

Syntax hidem
hidem(handle)
hidem(object)

Description hidem brings up a dialog box for selecting the objects to hide (set their
Visible property to 'off').

hidem(handle) hides the objects specified by a vector of handles.

hidem(object) hides those objects specified by the object string,
which can be any string recognized by the handlem function.

See Also clma | clmo | handlem | namem | showm | tagm

3-556

hista

Purpose Histogram for geographic points with equal-area bins

Syntax [lat,lon,num] = hista(lats,lons)
[lat,lon,num] = hista(lats,lons,binarea)
[lat,lon,num] = hista(lats,lons,binarea,ellipsoid)
[lat,lon,num] = hista(lats,lons,binarea,units)

Description [lat,lon,num] = hista(lats,lons) returns the center coordinates of
equal-area bins and the number of observations falling in each based
on the geographically distributed input data.

[lat,lon,num] = hista(lats,lons,binarea) specifies the equal-area
bin size, in square kilometers. It is 100 km2 by default.

[lat,lon,num] = hista(lats,lons,binarea,ellipsoid)
specifies the shape of the Earth using ellipsoid, which can be a
referenceSphere, referenceEllipsoid, or oblateSpheroid object, or
a vector of the form [semimajor_axis eccentricity]. The default
ellipsoid model is a unit sphere.

[lat,lon,num] = hista(lats,lons,binarea,units) specifies the
standard angle unit string. The default value is 'degrees'.

Examples Create random data:

lats = rand(4)

lats =
0.4451 0.8462 0.8381 0.8318
0.9318 0.5252 0.0196 0.5028
0.4660 0.2026 0.6813 0.7095
0.4186 0.6721 0.3795 0.4289

longs = rand(4)

longs =
0.3046 0.3028 0.3784 0.4966
0.1897 0.5417 0.8600 0.8998

3-557

hista

0.1934 0.1509 0.8537 0.8216
0.6822 0.6979 0.5936 0.6449

Bin the data in 50-by-50 km cells (2500 sq km):

[lat,lon,num] = hista(lats,longs,2500);
[lat lon num]

ans =
0.2574 0.3757 4.0000
0.7070 0.3757 5.0000

-0.1923 0.8253 1.0000
0.2573 0.8253 2.0000
0.7070 0.8254 4.0000

See Also eqa2grn | grn2eqa | histr

3-558

histr

Purpose Histogram for geographic points with equirectangular bins

Syntax [lat,lon,num,wnum] = histr(lats,lons)
[lat,lon,num,wnum] = histr(lats,lons,units)
[lat,lon,num,wnum] = histr(lats,lons,bindensty)

Description [lat,lon,num,wnum] = histr(lats,lons) returns the center
coordinates of equal-rectangular bins and the number of observations,
num, falling in each based on the geographically distributed input data.
Additionally, an area-weighted observation value, wnum, is returned.
wnum is the bin’s num divided by its normalized area. The largest bin has
the same num and wnum; a smaller bin has a larger wnum than num.

[lat,lon,num,wnum] = histr(lats,lons,units) specifies the
standard angle unit string. The default value is 'degrees'.

[lat,lon,num,wnum] = histr(lats,lons,bindensty) sets the
number of bins per angular unit. For example, if units is 'degrees', a
bindensty of 10 would be 10 bins per degree of latitude or longitude,
resulting in 100 bins per square degree. The default is one cell per
angular unit.

The histr function sorts geographic data into equirectangular bins for
histogram purposes. Equirectangular in this context means that each
bin has the same angular measurement on each side (e.g., 1º-by-1º).
Consequently, the result is not an equal-area histogram. The hista
function provides that capability. However, the results of histr can be
weighted by their area bias to correct for this, in some sense.

Examples Create random data:

lats = rand(4)

lats =
0.4451 0.8462 0.8381 0.8318
0.9318 0.5252 0.0196 0.5028
0.4660 0.2026 0.6813 0.7095
0.4186 0.6721 0.3795 0.4289

3-559

histr

longs = rand(4)

longs =
0.3046 0.3028 0.3784 0.4966
0.1897 0.5417 0.8600 0.8998
0.1934 0.1509 0.8537 0.8216
0.6822 0.6979 0.5936 0.6449

Bin the data in 0.5-by-0.5 degree cells (two bins per degree):

[lat,lon,num,wnum] = histr(lats,longs,2);
[lat,lon,num,wnum]

ans =
0.2500 0.2500 3.0000 3.0000
0.7500 0.2500 4.0000 4.0003
0.2500 0.7500 4.0000 4.0000
0.7500 0.7500 5.0000 5.0004

The bins centered at 0.75ºN are slightly smaller in area than the others.
wnum reflects the relative count per normalized unit area.

See Also filterm | hista

3-560

imbedm

Purpose Encode data points into regular data grid

Syntax Z = imbedm(lat, lon, value, Z, R)
Z = imbedm(lat, lon, value, Z, R, units)
[Z, indxPointOutsideGrid] = imbedm(...)

Description Z = imbedm(lat, lon, value, Z, R) resets certain entries of a
regular data grid, Z. R can be a spatialref.GeoRasterReference
object, a referencing vector, or a referencing matrix.

If R is a spatialref.GeoRasterReference object, its RasterSize
property must be consistent with size(Z).

If R is a referencing vector, it must be a 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to or from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel. Nearest-neighbor
interpolation is used by default. NaN is returned for points outside
the grid limits or for which lat or lon contain NaN. All angles are in
units of degrees.

Z = imbedm(lat, lon, value, Z, R, units) specifies the units of
the vectors lat and lon, where units is any valid angle units string
('degrees' by default).

[Z, indxPointOutsideGrid] = imbedm(...) returns the indices of
lat and lon corresponding to points outside the grid in the variable
indxPointOutsideGrid.

3-561

imbedm

Examples Create a simple grid map and embed new values in it:

Z = ones(3,6)

Z =
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

refvec = [1/60 90 -180]

refvec =
0.0167 90.0000 -180.0000

newgrid = imbedm([23 -23], [45 -45],[5 5],Z,refvec)

newgrid =
1 1 1 1 1 1
1 1 5 5 1 1
1 1 1 1 1 1

See Also ltln2val | setpostn

3-562

ind2rgb8

Purpose Convert indexed image to uint8 RGB image

Syntax RGB = ind2rgb8(X,cmap)

Description RGB = ind2rgb8(X,cmap) creates an RGB image of class uint8. X
must be uint8, uint16, or double, and cmap must be a valid MATLAB
colormap.

Examples % Convert the 'concord_ortho_e.tif' image to RGB.
[X, cmap] = imread('concord_ortho_e.tif');
RGB = ind2rgb8(X, cmap);
R = worldfileread('concord_ortho_e.tfw');
mapshow(RGB, R);

See Also ind2rgb

3-563

ingeoquad

Purpose True for points inside or on lat-lon quadrangle

Syntax tf = ingeoquad(lat, lon, latlim, lonlim)

Description tf = ingeoquad(lat, lon, latlim, lonlim) returns an array tf
that has the same size as lat and lon. tf(k) is true if and only if the
point lat(k), lon(k) falls within or on the edge of the geographic
quadrangle defined by latlim and lonlim. latlim is a vector of the
form [southern-limit northern-limit], and lonlim is a vector of
the form [western-limit eastern-limit]. All angles are in units
of degrees.

Examples 1 Load and display a digital elevation model (DEM) including the
Korean Peninsula:

korea = load('korea');
R = refvecToGeoRasterReference(korea.refvec, size(korea.map));
figure('Color','white')
worldmap([20 50],[90 150])
geoshow(korea.map, R, 'DisplayType', 'texturemap');
demcmap(korea.map)

2 Outline the quadrangle containing the DEM:

[outlineLat, outlineLon] = outlinegeoquad(R.Latlim, ...
R.Lonlim, 90, 5);

geoshow(outlineLat,outlineLon,'DisplayType','line', ...
'Color','black')

3 Generate a track that crosses the DEM:

[lat, lon] = track2(23, 110, 48, 149, [1 0], 'degrees', 20);
geoshow(lat, lon, 'DisplayType', 'line')

4 Identify and mark points on the track that fall within the quadrangle
outlining the DEM:

3-564

ingeoquad

tf = ingeoquad(lat, lon, R.Latlim, R.Lonlim);
geoshow(lat(tf), lon(tf), 'DisplayType', 'point')

See Also inpolygon | intersectgeoquad

3-565

intersectgeoquad

Purpose Intersection of two latitude-longitude quadrangles

Syntax [latlim, lonlim] = intersectgeoquad(latlim1, lonlim1, latlim2,
lonlim2)

Description [latlim, lonlim] = intersectgeoquad(latlim1, lonlim1,
latlim2, lonlim2) computes the intersection of the quadrangle
defined by the latitude and longitude limits latlim1 and lonlim1, with
the quadrangle defined by the latitude and longitude limits latlim2
and lonlim2. latlim1 and latlim2 are two-element vectors of the form
[southern-limit northern-limit]. Likewise, lonlim1 and lonlim2
are two-element vectors of the form [western-limit eastern-limit].
All input and output angles are in units of degrees. The intersection
results are given in the output arrays latlim and lonlim. Given an
arbitrary pair of input quadrangles, there are three possible results:

1 The quadrangles fail to intersect. In this case, both latlim and
lonlim are empty arrays.

2 The intersection consists of a single quadrangle. In this case, latlim
(like latlim1 and latlim2) is a two-element vector that has the form
[southern-limit northern-limit], where southern-limit and
northern-limit represent scalar values. lonlim (like lonlim1 and
lonlim2), is a two-element vector that has the form [western-limit
eastern-limit], with a pair of scalar limits.

3 The intersection consists of a pair of quadrangles. This can happen
when longitudes wrap around such that the eastern end of one
quadrangle overlaps the western end of the other and vice versa. For
example, if lonlim1 = [-90 90] and lonlim2 = [45 -45], there
are two intervals of overlap: [-90 -45] and [45 90]. These limits
are returned in lonlim in separate rows, forming a 2-by-2 array.
In our example (assuming that the latitude limits overlap), lonlim
would equal [-90 -45; 45 90]. It still has the form [western-limit
eastern-limit], but western-limit and eastern-limit are 2-by-1
rather than scalar. The two output quadrangles have the same
latitude limits, but these are replicated so that latlim is also 2-by-2.

3-566

intersectgeoquad

To continue the example, if latlim1 = [0 30] and latlim2
= [20 50], latlim equals [20 30; 20 30]. The form is
still [southern-limit northern-limit], but in this case
southern-limit and northern-limit are 2-by-1.

Tips latlim1 and latlim2 should normally be given in order of increasing
numerical value. No error will result if, for example, latlim1(2) <
latlim1(1), but the outputs will both be empty arrays.

No such restriction applies to lonlim1 and lonlim2. The first element
is always interpreted as the western limit, even if it exceeds the second
element (the eastern limit). Furthermore, intersectgeoquad correctly
handles whatever longitude-wrapping convention may have been
applied to lonlim1 and lonlim2.

In terms of output, intersectgeoquad wraps lonlim such that all
elements fall in the closed interval [-180 180]. This means that if (one
of) the output quadrangle(s) crosses the 180° meridian, its western limit
exceeds its eastern limit. The result would be such that

lonlim(2) < lonlim(1)

if the intersection comprises a single quadrangle or

lonlim(k,2) < lonlim(k,1)

where k equals 1 or 2 if the intersection comprises a pair of quadrangles.

If abs(diff(lonlim1)) or abs(diff(lonlim2)) equals 360, its
quadrangle is interpreted as a latitudinal zone that fully encircles the
planet, bounded only by one parallel on the south and another parallel
on the north. If two such quadrangles intersect, lonlim is set to [-180
180].

If you want to display geographic quadrangles generated by this
function or any other which are more than one or two degrees in
extent, they may not follow curved meridians and parallels very well.
The degree of departure depends on the extent of the quadrangle, the
map projection, and the map scale. In such cases, you can interpolate

3-567

intersectgeoquad

intermediate vertices along quadrangle edges with the outlinegeoquad
function.

Examples Example 1

Nonintersecting quadrangles:

[latlim, lonlim] = intersectgeoquad(...
[-40 -60], [-180 180], [40 60], [-180 180])

latlim =
[]

lonlim =
[]

Example 2

Intersection is a single quadrangle:

[latlim, lonlim] = intersectgeoquad(...
[-40 60], [-120 45], [-60 40], [160 -75])

latlim =
-40 40

lonlim =
-120 -75

Example 3

Intersection is a pair of quadrangles:

[latlim, lonlim] = intersectgeoquad(...
[-30 90],[-10 -170],[-90 30],[170 10])

latlim =
-30 30
-30 30

3-568

intersectgeoquad

lonlim =
-10 10
170 -170

Example 4

Inputs and output fully encircle the planet:

[latlim, lonlim] = intersectgeoquad(...
[-30 90],[-180 180],[-90 30],[0 360])

latlim =
-30 30

lonlim =
-180 180

Example 5

Find and map the intersection of the bounding boxes of adjoining U.S.
states:

usamap({'Minnesota','Wisconsin'})
S = shaperead('usastatehi','UseGeoCoords',true,'Selector',...

{@(name) any(strcmp(name,{'Minnesota','Wisconsin'})), 'Name'});
geoshow(S, 'FaceColor', 'y')
textm([S.LabelLat], [S.LabelLon], {S.Name},...

'HorizontalAlignment', 'center')
latlimMN = S(1).BoundingBox(:,2)'

latlimMN =
43.4995 49.3844

lonlimMN = S(1).BoundingBox(:,1)'

lonlimMN =
-97.2385 -89.5612

3-569

intersectgeoquad

latlimWI = S(2).BoundingBox(:,2)'

latlimWI =
42.4918 47.0773

lonlimWI = S(2).BoundingBox(:,1)'

lonlimWI =
-92.8892 -86.8059

[latlim lonlim] = ...
intersectgeoquad(latlimMN, lonlimMN, latlimWI, lonlimWI)

latlim =
43.4995 47.0773

lonlim =
-92.8892 -89.5612

geoshow(latlim([1 2 2 1 1]), lonlim([1 1 2 2 1]), ...
'DisplayType','polygon','FaceColor','m')

3-570

intersectgeoquad

See Also ingeoquad | outlinegeoquad

3-571

inputm

Purpose Latitudes and longitudes of mouse-click locations

Syntax [lat, lon] = inputm
[lat, lon] = inputm(n)
[lat, lon] = inputm(n,h)
[lat, lon, button] = inputm(n)
MAT = imputm(...)

Description [lat, lon] = inputm returns the latitudes and longitudes in
geographic coordinates of points selected by mouse clicks on a displayed
grid. The point selection continues until the return key is pressed.

[lat, lon] = inputm(n) returns n points specified by mouse clicks.

[lat, lon] = inputm(n,h) prompts for points from the map axes
specified by the handle h. If omitted, the current axes (gca) is assumed.

[lat, lon, button] = inputm(n) returns a third result, button, that
contains a vector of integers specifying which mouse button was used
(1,2,3 from left) or ASCII numbers if a key on the keyboard was used.

MAT = imputm(...) returns a single matrix, where MAT = [lat lon].

Tips inputm works much like the standard MATLAB ginput, except that
the returned values are latitudes and longitudes extracted from the
projection, rather than axes x-y coordinates. If you click outside of the
projection bounds (beyond the map frame in the corners of a Robinson
projection, for example), no coordinates are returned for that location.

inputm cannot be used with a 3-D display, including those created using
globe.

See Also gcpmap | ginput

3-572

interpm

Purpose Densify latitude-longitude sampling in lines or polygons

Syntax [latout,lonout] = interpm(lat,lon,maxdiff)
[latout,lonout] = interpm(lat,lon,maxdiff,method)
[latout,lonout] = interpm(lat,lon,maxdiff,method,units)

Description [latout,lonout] = interpm(lat,lon,maxdiff) fills in any gaps in
latitude (lat) or longitude (lon) data vectors that are greater than a
defined tolerance maxdiff apart in either dimension. The angle units
of the three inputs need not be specified, but they must be identical.
latout and lonout are the new latitude and longitude data vectors, in
which any gaps larger than maxdiff in the original vectors have been
filled with additional points. The default method of interpolation used
by interpm is linear.

[latout,lonout] = interpm(lat,lon,maxdiff,method) interpolates
between vector data coordinate points using a specified interpolation
method. Valid interpolation method strings are 'gc' for great circle,
'rh' for rhumb line, and 'lin' for linear interpolation.

[latout,lonout] = interpm(lat,lon,maxdiff,method,units)
specifies the units used, where units is any valid angle units string.
The default is 'degrees'.

Examples lat = [1 2 4 5]; lon = [7 8 9 11];
[latout,lonout] = interpm(lat,lon,1);
[latout lonout]

ans =
1.0000 7.0000
2.0000 8.0000
3.0000 8.5000
4.0000 9.0000
4.5000 10.0000
5.0000 11.0000

See Also intrplat | intrplon

3-573

intrplat

Purpose Interpolate latitude at given longitude

Syntax newlat = intrplat(long,lat,newlong)
newlat = intrplat(long,lat,newlong,method)
newlat = intrplat(long,lat,newlong,method,units)

Description newlat = intrplat(long,lat,newlong) returns an interpolated
latitude, newlat, corresponding to a longitude newlong. long must be
a monotonic vector of longitude values. The actual entries must be
monotonic; that is, the longitude vector [350 357 3 10] is not allowed
even though the geographic direction is unchanged (use [350 357 363
370] instead). lat is a vector of the latitude values paired with each
entry in long.

newlat = intrplat(long,lat,newlong,method) specifies the method
of interpolation employed, listed in the table below.

Method Description

'linear' Linear, or Cartesian, interpolation (default)

'pchip' Piecewise cubic Hermite interpolation

'rh' Returns interpolated points that lie on rhumb lines
between input data

'gc' Returns interpolated points that lie on great circles
between input data

newlat = intrplat(long,lat,newlong,method,units) specifies the
units used, where units is any valid angle units string. The default is
'degrees'.

The function intrplat is a geographic data analogy of the standard
MATLAB function interp1.

Examples Compare the results of the various methods:

lats = [25 45]; longs = [30 60];
newlat = intrplat(longs,lats,45,'linear')

3-574

intrplat

newlat =
35

newlat = intrplat(longs,lats,45,'rh')

newlat =
35.6213

newlat = intrplat(longs,lats,45,'gc')

newlat =
37.1991

Tips There are separate functions for interpolating latitudes and longitudes,
for although the cases are identical when using those methods
supported by interp1, when latitudes and longitudes are treated like
the spherical angles they are (using 'rh' or 'gc'), the results are
different. Compare the example above to the example under intrplon,
which reverses the values of latitude and longitude.

See Also interpm | intrplon

3-575

intrplon

Purpose Interpolate longitude at given latitude

Syntax newlon = intrplon(lat,lon,newlat)
newlon = intrplon(lat,lon,newlat,method)
newlon = intrplon(lat,lon,newlat,method,units)

Description newlon = intrplon(lat,lon,newlat) returns an interpolated
longitude, newlon, corresponding to a latitude newlat. lat must be a
monotonic vector of longitude values. lon is a vector of the longitude
values paired with each entry in lat.

newlon = intrplon(lat,lon,newlat,method) specifies the method of
interpolation employed, listed in the table below.

Method Description

'linear' Linear, or Cartesian, interpolation (default)

'pchip' Piecewise cubic Hermite interpolation

'rh' Returns interpolated points that lie on rhumb lines
between input data

'gc' Returns interpolated points that lie on great circles
between input data

newlon = intrplon(lat,lon,newlat,method,units) specifies the
units used, where units is any valid angle units string. The default is
'degrees'.

The function intrplon is a geographic data analogy of the MATLAB
function interp1.

Examples Compare the results of the various methods:

long = [25 45]; lat = [30 60];
newlon = intrplon(lat,long,45,'linear')

newlon =
35

3-576

intrplon

newlon = intrplon(lat,long,45,'rh')

newlon =
33.6515

newlon = intrplon(lat,long,45,'gc')

newlon =
32.0526

Tips There are separate functions for interpolating latitudes and longitudes,
for although the cases are identical when using those methods
supported by interp1, when latitudes and longitudes are treated
like the spherical angles they are (using 'rh' or 'gc'), the results
are different. Compare the previous example to the example under
intrplat, which reverses the values of latitude and longitude.

See Also interpm | intrplat

3-577

ismap

Purpose True for axes with map projection

Syntax mflag = ismap
mflag = ismap(hndl)
[mflag,msg] = ismap(hndl)

Description mflag = ismap returns a 1 if the current axes is a map axes, and 0
otherwise.

mflag = ismap(hndl) specifies the handle of the axes to be tested.

[mflag,msg] = ismap(hndl) returns a string message if the axes is
not a map axes, specifying why not.

The ismap function tests an axes object to determine whether it is
a map axes.

See Also gcm | ismapped

3-578

ismapped

Purpose True, if object is projected on map axes

Syntax mflag = ismapped
mflag = ismapped(hndl)
[mflag,msg] = ismapped(hndl)

Description mflag = ismapped returns a 1 if the current object is projected on a
map axes, and 0 otherwise.

mflag = ismapped(hndl) specifies the handle of the object to be tested.

[mflag,msg] = ismapped(hndl) returns a string message if the axes
is not projected on a map axes, specifying why not.

The ismapped function tests an object to determine whether it is
projected on map axes.

See Also gcm | ismap

3-579

ispolycw

Purpose True if polygon vertices are in clockwise order

Syntax tf = ispolycw(x, y)

Description tf = ispolycw(x, y) returns true if the polygonal contour vertices
represented by x and y are ordered in the clockwise direction. x and y
are numeric vectors with the same number of elements.

Alternatively, x and y can contain multiple contours, either in
NaN-separated vector form or in cell array form. In that case, ispolycw
returns a logical array containing one true or false value per contour.

ispolycw always returns true for polygonal contours containing two or
fewer vertices.

Vertex ordering is not well defined for self-intersecting polygonal
contours. For such contours, ispolycw returns a result based on the
order or vertices immediately before and after the left-most of the
lowest vertices. In other words, of the vertices with the lowest y value,
find the vertex with the lowest x value. For a few special cases of
self-intersecting contours, the vertex ordering cannot be determined
using only the left-most of the lowest vertices; for these cases, ispolycw
uses a signed area test to determine the ordering.

Class
Support

x and y may be any numeric class.

Examples Orientation of a square:

x = [0 1 1 0 0];
y = [0 0 1 1 0];
ispolycw(x, y) % Returns 0
ispolycw(fliplr(x), fliplr(y)) % Returns 1

See Also poly2cw | poly2ccw | polybool

3-580

isShapeMultipart

Purpose True if polygon or line has multiple parts

Syntax tf = isShapeMultipart(xdata, ydata)

Description tf = isShapeMultipart(xdata, ydata) returns 1 (true) if the
polygon or line shape specified by xdata and ydata consists of multiple
NaN-separated parts (i.e. has inner or multiple polygon rings or multiple
line segments). The coordinate arrays xdata and ydata must match in
size and have identical NaN locations.

Examples isShapeMultipart([0 0 1],[0 1 0])

ans =
0

isShapeMultipart([0 0 1 NaN 2 2 3 3],[0 1 0 NaN 2 3 3 2])

ans =
1

load coast
isShapeMultipart(lat, long)

ans =
1

S = shaperead('concord_hydro_area');
isShapeMultipart(S(1).X, S(1).Y)

ans =
0

isShapeMultipart(S(14).X, S(14).Y)

ans =
1

3-581

isShapeMultipart

See Also polysplit

3-582

km2deg

Purpose Convert distance from kilometers to degrees

Syntax deg = km2deg(km)
deg = km2deg(km,radius)
deg = km2deg(km,sphere)

Description deg = km2deg(km) converts distances from kilometers to degrees as
measured along a great circle on a sphere with a radius of 6371 km, the
mean radius of the Earth.

deg = km2deg(km,radius) converts distances from kilometers to
degrees as measured along a great circle on a sphere having the
specified radius. radius must be in units of kilometers.

deg = km2deg(km,sphere) converts distances from kilometers to
degrees, as measured along a great circle on a sphere approximating an
object in the Solar System. sphere may be one of the following strings:
'sun', 'moon', 'mercury', 'venus', 'earth', 'mars', 'jupiter',
'saturn', 'uranus', 'neptune', or 'pluto', and is case-insensitive.

Examples Two cities are 340 km apart. How many degrees of arc is that? How
many degrees would it be if the cities were on Mars?

deg = km2deg(340)

deg =
3.0577

deg = km2deg(340,'mars')

deg =
5.7465

See Also degtorad | radtodeg | deg2km | km2rad | km2nm | km2sm | deg2nm |
nm2deg | nm2km | nm2sm | deg2sm | sm2deg | sm2km | sm2nm

3-583

km2nm

Purpose Convert kilometers to nautical miles

Syntax nm = km2nm(km)

Description nm = km2nm(km) converts distances from kilometers to nautical miles.

See Also deg2km | km2deg | km2rad | rad2km | deg2nm | nm2deg | nm2rad |
rad2nm | deg2sm | sm2deg | deg2sm | sm2rad | rad2sm

3-584

km2rad

Purpose Convert distance from kilometers to radians

Syntax rad = km2rad(km)
rad = km2rad(km,radius)
rad = km2rad(km,sphere)

Description rad = km2rad(km) converts distances from kilometers to radians as
measured along a great circle on a sphere with a radius of 6371 km, the
mean radius of the Earth.

rad = km2rad(km,radius) converts distances from kilometers to
radians as measured along a great circle on a sphere having the
specified radius. radius must be in units of kilometers.

rad = km2rad(km,sphere)converts distances from kilometers to
radians , as measured along a great circle on a sphere approximating an
object in the Solar System. sphere may be one of the following strings:
'sun', 'moon', 'mercury', 'venus', 'earth', 'mars', 'jupiter',
'saturn', 'uranus', 'neptune', or 'pluto', and is case-insensitive.

Examples How many radians does 1,000 km span on the Earth and on the Moon?

rad = km2rad(1000)

rad =
0.1570

rad = km2rad(1000,'moon')

rad =
0.5754

See Also degtorad | radtodeg | rad2km | km2deg | km2nm | km2sm | rad2nm |
nm2deg | nm2km | nm2sm | rad2sm | sm2deg | sm2km | sm2nm

3-585

km2sm

Purpose Convert kilometers to statute miles

Syntax sm = km2sm(km)

Description sm = km2sm(km) converts distances from kilometers to statute miles.

Examples How many statute miles is a 10k run?

sm = km2sm(10)

sm =
6.2137

See Also deg2km | km2deg | km2rad | rad2km | deg2nm | nm2deg | nm2rad |
rad2nm | deg2sm | sm2deg | deg2sm | sm2rad | rad2sm

3-586

kmlwrite

Purpose Write geographic data to KML file

Syntax kmlwrite(filename, lat, lon)
kmlwrite(filename, S)
kmlwrite(filename, address)
kmlwrite(..., param1, val1, param2, val2, ...)

Description kmlwrite(filename, lat, lon) writes the latitude and longitude
points lat and lon to disk in KML format. KML stands for Keyhole
Markup Language. It is an XML dialect used by the Google Earth™
and Google Maps™ mapping services and similar applications. lat and
lon are numeric vectors, specified in degrees. lat must be in the range
[-90, 90]. There is no range constraint on lon; all longitudes are
automatically wrapped to the range [-180, 180], to adhere to the KML
specification. filenamemust be a character string specifying the output
file name and location. If an extension is included, it must be .kml.

kmlwrite(filename, S) writes a point or multipoint geostruct to disk
in KML format. The Geometry field of S must be either 'Point' or
'Multipoint'. S must include Lat and Lon fields. (If S includes X and Y
fields an error is issued). The attribute fields of S are presented as a
table in the description tag of the placemark displayed for each element
of S, in the same order as they appear in S.

kmlwrite(filename, address) specifies the location of a KML
Placemark via an address string or cell array of strings. Each string
represents an unstructured address with city, state, and/or postal code.
If address is a cell array, each cell contains the address of a unique
point.

kmlwrite(..., param1, val1, param2, val2, ...) specifies
parameter-value pairs that set additional KML feature properties.
Parameter names can be abbreviated and are case-insensitive.

The parameter-value pairs are listed below:

• Name — A string or cell array of strings that specifies a name
displayed in the viewer as the label for the object. If the value is a

3-587

kmlwrite

string, the name is applied to all objects. If the value is a cell array,
it must match in size to lat and lon, S, or address.

• Description— A string, cell array of strings, or an attribute spec,
that specifies the contents to be displayed in the feature’s description
tag(s). The description appears in the description balloon when the
user clicks either the feature name in the Google Earth application
Places panel or clicks the placemark icon in the viewer window. If
the value is a string, the description is applied to all objects. If the
value is a cell array, it must match the size of lat and lon, S, or
address. Use a cell array to customize descriptive tags for different
placemarks.

Description elements can be either plain text or marked up with
HTML. When it is plain text, the Google Earth application applies
basic formatting, replacing each newline with
 and giving
anchor tags to all valid URLs for the World Wide Web. The URL
strings are converted to hyperlinks. This means that you do not
need to surround a URL with <A HREF> tags in order to create a
simple link. Examples of HTML tags recognized by the Google Earth
application are provided on its Web site, http://earth.google.com.

• Icon— A string or cell array of strings that specifies a custom icon
filename. If the value is a string, the value is applied to all objects.
If the value is a cell array, it must have the same size as lat and
lon, S, or address. If the icon filename is not in the current folder,
or in a folder on the MATLAB path, specify a full or relative path
name. The string can be an Internet URL. The URL must include
the protocol prefix (e.g., http://).

• IconScale — A positive numeric scalar or array that specifies a
scaling factor for the icon. If the value is a scalar, the value is applied
to all objects. If the value is an array, it must have the same size
as lat and lon, S, or address.

Tips Using an Attribute Spec to Control Formatting of Attributes

An attribute spec is a structure with field names of attributes that
controls how the table is displayed in its description balloon. In

3-588

http://earth.google.com/kml/kml_tags_21.html#description

kmlwrite

it, each field name you want to display has two fields, Format and
AttributeLabel.

When you provide geostruct, S, to kmlwrite, then the Description
parameter can be an attribute spec. In this case, the attribute fields of S
are displayed as a table in the description tag of the placemark for each
element of S. (If you specify an attribute spec with lat and lon input
syntax, the attribute spec is ignored.) The attribute spec can control:

• Which attributes are included in the table

• The name for the attribute

• The order in which attributes appear

• The formatting of attributes

The easiest way to construct an attribute spec is to call makeattribspec,
and then modify the output to remove attributes or change the Format
field for one or more attributes. The lat and lon fields of S are never
treated as attributes.

Viewing the KML file with the Google Earth browser

A KML file may be displayed in a Google Earth browser. The Google
Earth application must be installed on the system. On Microsoft®

Windows platforms you can display the KML file with:

winopen(filename)

For Unix and MAC users, display the KML file with:

cmd = 'googleearth ';
fullfilename = fullfile(pwd, filename);
system([cmd fullfilename])

Viewing the KML file with a Web Browser

You can view KML files using the Google Maps mapping service in
addition to using an installed Google Earth application. To do so, the
file must be located on a web server that is accessible from the Internet.
A private intranet server will not suffice, because the Google Maps
server must be able to access the URL that you provide to it. Here is

3-589

kmlwrite

a template for viewing your KML in a browser window via the Google
Maps mapping service:

GMAPS_URL = 'http://maps.google.com/maps?q=';
KML_URL = 'http://<your web server and path to your KML file>';
web([GMAPS KML_URL])

You can only display a limited number of placemarks on a Google Maps
page, and all placemarks must be geolocated using latitude-longitude
coordinates (address-based placemarks are not supported). Google
Mobile™ has further restrictions. See the Google KML documentation
for more information.

Examples Example 1 — Write a single point to a KML file

Add a description containing HTML markup, a name, and provide the
location of an icon to display. Specifying an icon as a URL from the Web
(as opposed to specifying one from a local file) makes the icon accessible
to users of Google Maps service as well as to Google Earth users.

% Write a single point to a KML file.

% Add a description containing HTML, a name and an icon.

lat = 42.299827;

lon = -71.350273;

description = sprintf('%s
%s</br>
%s</br>', ...

'3 Apple Hill Drive', 'Natick, MA. 01760', ...

'http://www.mathworks.com');

name = 'The MathWorks, Inc.';

filename = 'MathWorks.kml';

kmlwrite(filename, lat, lon, ...

'Description', description, 'Name', name, 'Icon', ...

'http://www.mathworks.com/products/product_listing/images/ml_icon.gif');

Example 2 — Write the locations of major European cities
to a KML file

Include the names of the cities, and remove the default description table:

3-590

http://code.google.com/apis/kml/documentation/whatiskml.html

kmlwrite

latlim = [30; 75];

lonlim = [-25; 45];

cities = shaperead('worldcities.shp','UseGeoCoords', true, ...

'BoundingBox', [lonlim, latlim]);

filename = 'European_Cities.kml';

kmlwrite(filename, cities, 'Name', {cities.Name}, 'Description',{});

Example 3 — Write the locations of several Australian cities
to a KML file

List the addresses to be displayed in a cell array:

address = {'Perth, Australia', ...
'Melbourne, Australia', ...
'Sydney, Australia'};

filename = 'Australian_Cities.kml';
kmlwrite(filename, address, 'Name', address);

Example 4 — Unproject locations of Boston landmarks and
write to a KML file

The Boston placenames file contains points stored in projected
coordinates of meters, but Earth browsers require geographic
coordinates (latitudes and longitudes). Begin by converting coordinates
from meters to survey feet, inverting the projection to latitudes and
longitudes, and then adding the latitudes and longitudes to the
geostruct. To unproject properly, use the projection information
extracted from the GeoTIFF file boston.tif:

S = shaperead('boston_placenames');
proj = geotiffinfo('boston.tif');
surveyFeetPerMeter = unitsratio('sf','meter');
for k=1:numel(S)

x = surveyFeetPerMeter * S(k).X;
y = surveyFeetPerMeter * S(k).Y;
[S(k).Lat, S(k).Lon] = projinv(proj, x, y);

end
filename = 'Boston_Placenames.kml';

3-591

kmlwrite

kmlwrite(filename, S, 'Name', {S.NAME});

If you have the Google Earth application installed, you can view the file
on Microsoft Windows as follows:

winopen(filename)

On UNIX or MAC, use:

cmd = 'googleearth ';
fullfilename = fullfile(pwd, filename);
system([cmd fullfilename])

For a different view of this location and placename data, see “Tour
Boston with the Map Viewer”.

3-592

kmlwrite

See Also geoshow | makeattribspec | shaperead | shapewrite

3-593

latlon2pix

Purpose Convert latitude-longitude coordinates to pixel coordinates

Syntax [row, col] = latlon2pix(R,lat,lon)

Description [row, col] = latlon2pix(R,lat,lon) calculates pixel coordinates
row, col from latitude-longitude coordinates lat, lon. R is either a
3-by-2 referencing matrix that transforms intrinsic pixel coordinates to
geographic coordinates, or a spatialref.GeoRasterReference object. lat
and lon are vectors or arrays of matching size. The outputs row and
col have the same size as lat and lon. lat and lon must be in degrees.

Longitude wrapping is handled in the following way: Results are
invariant under the substitution lon = lon +/- n * 360 where n
is an integer. Any point on the Earth that is included in the image
or gridded data set corresponding to r will yield row/column values
between 0.5 and 0.5 + the image height/width, regardless of what
longitude convention is used.

Examples Find the pixel coordinates of the upper left and lower right outer corners
of a 2-by-2 degree gridded data set.

R = makerefmat(1, 89, 2, 2);
[UL_row, UL_col] = latlon2pix(R, 90, 0) % Upper left
[LR_row, LR_col] = latlon2pix(R, -90, 360) % Lower right
[LL_row, LL_col] = latlon2pix(R, -90, 0) % Lower left

Note that the in both the 2nd case and 3rd case we get a column value
of 0.5, because the left and right edges are on the same meridian and
(-90, 360) is the same point as (-90, 0).

See Also map2pix | makerefmat | pix2latlon

3-594

lcolorbar

Purpose Colorbar with text labels

Syntax lcolorbar(labels)
lcolorbar(labels,'property',value,...)
hcb = lcolorbar(...)

Description lcolorbar(labels) appends a colorbar with text labels. The labels
input is a cell array of label strings. The colorbar is constructed using
the current colormap with the label strings applied at the centers of
the color bands.

lcolorbar(labels,'property',value,...) controls the colorbar’s
properties. The location of the colorbar is controlled by the Location
property. Valid entries for Location are 'vertical' (the default) or
'horizontal'. Properties TitleString, XLabelString, YLabelString
and ZLabelString set the respective strings. Property ColorAlignment
controls whether the colorbar labels are centered on the color bands or
the color breaks. Valid values for ColorAlignment are 'center' and
'ends'.

Other valid property-value pairs are any properties and values that can
be applied to the title and labels of the colorbar axes.

hcb = lcolorbar(...) returns a handle to the colorbar axes.

Examples figure; colormap(jet(5))
labels = {'apples','oranges','grapes','peachs','melons'};
lcolorbar(labels,'fontweight','bold');

See Also contourcmap | colormapeditor

3-595

legs

Purpose Courses and distances between navigational waypoints

Syntax [course,dist] = legs(lat,lon)
[course,dist] = legs(lat,lon,method)
[course,dist] = legs(pts) and [course,dist] = legs(pts,

method)
mat = legs(lat,...)

Description [course,dist] = legs(lat,lon) returns the azimuths (course) and
distances (dist) between navigational waypoints, which are specified
by the column vectors lat and lon.

[course,dist] = legs(lat,lon,method) specifies the logic for the
leg characteristics. If the string method is 'rh' (the default), course
and dist are calculated in a rhumb line sense. If method is 'gc', great
circle calculations are used.

[course,dist] = legs(pts) and [course,dist] =
legs(pts,method) allow you to input the waypoints in a single
two-column matrix, pts.

mat = legs(lat,...) packs up the outputs into a single two-column
matrix, mat.

This is a navigation function. All angles are in degrees, and all distances
are in nautical miles. Track legs are the courses and distances traveled
between navigational waypoints.

Examples Imagine an airplane taking off from Logan International Airport in
Boston (42.3ºN,71ºW) and traveling to LAX in Los Angeles (34ºN,118ºW).
The pilot wants to file a flight plan that takes the plane over O’Hare
Airport in Chicago (42ºN,88ºW) for a navigational update, while
maintaining a constant heading on each of the two legs of the trip.

What are those headings and how long are the legs?

lat = [42.3; 42; 34]; long = [-71; -88; -118];
[course,dist] = legs(lat,long,'rh')

3-596

legs

course =
268.6365
251.2724

dist =
1.0e+003 *

0.7569
1.4960

Upon takeoff, the plane should proceed on a heading of about 269º for
756 nautical miles, then alter course to 251º for another 1495 miles.

How much farther is it traveling by not following a great circle path
between waypoints? Using rhumb lines, it is traveling

totalrh = sum(dist)

totalrh =
2.2530e+003

For a great circle route,

[coursegc,distgc] = legs(lat,long,'gc'); totalgc = sum(distgc)

totalgc =
2.2451e+003

The great circle path is less than one-half of one percent shorter.

See Also dreckon | gcwaypts | navfix | track

3-597

lightm

Purpose Project light objects on map axes

Syntax h = lightm(lat,lon)
h = lightm(lat,lon,PropertyName,PropertyValue,...)
h = lightm(lat,lon,alt)

Description h = lightm(lat,lon) projects a light object at the coordinates lat and
lon. The handle, h, of the object can be returned.

h = lightm(lat,lon,PropertyName,PropertyValue,...) allows the
specification of any property name/property value pair supported by the
standard MATLAB light function.

h = lightm(lat,lon,alt) allows the specification of an altitude, alt,
for the light object. When omitted, the default is an infinite light source
altitude.

Examples load topo
axesm globe; view(120,30)
meshm(topo,topolegend); demcmap(topo)
lightm(0,90,'color','yellow')
material([.5 .5 1]); lighting phong

3-598

lightm

See Also light | lightmui

3-599

limitm

Purpose Determine latitude and longitude limits of regular data grid

Syntax [latlim,lonlim] = limitm(Z,R)
latlonlim = limitm(Z,R)

Description [latlim,lonlim] = limitm(Z,R) computes the latitude and longitude
limits of the geographic quadrangle bounding the regular data grid Z
spatially referenced by R. R can be a spatialref.GeoRasterReference
object, a referencing vector, or a referencing matrix.

If R is a spatialref.GeoRasterReference object, its RasterSize
property must be consistent with size(Z).

If R is a referencing vector, it must be 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to/from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must also define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel. The output latlim
is a vector of the form [southern_limit northern_limit] and lonlim
is a vector of the form [western_limit eastern_limit]. All angles
are in units of degrees.

latlonlim = limitm(Z,R) concatenates latlim and lonlim into a
1-by-4 row vector of the form:

[southern_limit northern_limit western_limit eastern_limit]

Examples Use a familiar data grid:

load topo
[latlimits,lonlimits] = limitm(topo,topolegend)

3-600

limitm

latlimits =
-90 90

lonlimits =
0 360

The result is expected, because topo covers the whole globe.

See Also makerefmat

3-601

linecirc

Purpose Intersections of circles and lines in Cartesian plane

Syntax [xout,yout] = linecirc(slope,intercpt,centerx,centery,radius)

Description [xout,yout] =
linecirc(slope,intercpt,centerx,centery,radius) finds the
points of intersection given a circle defined by a center and radius in x-y
coordinates, and a line defined by slope and y-intercept, or a slope of
“inf” and an x-intercept. Two points are returned. When the objects
do not intersect, NaNs are returned.

When the line is tangent to the circle, two identical points are returned.
All inputs must be scalars.

See Also circcirc

3-602

linem

Purpose Project line object on map axes

Syntax h = linem(lat,lon)
h = linem(lat,lon,linetype)
h = linem(lat,lon,PropertyName,PropertyValue,...)
h = linem(lat,lon,z)

Description h = linem(lat,lon) displays projected line objects on the current
map axes. lat and lon are the latitude and longitude coordinates,
respectively, of the line object to be projected. Note that this ordering
is conceptually reversed from the MATLAB line function, because the
vertical (y) coordinate comes first. However, the ordering latitude, then
longitude, is standard geographic usage. lat and lon must be the same
size and in the AngleUnits of the map axes. The object handle for the
displayed line can be returned in h.

h = linem(lat,lon,linetype) allows the specification of the line
style, where linetype is any string recognized by the MATLAB line
function.

h = linem(lat,lon,PropertyName,PropertyValue,...) allows the
specification of any number of property name/property value pairs for
any properties recognized by the MATLAB line function except for
XData, YData, and ZData.

h = linem(lat,lon,z) displays a line object in three dimensions,
where z is the same size as lat and lon and contains the desired
altitude data. z is independent of AngleUnits. If omitted, all points are
assigned a z-value of 0 by default.

The units of z are arbitrary, except when using the Globe projection.
In the case of globe, z should have the same units as the radius of the
earth or semimajor axis specified in the 'geoid' (reference ellipsoid)
property of the map axes. This implies that when the reference ellipsoid
is a unit sphere, the units of z are earth radii.

linem is the mapping equivalent of the MATLAB line function. It is a
low-level graphics function for displaying line objects in map projections.
Ordinarily, it is not used directly. Use plotm or plot3m instead.

3-603

linem

Examples axesm sinusoid; framem
linem([15; 0; -45; 15],[-100; 0; 100; 170],'r-')

See Also line | plot3m | plotm

3-604

los2

Purpose Line-of-sight visibility between two points in terrain

Syntax vis = los2(Z,R,lat1,lon1,lat2,lon2)
vis = los2(Z,R,lat1,lon1,lat2,lon2,alt1)
vis = los2(Z,R,lat1,lon1,lat2,lon2,alt1,alt2)
vis = los2(Z,R,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt)
vis = los2(Z,R,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt,alt2opt)
vis = los2(Z,R,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt, ...

alt2opt,actualradius)
vis = los2(Z,R,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt, ...

alt2opt,actualradius,effectiveradius)
[vis,visprofile,dist,H,lattrk,lontrk] = los2(...)
los2(...)

Description los2 computes the mutual visibility between two points on a displayed
digital elevation map. los2 uses the current object if it is a regular
data grid, or the first regular data grid found on the current axes.
The grid’s zdata is used for the profile. The color data is used in the
absence of data in z. The two points are selected by clicking on the map.
The result is displayed in a new figure. Markers indicate visible and
obscured points along the profile. The profile is shown in a Cartesian
coordinate system with the origin at the observer’s location. The
displayed z coordinate accounts for the elevation of the terrain and
the curvature of the body.

vis = los2(Z,R,lat1,lon1,lat2,lon2) computes the mutual
visibility between pairs of points on a digital elevation map. The
elevations are provided as a regular data grid Z containing elevations
in units of meters. The two points are provided as vectors of latitudes
and longitudes in units of degrees. The resulting logical variable vis
is equal to one when the two points are visible to each other, and
zero when the line of sight is obscured by terrain. If any of the input
arguments are empty, los2 attempts to gather the data from the
current axes. With one or more output arguments, no figures are
created and only the data is returned.

3-605

los2

R can be a spatialref.GeoRasterReference object, a referencing vector,
or a referencing matrix. If R is a spatialref.GeoRasterReference
object, its RasterSize property must be consistent with size(Z).

If R is a referencing vector, it must be a 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to or from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel. Nearest-neighbor
interpolation is used by default. NaN is returned for points outside
the grid limits or for which lat or lon contain NaN. All angles are in
units of degrees.

vis = los2(Z,R,lat1,lon1,lat2,lon2,alt1) places the first point
at the specified altitude in meters above the surface (on a tower, for
instance). This is equivalent to putting the point on a tower. If omitted,
point 1 is assumed to be on the surface. alt1 may be either a scalar or a
vector with the same length as lat1, lon1, lat2, and lon2.

vis = los2(Z,R,lat1,lon1,lat2,lon2,alt1,alt2) places both
points at a specified altitudes in meters above the surface. alt2 may be
either a scalar or a vector with the same length as lat1, lon1, lat2,
and lon2. If alt2 is omitted, point 2 is assumed to be on the surface.

vis = los2(Z,R,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt)
controls the interpretation of alt1 as either a relative altitude (alt1opt
equals 'AGL', the default) or an absolute altitude (alt1opt equals
'MSL'). If the altitude option is 'AGL', alt1 is interpreted as the altitude
of point 1 in meters above the terrain (“above ground level”). If alt1opt
is 'MSL', alt1 is interpreted as altitude above zero (“mean sea level”).

3-606

los2

vis =
los2(Z,R,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt,alt2opt)
controls the interpretation ALT2.

vis = los2(Z,R,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt, ...
alt2opt,actualradius) does the visibility calculation on a sphere

with the specified radius. If omitted, the radius of the earth in meters
is assumed. The altitudes, elevations and the radius should be in the
same units. This calling form is most useful for computations on bodies
other than the earth.

vis = los2(Z,R,lat1,lon1,lat2,lon2,alt1,alt2,alt1opt, ...
alt2opt,actualradius,effectiveradius) assumes a larger radius

for propagation of the line of sight. This can account for the curvature
of the signal path due to refraction in the atmosphere. For example,
radio propagation in the atmosphere is commonly treated as straight
line propagation on a sphere with 4/3 the radius of the earth. In that
case the last two arguments would be R_e and 4/3*R_e, where R_e is
the radius of the earth. Use Inf as the effective radius for flat earth
visibility calculations. The altitudes, elevations and radii should be in
the same units.

[vis,visprofile,dist,H,lattrk,lontrk] = los2(...), for scalar
inputs (lat1, lon1, etc.), returns vectors of points along the path
between the two points. visprofile is a logical vector containing
true (logical(1)) where the intermediate points are visible and false
(logical(0)) otherwise. dist is the distance along the path (in meters
or the units of the radius). H contains the terrain profile relative to the
vertical datum along the path. lattrk and lontrk are the latitudes and
longitudes of the points along the path. For vector inputs los2 returns
visprofile, dist, H, lattrk, and lontrk as cell arrays, with one cell
per element of lat1,lon1, etc.

los2(...), with no output arguments, displays the visibility profile
between the two points in a new figure.

Examples Z = 500*peaks(100);
refvec = [1000 0 0];
[lat1, lon1, lat2, lon2] = deal(-0.027, 0.05, -0.093, 0.042);

3-607

los2

los2(Z,refvec,lat1,lon1,lat2,lon2,100);

figure;
axesm('globe','geoid',earthRadius('meters'))
meshm(Z, refvec, size(Z), Z); axis tight
camposm(-10,-10,1e6); camupm(0,0)
demcmap('inc', Z, 1000); shading interp; camlight
[vis,visprofile,dist,h,lattrk,lontrk] = ...
los2(Z,refvec,lat1,lon1,lat2,lon2,100);
plot3m(lattrk([1;end]),lontrk([1; end]),...
h([1; end])+[100; 0],'r','linewidth',2)
plotm(lattrk(~visprofile),lontrk(~visprofile),...
h(~visprofile),'r.','markersize',10)
plotm(lattrk(visprofile),lontrk(visprofile),...
h(visprofile),'g.','markersize',10)

3-608

los2

See Also viewshed | mapprofile

3-609

ltln2val

Purpose Extract data grid values for specified locations

Syntax val = ltln2val(Z, R, lat, lon)
val = ltln2val(Z, R, lat, lon, method)

Description val = ltln2val(Z, R, lat, lon) interpolates a regular data grid Z
with referencing vector R at the points specified by vectors of latitude and
longitude, lat and lon. R can be a spatialref.GeoRasterReference
object, a referencing vector, or a referencing matrix.

If R is a spatialref.GeoRasterReference object, its RasterSize
property must be consistent with size(Z).

If R is a referencing vector, it must be a 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to or from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel. Nearest-neighbor
interpolation is used by default. NaN is returned for points outside
the grid limits or for which lat or lon contain NaN. All angles are in
units of degrees.

val = ltln2val(Z, R, lat, lon, method) accepts a method string
to specify the type of interpolation: 'bilinear' for linear interpolation,
'bicubic' for cubic interpolation, or 'nearest' for nearest neighbor
interpolation.

Examples Find the elevations in topo associated with three European
cities—Milan, Bern, and Prague (topo elevations are in meters):

load topo
% The city locations, [Milan Bern Prague]

3-610

ltln2val

lats = [45.45; 46.95; 50.1];
longs = [9.2; 7.4; 14.45];
elevations = ltln2val(topo,topolegend,lats,longs)

elevations =
313
1660
297

See Also findm | imbedm

3-611

lv2ecef

Purpose Convert local vertical to geocentric (ECEF) coordinates

Note lv2ecef will be removed in a future release. Use enu2ecef
instead. In enu2ecef, the latitude and longitude of the local origin
are in degrees by default, so the optional angleUnit input should be
included, with the value 'radians'.

Syntax [x,y,z] = lv2ecef(xl,yl,zl,phi0,lambda0,h0,ellipsoid)

Description [x,y,z] = lv2ecef(xl,yl,zl,phi0,lambda0,h0,ellipsoid)
converts arrays xl, yl, and zl in the local vertical coordinate system
to arrays x, y, and z in the geocentric coordinate system. The origin of
the local vertical system is at geodetic latitude phi0, geodetic longitude
lambda0, and ellipsoidal height h0. The arrays xl, yl, and zl may have
any shape, as long as they are all the same size. They are measured
in the same length units as the semimajor axis. phi0 and lambda0
are scalars measured in radians; h0 is a scalar with the same length
units as the semimajor axis; and ellipsoid is a referenceEllipsoid
(oblateSpheroid) object, a referenceSphere object, or a vector of the
form [semimajor axis, eccentricity]). The coordinates x, y, and z
also have the same units as the semimajor axis.

Definitions For a definition of the local vertical system, also known as
East-North-Up (ENU), see the help for ecef2lv. For a definition of the
geocentric system, also known as Earth-Centered, Earth-Fixed (ECEF),
see the help for geodetic2ecef.

See Also ecef2enu

3-612

majaxis

Purpose Semimajor axis of ellipse

Syntax a = majaxis(semiminor,e)
a = majaxis(vec)

Description a = majaxis(semiminor,e) computes the semimajor axis of an ellipse
(or ellipsoid of revolution) given the semiminor axis and eccentricity.
The input data can be scalar or matrices of equal dimensions.

a = majaxis(vec) assumes a 2 element vector (vec) is supplied, where
vec = [semiminor, e].

See Also axes2ecc | flat2ecc | minaxis | n2ecc

3-613

makeattribspec

Purpose Attribute specification from geographic data structure

Syntax attribspec = makeattribspec(S)

Description attribspec = makeattribspec(S) analyzes a geographic data
structure S and constructs an attribute specification suitable for use
with kmlwrite. kmlwrite, given geostruct input, constructs an HTML
table that consists of a label for the attribute in the first column and
the string value of the attribute in the second column. You can modify
attribspec, and then pass it to kmlwrite to exert control over which
geostruct attribute fields are written to the HTML table and the format
of the string conversion.

attribspec is a scalar MATLAB structure with two levels. The top
level consists of a field for each attribute in S. Each of these fields, on
the next level, contains a scalar structure with a fixed pair of fields:

AttributeLabel A string that corresponds to the name of the
attribute field in the geographic data structure.
With kmlwrite, the string is used to label the
attribute in the first column of the HTML table.
The string may be modified prior to calling
kmlwrite. You might modify an attribute label,
for example, because you want to use spaces in
your HTML table, but the attribute field names
in S must be valid MATLAB variable names and
cannot have spaces themselves.

Format The sprintf format character string that converts
the attribute value to a string.

Examples 1 Import a shapefile representing tsunami (tidal wave) events reported
between 1950 and 2006 and tagged geographically by source location,
and construct a default attribute specification (which includes all
the shapefile attributes):

s = shaperead('tsunamis', 'UseGeoCoords', true);

3-614

makeattribspec

attribspec = makeattribspec(s)
attribspec =

Year: [1x1 struct]
Month: [1x1 struct]

Day: [1x1 struct]
Hour: [1x1 struct]

Minute: [1x1 struct]
Second: [1x1 struct]

Val_Code: [1x1 struct]
Validity: [1x1 struct]

Cause_Code: [1x1 struct]
Cause: [1x1 struct]

Eq_Mag: [1x1 struct]
Country: [1x1 struct]

Location: [1x1 struct]
Max_Height: [1x1 struct]

Iida_Mag: [1x1 struct]
Intensity: [1x1 struct]

Num_Deaths: [1x1 struct]
Desc_Deaths: [1x1 struct]

2 Modify the attribute specification to

• Display just the attributes Max_Height, Cause, Year, Location,
and Country

• Rename the Max_Height field to Maximum Height

• Display each attribute’s label in bold type

• Set to zero the number of decimal places used to display Year

• Add “Meters” to the Height format, given independent knowledge
of these units

desiredAttributes = ...
{'Max_Height', 'Cause', 'Year', 'Location', 'Country'};

allAttributes = fieldnames(attribspec);
attributes = setdiff(allAttributes, desiredAttributes);

3-615

makeattribspec

attribspec = rmfield(attribspec, attributes);
attribspec.Max_Height.AttributeLabel = 'Maximum Height';
attribspec.Max_Height.Format = '%.1f Meters';
attribspec.Cause.AttributeLabel = 'Cause';
attribspec.Year.AttributeLabel = 'Year';
attribspec.Year.Format = '%.0f';
attribspec.Location.AttributeLabel = 'Location';
attribspec.Country.AttributeLabel = 'Country';

3 Use the attribute specification to export the selected attributes and
source locations to a KML file as a Description:

filename = 'tsunami.kml';
kmlwrite(filename, s, 'Description', attribspec, ...

'Name', {s.Location})

A view of Southeast Asia produced by the Google Earth application
shows the selected, formatted attributes displayed for a 2006 tsunami
in Indonesia.

3-616

makeattribspec

See also kmlwrite, makedbfspec, shapewrite

3-617

makedbfspec

Purpose DBF specification from geographic data structure

Syntax dbfspec = makedbfspec(S)

Description dbfspec = makedbfspec(S) analyzes a geographic data structure, S,
and constructs a DBF specification suitable for use with shapewrite.
You can modify dbfspec, then pass it to shapewrite to exert control
over which geostruct attribute fields are written to the DBF component
of the shapefile, the field-widths, and the precision used for numerical
values.

dbfspec is a scalar MATLAB structure with two levels. The top level
consists of a field for each attribute in S. Each of these fields, in turn,
contains a scalar structure with a fixed set of four fields:

dbfspec field Contents

FieldName The field name to be used within the DBF
file. This will be identical to the name of the
corresponding attibute, but may modified
prior to calling shapewrite. This might be
necessary, for example, because you want to use
spaces your DBF field names, but the attribute
fieldnames in S must be valid MATLAB variable
names and cannot have spaces themselves.

FieldType The field type to be used in the file, either 'N'
(numeric) or 'C' (character).

FieldLength The number of bytes that each instance of the
field will occupy in the file.

FieldDecimalCount The number of digits to the right of the decimal
place that are kept in a numeric field. Zero for
integer-valued fields and character fields. The
default value for noninteger numeric fields is 6.

Examples Import a shapefile representing a small network of road segments, and
construct a DBF specification.

3-618

makedbfspec

s = shaperead('concord_roads')

s =
609x1 struct array with fields:

Geometry
BoundingBox
X
Y
STREETNAME
RT_NUMBER
CLASS
ADMIN_TYPE
LENGTH

dbfspec = makedbfspec(s)

dbfspec =
STREETNAME: [1x1 struct]
RT_NUMBER: [1x1 struct]

CLASS: [1x1 struct]
ADMIN_TYPE: [1x1 struct]

LENGTH: [1x1 struct]

Modify the DBF spec to (a) eliminate the 'ADMIN_TYPE' attribute, (b)
rename the 'STREETNAME' field to 'Street Name', and (c) reduce the
number of decimal places used to store road lengths.

dbfspec = rmfield(dbfspec,'ADMIN_TYPE')

dbfspec =
STREETNAME: [1x1 struct]
RT_NUMBER: [1x1 struct]

CLASS: [1x1 struct]
LENGTH: [1x1 struct]

dbfspec.STREETNAME.FieldName = 'Street Name';
dbfspec.LENGTH.FieldDecimalCount = 1;

3-619

makedbfspec

Export the road network back to a modified shapefile. (Actually, only
the DBF component will be different.)

shapewrite(s, 'concord_roads_modified', 'DbfSpec', dbfspec)

Verify the changes you made. Notice the appearance of 'Street
Name' in the field names reported by shapeinfo, the absence of the
'ADMIN_TYPE' field, and the reduction in the precision of the road
lengths.

info = shapeinfo('concord_roads_modified')
info =

Filename: [3x28 char]
ShapeType: 'PolyLine'

BoundingBox: [2x2 double]
NumFeatures: 609
Attributes: [4x1 struct]

{info.Attributes.Name}

ans =
'Street Name' 'RT_NUMBER' 'CLASS' 'LENGTH'

r = shaperead('concord_roads_modified')

r =
609x1 struct array with fields:

Geometry
BoundingBox
X
Y
StreetName
RT_NUMBER
CLASS
LENGTH

s(33).LENGTH

3-620

makedbfspec

ans =
3.492817400000000e+002

r(33).LENGTH

ans =
3.493000000000000e+002

See also shapeinfo, shapewrite

3-621

makemapped

Purpose Convert ordinary graphics object to mapped object

Syntax makemapped(h)

Description makemapped(h) modifies the graphic object(s) associated with h such
that upon subsequent modification of map axes properties, they are
automatically reprojected appropriately. The object’s coordinates are
not changed by makemapped, but will change should you modify the map
projection. h can be a handle, vector of handles, or any name string
recognized by handlem. The objects are then considered to be geographic
data. You should first trim objects extending outside the map frame to
the map frame using trimcart.

Examples axesm('miller','geoid',[25 0])
framem
plot(humps,'b+-')

h = plot(humps,'r+-');
trimcart(h)
makemapped(h)

setm(gca,'MapProjection','sinusoid')

3-622

makemapped

Tips Objects should first be trimmed to the map frame using trimcart. This
avoids problems in taking inverse map projections with out-of-range
data.

See Also trimcart | handlem | cart2grn

3-623

makerefmat

Purpose Construct affine spatial-referencing matrix

Syntax R = makerefmat(x11, y11, dx, dy)
R = makerefmat(lon11, lat11, dlon, dlat)
R = makerefmat(param1, val1, param2, val2, ...)

Description R = makerefmat(x11, y11, dx, dy), with scalars dx and dy,
constructs a referencing matrix that aligns image or data grid rows to
map x and columns to map y. Scalars x11 and y11 specify the map
location of the center of the first (1,1) pixel in the image or the first
element of the data grid, so that

[x11 y11] = pix2map(R,1,1)

dx is the difference in x (or longitude) between pixels in successive
columns, and dy is the difference in y (or latitude) between pixels in
successive rows. More abstractly, R is defined such that

[x11 + (col-1) * dx, y11 + (row-1) * dy] = pix2map(R, row, col)

Pixels cover squares on the map when abs(dx) = abs(dy). To achieve
the most typical kind of alignment, where x increases from column
to column and y decreases from row to row, make dx positive and dy
negative. In order to specify such an alignment along with square
pixels, make dx positive and make dy equal to -dx:

R = makerefmat(x11, y11, dx, -dx)

R = makerefmat(x11, y11, dx, dy), with two-element vectors dx
and dy, constructs the most general possible kind of referencing matrix,
for which

[x11 + ([row col]-1) * dx(:), y11 + ([row col]-1) * dy(:)] ...

= pix2map(R, row, col)

In this general case, each pixel can become a parallelogram on the
map, with neither edge necessarily aligned to map x or y. The vector

3-624

makerefmat

[dx(1) dy(1)] is the difference in map location between a pixel in one
row and its neighbor in the preceding row. Likewise, [dx(2) dy(2)]
is the difference in map location between a pixel in one column and its
neighbor in the preceding column.

To specify pixels that are rectangular or square (but possibly rotated),
choose dx and dy such that prod(dx) + prod(dy) = 0. To specify
square (but possibly rotated) pixels, choose dx and dy such that the
2-by-2 matrix [dx(:) dy(:)] is a scalar multiple of an orthogonal
matrix (that is, its two eigenvalues are real, nonzero, and equal in
absolute value). This amounts to either rotation, a mirror image, or a
combination of both. Note that for scalars dx and dy,

R = makerefmat(x11, y11, [0 dx], [dy 0])

is equivalent to

R = makerefmat(x11, y11, dx, dy)

R = makerefmat(lon11, lat11, dlon, dlat), with longitude
preceding latitude, constructs a referencing matrix for use with
geographic coordinates. In this case,

[lat11,lon11] = pix2latlon(R,1,1),
[lat11+(row-1)*dlat,lon11+(col-1)*dlon] = pix2latlon(R,row,col)

for scalar dlat and dlon, and

[lat11+[row col]-1)*dlat,lon11+([row col]-1)*dlon] = ...
pix2latlon(R, row,col)

for vector dlat and dlon. Images or data grids aligned with latitude
and longitude might already have referencing vectors. In this case you
can use function refvec2mat to convert to a referencing matrix.

R = makerefmat(param1, val1, param2, val2, ...) uses
parameter name-value pairs to construct a referencing matrix for an
image or raster grid that is referenced to and aligned with a geographic
coordinate system. There can be no rotation or skew: each column must

3-625

makerefmat

fall along a meridian, and each row must fall along a parallel. Each
parameter name must be specified exactly as shown, including case.

Parameter Name Data Type Value

RasterSize Two-element size
vector [M N]

The number of rows (M) and columns (N)
of the raster or image to be used with the
referencing matrix.

With 'RasterSize', you may also provide
a size vector having more than two
elements. This enables usage such as:

R = makerefmat('RasterSize', ...
size(RGB), ...)

where RGB is M-by-N-by-3. However, in
cases like this, only the first two elements
of the size vector will actually be used.
The higher (non-spatial) dimensions will
be ignored. The default value is [1 1].

Latlim Two-element row
vector of the form:
[southern_limit,
northern_limit], in
units of degrees.

The limits in latitude of the geographic
quadrangle bounding the georeferenced
raster. The default value is [0 1].

Lonlim Two-element row
vector of the form:
[western_limit,
eastern_limit], in
units of degrees.

The limits in longitude of the geographic
quadrangle bounding the georeferenced
raster. The elements of the 'Lonlim'
vector must be ascending in value.
In other words, the limits must be
unwrapped. The default value is [0 1].

3-626

makerefmat

Parameter Name Data Type Value

ColumnsStartFrom String Indicates the column direction of the
raster (south-to-north vs. north-to-south)
in terms of the edge from which row
indexing starts. The input string can
have the value 'south' or 'north', can
be shortened, and is case-insensitive. In
a typical terrain grid, row indexing starts
at southern edge. In images, row indexing
starts at northern edge. The default value
is 'south'.

RowsStartFrom String Indicates the row direction of the raster
(west-to-east vs. east-to-west) in terms
of the edge from which column indexing
starts. The input string can have the
value 'west' or 'east', can be shortened,
and is case-insensitive. Rows almost
always run from west to east. The default
value is 'west'.

Definitions Spatial Referencing Matrix

A spatial referencing matrix R ties the row and column subscripts of an
image or regular data grid to 2-D map coordinates or to geographic
coordinates (longitude and geodetic latitude). R is a 3-by-2 affine
transformation matrix. R either transforms pixel subscripts (row,
column) to/from map coordinates (x,y) according to

[x y] = [row col 1] * R

or transforms pixel subscripts to/from geographic coordinates according
to

[lon lat] = [row col 1] * R

3-627

makerefmat

To construct a referencing matrix for use with geographic coordinates,
use longitude in place of X and latitude in place of Y, as shown in the R =
makerefmat(X11, Y11, dx, dy) syntax. This is one of the few places
where longitude precedes latitude in a function call.

Examples Create a referencing matrix for an image with square, four-meter pixels
and with its upper left corner (in a map coordinate system) at x = 207000
meters, y = 913000 meters. The image follows the typical orientation: x
increasing from column to column and y decreasing from row to row.

x11 = 207002; % Two meters east of the upper left corner
y11 = 912998; % Two meters south of the upper left corner
dx = 4;
dy = -4;
R = makerefmat(x11, y11, dx, dy)

Create a referencing matrix for a global geoid grid.

% Add array 'geoid' to the workspace:
load geoid

%'geoid' contains a model of the Earth's geoid sampled in
% one-degree-by-one-degree cells. Each column of 'geoid'
% contains geoid heights in meters for 180 cells starting
% at latitude -90 degrees and extending to +90 degrees, for
% a given longitude. Each row contains geoid heights for 360
% cells starting at longitude 0 and extending 360 degrees.
geoidR = makerefmat('RasterSize', size(geoid), ...

'Latlim', [-90 90], 'Lonlim', [0 360])

% At its most extreme, the geoid reaches a minimum of slightly
% less than -100 meters. This minimum occurs in the Indian Ocean
% at approximately 4.5 degrees latitude, 78.5 degrees longitude.
% Check the geoid height at its most extreme by using latlon2pix
% with the referencing matrix.
[row, col] = latlon2pix(geoidR, 4.5, 78.5)

3-628

makerefmat

geoid(round(row),round(col))

See Also latlon2pix | map2pix | pix2latlon | pix2map | refvec2mat |
worldfileread | worldfilewrite

Tutorials • Creating a Half-Resolution Georeferenced Image

How To • “Understanding Raster Geodata”

3-629

makesymbolspec

Purpose Construct vector layer symbolization specification

Syntax symbolspec = makesymbolspec(geometry,rule1,rule2,...ruleN)

Description symbolspec = makesymbolspec(geometry,rule1,rule2,...ruleN)
constructs a symbol specification structure (symbolspec) for symbolizing
a (vector) shape layer in the Map Viewer or when using mapshow.
geometry is one of 'Point', 'Line', 'PolyLine', 'Polygon', or
'Patch'. Rules, defined in detail below, specify the graphics properties
for each feature of the layer. A rule can be a default rule that is applied
to all features in the layer or it may limit the symbolization to only
those features that have a particular value for a specified attribute.
Features that do not match any rules are displayed using the default
graphics properties.

To create a rule that applies to all features, a default rule, use the
following syntax:

{'Default',Property1,Value1,Property2,Value2,...
PropertyN,ValueN}

To create a rule that applies only to features that have a particular value
or range of values for a specified attribute, use the following syntax:

{AttributeName,AttributeValue,
Property1,Value1,Property2,Value2,...,PropertyN,ValueN}

AttributeValue and ValueN can each be a two-element vector, [low
high], specifying a range. If AttributeValue is a range, ValueN might
or might not be a range.

The following is a list of allowable values for PropertyN.

• Points or Multipoints: 'Marker', 'Color', 'MarkerEdgeColor',
'MarkerFaceColor', 'MarkerSize', and 'Visible'

• Lines or PolyLines: 'Color', 'LineStyle', 'LineWidth', and
'Visible'

3-630

makesymbolspec

• Polygons: 'FaceColor', 'FaceAlpha', 'LineStyle', 'LineWidth',
'EdgeColor', 'EdgeAlpha', and 'Visible'

Examples The following examples import a shapefile containing road data and
symbolize it in several ways using symbol specifications.

Example 1 — Default Color

roads = shaperead('concord_roads.shp');
blueRoads = makesymbolspec('Line',{'Default','Color',[0 0 1]});
mapshow(roads,'SymbolSpec',blueRoads);

Example 2 — Discrete Attribute Based

roads = shaperead('concord_roads.shp');
roadColors = ...
makesymbolspec('Line',{'CLASS',2,'Color','r'},...

{'CLASS',3,'Color','g'},...
{'CLASS',6,'Color','b'},...

3-631

makesymbolspec

{'Default','Color','k'});
mapshow(roads,'SymbolSpec',roadColors);

Example 3 — Using a Range of Attribute Values

roads = shaperead('concord_roads.shp');
lineStyle = makesymbolspec('Line',...
{'CLASS',[1 3], 'LineStyle',':'},...
{'CLASS',[4 6],'LineStyle','-.'});

mapshow(roads,'SymbolSpec',lineStyle);

3-632

makesymbolspec

Example 4 — Using a Range of Attribute Values and a Range
of Property Values

roads = shaperead('concord_roads.shp');
colorRange = makesymbolspec('Line',...

{'CLASS',[1 6],'Color',summer(10)});
mapshow(roads,'SymbolSpec',colorRange);

3-633

makesymbolspec

See Also mapshow | geoshow | mapview

3-634

map2pix

Purpose Convert map coordinates to pixel coordinates

Syntax [row,col] = map2pix(R,x,y)
p = map2pix(R,x,y)
[...] = map2pix(R,s)

Description [row,col] = map2pix(R,x,y) calculates pixel coordinates row,col
from map coordinates x,y. R is either a 3-by-2 referencing matrix
defining a 2-dimensional affine transformation from intrinsic pixel
coordinates to map coordinates, or a spatialref.MapRasterReference
object. x and y are vectors or arrays of matching size. The outputs row
and col have the same size as x and y.

p = map2pix(R,x,y) combines row and col into a single array p. If x
and y are column vectors of length n, then p is an n-by-2 matrix and
each p(k,:) specifies the pixel coordinates of a single point. Otherwise,
p has size [size(row) 2], and p(k1,k2,...,kn,:) contains the pixel
coordinates of a single point.

[...] = map2pix(R,s) combines x and y into a single array s. If x and
y are column vectors of length n, the s should be an n-by-2 matrix such
that each row (s(k,:)) specifies the map coordinates of a single point.
Otherwise, s should have size [size(X) 2], and s(k1,k2,...,kn,:)
should contain the map coordinates of a single point.

Examples % Find the pixel coordinates for the spatial coordinates
% (207050, 912900)
R = worldfileread('concord_ortho_w.tfw');
[r,c] = map2pix(R, 207050, 912900);

See Also latlon2pix | makerefmat | pix2map | worldfileread

3-635

mapbbox

Purpose Compute bounding box of georeferenced image or data grid

Syntax bbox = mapbbox(R, height, width)
bbox = mapbbox(R, sizea)
BBOX = mapbbox(info)

Description bbox = mapbbox(R, height, width) computes the 2-by-2 bounding
box of a georeferenced image or regular gridded data set. R is
either a 3-by-2 referencing matrix defining a 2-dimensional affine
transformation from intrinsic pixel coordinates to map coordinates, or a
spatialref.MapRasterReference object. height and width are the
image dimensions. bbox bounds the outer edges of the image in map
coordinates:

[minX minY
maxX maxY]

bbox = mapbbox(R, sizea) accepts sizea = [height, width, ...]
instead of height and width.

BBOX = mapbbox(info) accepts a scalar struct array with the fields

'RefMatrix' 3-by-2 referencing matrix

'Height' Scalar number

'Width' Scalar number

See Also geotiffinfo | makerefmat | mapoutline | pixcenters | pix2map

3-636

maplist

Purpose Available Mapping Toolbox map projections

Syntax list = maplist
[list,defproj] = maplist

Description list = maplist returns a structure that lists all the available
Mapping Toolbox map projections. The list structure is list.Name,
list.IdString, list.Classification, list.ClassCode. This list
structure is used by the functions maps and axesmui when processing
map projection identifiers during operation of the toolbox functions.

[list,defproj] = maplist also returns the default projection’s
IdString.

list.Name defines the full name of the projection. This entry is used in
the command-line table display and in the Projection Control Box.

list.IdString provides the name of the MATLAB function that
computes the projection.

list.Classification defines the projection classification that is used
in the command-line table display.

list.ClassCode defines the character string that is used to label the
classes of projections in the Projection Control Box. The eight class
codes are

• Azim — Azimuthal

• Coni — Conic

• Cyln — Cylindrical

• Mazi — Modified azimuthal

• Pazi — Pseudoazimuthal

• Pcon — Pseudoconic

• Pcy — Pseudocylindrical

• Poly — Polyconic

3-637

maplist

When map projections are added to the toolbox, the list structure needs
to be extended. For example, if a new projection is added to the default
list, then a new entry in the list structure would be

list.Name(61) = 'My Projection'
list.IdString(61) = 'newprojection';
list.Classification(61) = 'New Projection Type';
list.ClassCode(61) = 'Code';

See Also maps | axesmui

3-638

mapoutline

Purpose Compute outline of georeferenced image or data grid

Syntax [x,y] = mapoutline(R, height, width)
[x,y] = mapoutline(R, sizea)
[x,y] = mapoutline(info)
[x,y] = mapoutline(...,'close')
[lon,lat] = mapoutline(R,...)
outline = mapoutline(...)

Description [x,y] = mapoutline(R, height, width) computes the outline of a
georeferenced image or regular gridded data set in map coordinates. R
is either a 3-by-2 referencing matrix defining a 2-dimensional affine
transformation from intrinsic pixel coordinates to map coordinates,
or a spatialref.MapRasterReference object. height and width are
the image dimensions. x and y are 4-by-1 column vectors containing
the map coordinates of the outer corners of the corner pixels, in the
following order:

(1,1), (height,1), (height, width), (1, width).

[x,y] = mapoutline(R, sizea) accepts sizea = [height, width,
...] instead of height and width.

[x,y] = mapoutline(info) accepts a scalar struct array with the fields

'RefMatrix' 3-by-2 referencing matrix

'Height' Scalar number

'Width' Scalar number

[x,y] = mapoutline(...,'close') returns x and y as 5-by-1 vectors,
appending the coordinates of the first of the four corners to the end.

[lon,lat] = mapoutline(R,...), where R georeferences pixels to
longitude and latitude rather than map coordinates, returns the outline
in geographic coordinates. Longitude must precede latitude in the
output argument list.

3-639

mapoutline

outline = mapoutline(...) returns the corner coordinates in a
4-by-2 or 5-by-2 array.

Examples Draw a red outline delineating the Boston GeoTIFF image, which is
referenced to the Massachusetts Mainland State Plane coordinate
system with units of survey feet.

figure
info = geotiffinfo('boston.tif');
[x,y] = mapoutline(info, 'close');
hold on
plot(x,y,'r')
xlabel('MA Mainland State Plane easting, survey feet')
ylabel('MA Mainland State Plane northing, survey feet')

Draw a black outline delineating a TIFF image of Concord,
Massachusetts, while lies roughly 25 km north west of Boston. Convert
world file units to survey feet from meters to be consistent with the
Boston image.

info = imfinfo('concord_ortho_w.tif');
R = worldfileread('concord_ortho_w.tfw');
R = R * unitsratio('sf','meter');
[x,y] = mapoutline(R, info.Height, info.Width, 'close');
plot(x,y,'k')

3-640

mapoutline

See Also makerefmat | mapbbox | pixcenters | pix2map

3-641

mappoint

Purpose Planar point vector

Syntax p = mappoint()
p = mappoint(x,y)
p = mappoint(x,y,Name,Value)
p = mappoint(structArray)
p = mappoint(x,y,structArray)

Description A mappoint vector is a container object that holds planar point
coordinates and attributes. The points are coupled, such that the size
of the X and Y coordinate arrays are always equal and match the size
of any dynamically added attribute arrays. Each entry of a coordinate
pair and associated attributes, if any, represent a discrete element in
the mappoint vector.

Construction p = mappoint() constructs an empty mappoint vector, p, with these
default property settings:

p =

0x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: []
Y: []

For an additional example, see “Constructor: mappoint()” on page 3-648.

p = mappoint(x,y) constructs a new mappoint vector and assigns the
X and Y properties to the numeric array inputs, lat and lon. For an
example, see“Constructor: mappoint(x,y)” on page 3-648 .

p = mappoint(x,y,Name,Value) constructs a mappoint vector from
input arrays x and y, and then adds dynamic properties to the mappoint
vector using the Name, Value argument pairs.

3-642

mappoint

• If a specified name is Metadata and the corresponding Value is a
scalar structure, then the value is copied to the Metadata property.
Otherwise, an error is issued.

For an example, see “Constructor: mappoint(x,y,Name,Value)” on page
3-649.

p = mappoint(structArray) constructs a new mappoint vector from
the fields of the structure, structArray. See for an example.

• If structArray is a scalar structure containing the field Metadata
and the field value is a scalar structure, then the Metadata field is
copied to the Metadata property. Otherwise, an error is issued if
the Metadata field is not a structure, or ignored if structArray is
not scalar.

• Other fields of structArray are assigned to p and become dynamic
properties. Field values in structArray that are not numeric or
strings or cell arrays of numeric or string values are ignored.

For an example, see “Constructor: mappoint(structArray)” on page
3-649.

p = mappoint(x,y,structArray) constructs a new mappoint vector
and sets the X and Y properties equal to the numeric arrays, x and y,
and sets dynamic properties from the field values of the structure,
structArray.

• If structArray is a scalar structure containing the field Metadata,
and the field value is a scalar structure, then it is copied to the
Metadata property. Otherwise, an error is issued if the Metadata
field is not a structure, or ignored if structArray is not scalar.

For an example, see “Constructor: mappoint(x,y,structArray)” on page
3-650.

Input Arguments

x

3-643

mappoint

vector of latitude coordinates

Data Types
double | single

y

vector of longitude coordinates

Data Types
double | single

structArray

structure containing fields to be assigned as dynamic properties
to p.

Name

Name of dynamic property

Data Types
char

Value

Property value associated with dynamic property Name. Values
may be numeric, logical, char, or a cell array of strings.

Output Arguments

p

mappoint vector.

Properties Each element in a mappoint vector is considered a feature. Feature
properties contain one value (a scalar number or a string) for each
element in the mappoint vector. The Latitude and Longitude
coordinate properties are feature properties as there is one value for
each feature.

Geometry and Metadata are collection properties. These properties
contain only one value per class instance. The term collection is used to

3-644

mappoint

distinguish these two properties from other feature properties which
have values associated with each feature (element in a mappoint vector).

You can attach new dynamic feature properties to the object by using
dot ‘.’ notation. This is similar to adding dynamic fields to a structure.
Dynamic feature properties apply to each individual feature in the
mappoint vector. See “Multifeatures and Autosizing” on page 3-652for
an example.

Geometry

String defining the type of geometry.

For mappoint, string is always 'point'.

Attributes:

Geometry string

Metadata

Metadata is a scalar structure containing information for the
entire set of mappoint vector elements. You can add any data
type to the structure.

Attributes:

Metadata Scalar struct

X

Vector of planar X coordinates. The values can be either a row
or column vector.

Attributes:

X single | double vector

Y

Vector of planar Y coordinates. The values can be either a row
or column vector.

3-645

mappoint

Attributes:

Y single | double vector

Dynamic properties

You can attach new properties to the object using dot '.'
notation. The class type of the values for the dynamic properties
must be either numeric, logical, char, or a cell array of strings.

Methods append Append features to mappoint
vector

cat Concatenate mappoint vectors

disp Display mappoint vector

fieldnames Dynamic properties of mappoint
vector

isempty True if mappoint vector is empty

isfield Returns true if dynamic property
exists

isprop Returns true if property exists

length Number of elements in mappoint
vector

properties properties of a mappoint vector

rmfield Remove dynamic property from
mappoint vector

rmprop Remove properties from mappoint
vector

size Size of mappoint vector

3-646

mappoint

struct Convert mappoint vector to scalar
structure

vertcat Vertical concatenation for
mappoint vectors

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Class
Behaviors

• This example builds a default mappoint object and then dynamically
adds a single feature.

“Add a Dynamic Feature” on page 3-651

• mappoint vectors autoresize all properties lengths to ensure they are
equal in size when a new dynamic property is added or an existing
property appended or shortened.

“Multifeatures and Autosizing” on page 3-652

• The class syntax containing the Name-Value pair allows features to
be included during object construction.

“Two Features at Construction” on page 3-656

• The data for the following example resides in a MAT file containing
oceanic depths.

“mappoint vector from a MAT file” on page 3-656

• This example also accesses data from a file and loads it into a
structure array. Features are then added to the mappoint illustrating
a number of behaviors.

“Dynamic Features from Structure Arrays” on page 3-659

• In this example, a feature is added to the mappoint vector using
linear indexing.

“Append a Point by Indexing” on page 3-661

3-647

mappoint

• Features can be sorted by using the indexing behavior of the
mappoint class.

“Sort Dynamic Properties” on page 3-663

• This example demonstrates that input arguments x and y can be
either row or column vectors.

“Row and Column Input Arguments” on page 3-665

Examples Constructor: mappoint()

Construct a default mappoint vector.

Dynamically set the X and Y property values, and dynamically add
Vertex property Z.

p = mappoint();
p.X = 1:3;
p.Y = 1:3;
p.Z = [10 10 10]

p =

3x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [1 2 3]
Y: [1 2 3]
Z: [10 10 10]

Constructor: mappoint(x,y)

Construct a mappoint vector from x and y values.

x = [40 50 60];
y = [10, 11, 12];
p = mappoint(x, y)

3-648

mappoint

p =

3x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [40 50 60]
Y: [10 11 12]

Constructor: mappoint(x,y,Name,Value)

Construct a mappoint vector from x, y, and temperature values.

x = 41:43;
y = 1:3;
temperature = 61:63;
p = mappoint(x, y, 'Temperature', temperature)

p =

3x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [41 42 43]
Y: [1 2 3]

Temperature: [61 62 63]

Constructor: mappoint(structArray)

Construct a mappoint vector from a structure array.

structArray = shaperead('boston_placenames')
p = mappoint(structArray)

3-649

mappoint

structArray =

13x1 struct array with fields:
Geometry
X
Y
NAME
FEATURE
COORD

p =

13x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [1x13 double]
Y: [1x13 double]

NAME: {1x13 cell}
FEATURE: {1x13 cell}

COORD: {1x13 cell

Constructor: mappoint(x,y,structArray)

Construct a mappoint vector from x and y numeric arrays and a
structure array.

[structArray, A] = shaperead('boston_placenames');
x = [structArray.X];
y = [structArray.Y];
p = mappoint(x, y, A)

p =

3-650

mappoint

13x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [1x13 double]
Y: [1x13 double]

NAME: {1x13 cell}
FEATURE: {1x13 cell}

COORD: {1x13 cell}

Add a Dynamic Feature

Construct a mappoint vector for one feature.

x = 1;
y = 1;
p = mappoint(x, y)

p =

1x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: 1
Y: 1

Add a feature dynamic property with a string value.

p.FeatureName = 'My Feature'

p =

1x1 mappoint vector with properties:

3-651

mappoint

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: 1
Y: 1

FeatureName: 'My Feature'

Multifeatures and Autosizing

Construct a mappoint vector for two features. Add features dynamically.

x = [1 2];
y = [10 10];
p = mappoint(x, y)

p =

2x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [1 2]
Y: [10 10]

Add a feature dynamic property.

p.FeatureName = {'Feature 1', 'Feature 2'}

p =

2x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:

3-652

mappoint

X: [1 2]
Y: [10 10]

FeatureName: {'Feature 1' 'Feature 2'}

Add a numeric feature dynamic property.

p.ID = [1 2]

p =

2x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [1 2]
Y: [10 10]

FeatureName: {'Feature 1' 'Feature 2'}
ID: [1 2]

Add a third feature. All properties are autosized so that all vector
lengths match.

p(3).X = 3
p(3).Y = 10

p =

3x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [1 2 3]
Y: [10 10 10]

FeatureName: {'Feature 1' 'Feature 2' ''}

3-653

mappoint

ID: [1 2 0]

Set the values for the ID feature dynamic property with more values
than contained in X or Y. All properties are expanded to match in size.

p.ID = 1:4

p =

4x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [1 2 3 0]
Y: [10 10 10 0]

FeatureName: {'Feature 1' 'Feature 2' '' ''}
ID: [1 2 3 4]

Set the values for the ID feature dynamic property with less values
than contained in X or Y. The ID property values expand to match the
length of X and Y.

p.ID = 1:2

p =

4x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [1 2 3 0]
Y: [10 10 10 0]

FeatureName: {'Feature 1' 'Feature 2' '' ''}
ID: [1 2 0 0]

3-654

mappoint

Set the values of either coordinate property (X or Y) with fewer values.
All properties shrink in size to match the new length.

p.X = 1:2

p =

2x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [1 2]
Y: [10 10]

FeatureName: {'Feature 1' 'Feature 2'}
ID: [1 2]

Remove the FeatureName (or ID) property by setting its value to [].

p.FeatureName = []

p =

2x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [1 2]
Y: [10 10]

ID: [1 2]

Remove all dynamic properties and set the object to empty by setting a
coordinate property value to [].

p.X = []

3-655

mappoint

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: []
Y: []

Two Features at Construction

point = mappoint([42 44], [10, 11], 'Temperature', [63 65])

point =

2x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [42 44]
Y: [10 11]

Temperature: [63 65]

mappoint vector from a MAT file

Load data from file, add dynamic features and display data in figure
windows.

Construct a mappoint vector to hold the coordinates from the seamount
MAT-file. Add a dynamic feature property to indicate the Z coordinate.
Add a dynamic feature property to indicate a binned level value and a
color value for a given level. Include metadata information from the
MAT-file.

seamount = load('seamount');
p = mappoint(seamount.x, seamount.y, 'Z', seamount.z);

3-656

mappoint

Create a level list to use to bin the z values and create a list of color
values for each level.

levels = [unique(floor(seamount.z/1000)) * 1000; 0];
colors = {'red', 'green', 'blue', 'cyan', 'black'};

Add a MinLevel and MaxLevel feature property to indicate the lowest
and highest binned level.

for k = 1:length(levels) - 1
index = levels(k) <= p.Z & p.Z < levels(k+1);
p(index).MinLevel = levels(k);
p(index).MaxLevel = levels(k+1) - 1;
p(index).Color = colors{k};

end

Add metadata information. Metadata is a scalar structure containing
information for the entire set of properties. Any type of data may be
added to the structure.

p.Metadata.Caption = seamount.caption;
p.Metadata

ans =

Caption: [1x229 char]

Display the point data as a 2-D plot.

figure
minLevels = unique(p.MinLevel);
for k=1:length(minLevels)

index = p.MinLevel == minLevels(k);
mapshow(p(index).X, p(index).Y, ...
'MarkerEdgeColor', p(find(index,1)).Color, ...
'Marker', 'o', ...
'DisplayType', 'point')

end

3-657

mappoint

legend(num2str(minLevels'))

Display the point data as a 3-D scatter plot.

figure
scatter3(p.X, p.Y, p.Z)

3-658

mappoint

Dynamic Features from Structure Arrays

Assign dynamic features to mappoint vector from a structure array.

structArray = shaperead('boston_placenames');
p = mappoint();
p.X = [structArray.X];
p.Y = [structArray.Y];
p.Name = {structArray.NAME}

p =

3-659

mappoint

13x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [1x13 double]
Y: [1x13 double]

Name: {1x13 cell}

Construct a mappoint vector from a structure array using the
constructor syntax.

filename = 'boston_placenames.shp';
structArray = shaperead(filename);
p = mappoint(structArray)

p =

13x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [1x13 double]
Y: [1x13 double]

NAME: {1x13 cell}
FEATURE: {1x13 cell}

COORD: {1x13 cell}

Add a Filename field to the Metadata structure. Display the first five
points and the Metadata structure.

p.Metadata.Filename = filename;
p(1:5)
p.Metadata

3-660

mappoint

ans =

5x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [2.3403e+05 2.3357e+05 2.3574e+05 2.3627e+05 2.3574e+05]
Y: [900038 9.0019e+05 9.0113e+05 9.0097e+05 9.0036e+05]

NAME: {1x5 cell}
FEATURE: {'PPL-SUBDVSN' ' MARSH' ' HILL' ' PPL' ' PENINSULA'}

COORD: {1x5 cell}

ans =

Filename: 'boston_placenames.shp'

Append a Point by Indexing

Append Paderborn Germany to the vector of world cities.

p = mappoint(shaperead('worldcities.shp'));
x = 51.715254;
y = 8.75213;
p = append(p, x, y, 'Name', 'Paderborn');
p(end)

ans =

1x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: 51.7153
Y: 8.7521

3-661

mappoint

Name: 'Paderborn'

You can also add a point to the end of the vector using linear indexing.
Add Arlington, Virginia to the end of the vector.

p(end+1).X = 38.880043;
p(end).Y = -77.196676;
p(end).Name = 'Arlington';
p(end-1:end)

ans =

2x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [51.7153 38.8800]
Y: [8.7521 -77.1967]

Name: {'Paderborn' 'Arlington'}

Plot the Points

figure
mapshow(p.X, p.Y, 'DisplayType', 'point')

3-662

mappoint

Sort Dynamic Properties

Construct a mappoint vector and sort the dynamic properties.

p = mappoint(shaperead('tsunamis'));
p = p(:, sort(fieldnames(p)))

p =

162x1 mappoint vector with properties:

3-663

mappoint

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [1x162 double]
Y: [1x162 double]

Cause: {1x162 cell}
Cause_Code: [1x162 double]

Country: {1x162 cell}
Day: [1x162 double]

Desc_Deaths: [1x162 double]
Eq_Mag: [1x162 double]

Hour: [1x162 double]
Iida_Mag: [1x162 double]

Intensity: [1x162 double]
Location: {1x162 cell}

Max_Height: [1x162 double]
Minute: [1x162 double]
Month: [1x162 double]

Num_Deaths: [1x162 double]
Second: [1x162 double]

Val_Code: [1x162 double]
Validity: {1x162 cell}

Year: [1x162 double]

Modify the mappoint vector to contain only the dynamic properties,
’Year’, ’Month’, ’Day’, ’Hour’, ’Minute’.

p = p(:, {'Year', 'Month', 'Day', 'Hour', 'Minute'})

p =

162x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

3-664

mappoint

Feature properties:
X: [1x162 double]
Y: [1x162 double]

Year: [1x162 double]
Month: [1x162 double]

Day: [1x162 double]
Hour: [1x162 double]

Minute: [1x162 double]

Display the first 5 elements.

p(1:5)

ans =

5x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [128.3000 -156 157.9500 143.8500 -155]
Y: [-3.8000 19.5000 -9.0200 42.1500 19.1000]

Year: [1950 1951 1951 1952 1952]
Month: [10 8 12 3 3]

Day: [8 21 22 4 17]
Hour: [3 10 NaN 1 3]

Minute: [23 57 NaN 22 58]

Row and Column Input Arguments

Input argument x and y values can be either Nx2 or 2xM arrays.

If you typically store x and y coordinate values in a N-by-2 or 2-by-M
array, you can assign a mappoint object to these numeric values. If the
values are stored in a N-by-2 array, then the X property values are
assigned to the first column and the Y property values are assigned to
the second column.

3-665

mappoint

x = 1:10;
y = 21:30;
pts = [x' y'];
p = mappoint;
p(1:length(pts)) = pts

p =

10x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [1 2 3 4 5 6 7 8 9 10]
Y: [21 22 23 24 25 26 27 28 29 30]

If the values are stored in a 2-by-M array, then the X property values
are assigned to the first row and the Y property values are assigned to
the second row. pts = [x; y];

pts = [x; y];
p(1:length(pts)) = pts

p =

10x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [1 2 3 4 5 6 7 8 9 10]
Y: [21 22 23 24 25 26 27 28 29 30]

See Also gpxread | shaperead | mappoint | geoshape | mapshape

3-666

mappoint.append

Purpose Append features to mappoint vector

Syntax p = append(p,lat,lon)
p = append(p,lat,lon,Name,Value)

Description p = append(p,lat,lon) appends the latitude values in the numeric
array, lat to the X property of the mappoint vector, p, and the longitude
values in the numeric array, lon, to the Y property of p.

p = append(p,lat,lon,Name,Value) appends lat and lon values to
the mappoint vector. The method adds dynamic properties to the object
using Name for the names of the dynamic properties, and then assign
Value to them.

Input
Arguments

p

mappoint vector.

x

Numeric vector of X values.

y

Numeric vector of Y values.

Name-Value pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Name,Value

parameter Name-Value pairs of the dynamic properties that are
to be added to the mappoint vector, p.

3-667

mappoint.append

Output
Arguments

p

Modified mappoint vector with additional entries in X and Y fields
along with any new fields for dynamic properties that you added.

Examples Append Values to Fields in a mappoint Vector

Append values to existing fields of a mappoint vector.

p = mappoint(42,-110, 'Temperature', 65);
p = append(p, 42.1, -110.4, 'Temperature', 65.5)

p =

2x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [42 42.1000]
Y: [-110 -110.4000]

Temperature: [65 65.5000]

Append Dynamic Property to a geopoint Vector

Append dynamic property, 'Pressure', to a mappoint vector.

p = mappoint(42,-110, 'Temperature', 65);
p = append(p, 42.2, -110.5, 'Temperature', 65.6, 'Pressure', 100.0)

p =

2x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:

3-668

mappoint.append

X: [42 42.2000]
Y: [-110 -110.5000]

Temperature: [65 65.6000]
Pressure: [0 100]

See Also mappoint.vertcat |

3-669

mappoint.cat

Purpose Concatenate mappoint vectors

Syntax p= cat(dim,p1, p2, ...)

Description p= cat(dim,p1, p2, ...) concatenates the mappoint vectors p1,p2
and so on along dimensions dim. dim must be 1.

Input
Arguments

p1, p2, ...

mappoint vectors to be concatenated.

Output
Arguments

p

Concatenated mappoint vector.

Examples Concatenate two mappoint vectors

Create two mappoint vectors and concatenate them to a single vector.

pt1 = mappoint(42,-110, 'Temperature', 65);
pt2 = mappoint(42.2, -110.5, 'Temperature', 65.6);
p = cat(1,pt1,pt2)

p =

2x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [42 42.2000]
Y: [-110 -110.5000]

Temperature: [65 65.6000]

See Also mappoint.vertcat |

3-670

mappoint.disp

Purpose Display mappoint vector

Syntax disp(p)

Description disp(p) prints the size of the mappoint vector, p, and its properties
and dynamic properties, if they exist. If the command window is large
enough, the values of the properties are also shown, otherwise only
their size is shown. You can control the display of the numerical values
by using the format command.

Input
Arguments

p

mappoint vector.

Examples Display a mappoint vector

Display a mappoint vector.

p = mappoint(shaperead('worldcities'));
disp(p)
disp(p(1:2))

318x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [1x318 double]
Y: [1x318 double]

Name: {1x318 cell}

2x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:

3-671

mappoint.disp

X: [-3.9509 54.7589]
Y: [5.2985 24.6525]

Name: {'Abidjan' 'Abu Dhabi'}

See Also formatmappoint |

3-672

mappoint.fieldnames

Purpose Dynamic properties of mappoint vector

Syntax names = fieldnames(p)

Description names = fieldnames(p) returns the names of the dynamic properties
of the mappoint vector, p.

Input
Arguments

p

mappoint vector for which the properties are to be queried.

Output
Arguments

names

Names of the dynamic properties in the mappoint vector p

Examples Find dynamic properties

Return the dynamic properties of a mappoint vector

p = mappoint(shaperead('worldcities'))
fieldnames(p)

p =

318x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [1x318 double]
Y: [1x318 double]

Name: {1x318 cell}

ans =

'Name'

3-673

mappoint.fieldnames

See Also mappoint.properties |

3-674

mappoint.isempty

Purpose True if mappoint vector is empty

Syntax tf = isempty(p)

Description tf = isempty(p) returns true if the mappoint vector, p, is empty and
false otherwise.

Input
Arguments

p

mappoint vector.

Examples Check if a mappoint vector is empty

Check if the mappoint vector is empty.

p = mappoint();
isempty(p)

ans =

1

See Also mappoint.end |

3-675

mappoint.isfield

Purpose Returns true if dynamic property exists

Syntax tf = isfield(p,name)
tf = isfield(p,names)

Description tf = isfield(p,name) returns true if the value specified by the string
name is a dynamic property of the mappoint vector, p.

tf = isfield(p,names) return true for each element of the cell array,
names, that is a dynamic property of p. tf is a logical array of the
same size as names.

Input
Arguments

p

mappoint vector.

name

Name of the dynamic property.

names

Cell array of names of dynamic properties.

Output
Arguments

tf

Boolean. 1 if p contains the specified fields or 0 otherwise.

Examples Check for fieldname

Check if a field is present in a mappoint vector.

p = mappoint(-33.961, 18.484, 'Name', 'Cape Town');
isfield(p, 'X')
isfield(p, 'Name')

ans =

0

3-676

mappoint.isfield

ans =

1

See Also mappoint.isprop | mappoint.fieldnames |

3-677

mappoint.isprop

Purpose Returns true if property exists

Syntax tf = isprop(p,name)
tf = isprop(p,names)

Description tf = isprop(p,name) returns true if the value specified by the string,
name is a property of the mappoint vector, p.

tf = isprop(p,names) returns true for each element of the cell array
of strings, names, that is a property of p. tf is a logical array the same
size as names.

Input
Arguments

p

mappoint vector.

name

String specifying the property of the mappoint vector, p.

names

Cell array of strings specifying the property of the mappoint
vector, p.

Output
Arguments

tf

Boolean. 1 if the property exists with p ,0 otherwise.

Examples Check if property exists

This example shows how to check if a string is a property of a mappoint
vector.

p = mappoint(-33.961, 18.484, 'Name', 'Cape Town');
isprop(p, 'X')
isprop(p, 'Name')

ans =

1

3-678

mappoint.isprop

ans =

1

See Also mappoint.isfield | mappoint.properties |

3-679

mappoint.length

Purpose Number of elements in mappoint vector

Syntax N = length(p)

Description N = length(p) returns the number of elements contained in the
mappoint vector, p. The result is equivalent to size(p,1).

Input
Arguments

p

mappoint vector.

Output
Arguments

N

Length of the mappoint vector, p.

Examples Find the length of the mappoint vector.

coast = load('coast');
p = mappoint(coast.lat, coast.long);
length(p)
length(coast.lat)

ans =

9865

ans =

9865

See Also mappoint.size |

3-680

mappoint.properties

Purpose properties of a mappoint vector

Syntax prop = properties(p)
properties(p)

Description prop = properties(p) returns a cell of the property names of the
mappoint vector, p.

properties(p) displays the names of the properties of p.

Input
Arguments

p

mappoint vector.

Output
Arguments

prop

Cell variable consisting of property names of the mappoint vector,
p.

Examples properties of a mappoint vector

Query for properties of a mappoint vector.

p = mappoint(shaperead('tsunamis'));
properties(p)

Properties for class mappoint:

Geometry
Metadata
X
Y
Year
Month
Day
Hour
Minute
Second

3-681

mappoint.properties

Val_Code
Validity
Cause_Code
Cause
Eq_Mag
Country
Location
Max_Height
Iida_Mag
Intensity
Num_Deaths
Desc_Deaths

See Also mappoint.fieldnames |

3-682

mappoint.rmfield

Purpose Remove dynamic property from mappoint vector

Syntax p = rmfield(p, fieldname)
p = rmfield(p, fields)

Description p = rmfield(p, fieldname) removes the field specified by the string,
fieldname , from the mappoint vector, p.

p = rmfield(p, fields) removes all the fields specified by the cell
array, fields.

Note rmfield cannot remove X, Y and Metadata fields and the string
specified is case sensitive.

Input
Arguments

p

mappoint vector.

fieldname

Exact string representing the name of the property.

fields

Cell array of strings specifying the names of the properties.

Output
Arguments

p

Updated mappoint vector with the field(s) removed.

Examples Remove fields from a mappoint vector

Remove fields from a mappoint vector.

p = mappoint(shaperead('tsunamis'));
p2 = rmfield(p, 'Geometry')

p2 =

3-683

mappoint.rmfield

162x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [1x162 double]
Y: [1x162 double]

Year: [1x162 double]
Month: [1x162 double]

Day: [1x162 double]
Hour: [1x162 double]

Minute: [1x162 double]
Second: [1x162 double]

Val_Code: [1x162 double]
Validity: {1x162 cell}

Cause_Code: [1x162 double]
Cause: {1x162 cell}

Eq_Mag: [1x162 double]
Country: {1x162 cell}

Location: {1x162 cell}
Max_Height: [1x162 double]

Iida_Mag: [1x162 double]
Intensity: [1x162 double]

Num_Deaths: [1x162 double]
Desc_Deaths: [1x162 double]

See Also mappoint.fieldnames | mappoint.rmprop |

3-684

mappoint.rmprop

Purpose Remove properties from mappoint vector

Syntax pF = rmprop(p,propname)
pF = rmprop(p,propnames)

Description pF = rmprop(p,propname) removes the property specified by the
string, propname from the mappoint vector, p.

pF = rmprop(p,propnames) removes all the properties specified in
the cell array, propnames, from the mappoint vector, p. If propnames
contains a coordinate property an error is issued.

Note rmprop cannot remove X, Y and Metadata fields and the string
specified is case sensitive.

Input
Arguments

p

mappoint vector.

Output
Arguments

pF

Modified mappoint vector with the specified property(s) removed.

Examples Remove a property of a mappoint vector

Remove a property from a mappoint vector.

p = mappoint(shaperead('tsunamis'));
p2 = rmprop(p, 'Validity')

p2 =

162x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'

3-685

mappoint.rmprop

Metadata: [1x1 struct]
Feature properties:

X: [1x162 double]
Y: [1x162 double]

Year: [1x162 double]
Month: [1x162 double]

Day: [1x162 double]
Hour: [1x162 double]

Minute: [1x162 double]
Second: [1x162 double]

Val_Code: [1x162 double]
Cause_Code: [1x162 double]

Cause: {1x162 cell}
Eq_Mag: [1x162 double]

Country: {1x162 cell}
Location: {1x162 cell}

Max_Height: [1x162 double]
Iida_Mag: [1x162 double]

Intensity: [1x162 double]
Num_Deaths: [1x162 double]

Desc_Deaths: [1x162 double]

See Also mappoint.fieldnames |

3-686

mappoint.size

Purpose Size of mappoint vector

Syntax SZ = size(p)
SZ = size(p,1)
SZ = size(p, n)
[m,k] = size(p)

Description SZ = size(p) returns the vector [length(p), 1].

SZ = size(p,1) returns the length of p.

SZ = size(p, n) returns 1 for n >= 2.

[m,k] = size(p) returns length(p) for m and 1 for k.

Input
Arguments

p

mappoint vector.

n

Number of the dimension at which size of p is required.

Output
Arguments

SZ

Vector of the form [length(p), 1].

m

Length of p.

k

Length of second dimension of p. k is always 1.

Examples Size of a mappoint vector

Find the size of a mappoint vector.

coast = load('coast');
p = mappoint(coast.lat, coast.long);
size(p)

3-687

mappoint.size

ans =

9865 1

The second dimension is always 1.

See Also mappoint.length | size

3-688

mappoint.struct

Purpose Convert mappoint vector to scalar structure

Syntax S = struct(p)

Description S = struct(p) converts the mappoint vector, p, to a scalar structure, S.

Input
Arguments

p

mappoint vector.

Output
Arguments

S

Scalar structure of the mappoint vector p.

Examples Converting a mappoint vector into struct

This example shows how to convert a mappoint vector to struct.

S = shaperead('worldcities');
p = mappoint(S)
S2 = struct(p)
class(S2)

p =

318x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [1x318 double]
Y: [1x318 double]

Name: {1x318 cell}

S2 =

3-689

mappoint.struct

Geometry: 'point'
Metadata: [1x1 struct]

X: [1x318 double]
Y: [1x318 double]

Name: {1x318 cell}

ans =

struct

See Also mappoint.properties |

3-690

mappoint.vertcat

Purpose Vertical concatenation for mappoint vectors

Syntax p = vertcat(p1,p2, ...)

Description p = vertcat(p1,p2, ...) vertically concatenates the mappoint
vector, p1, p2, and so on. If the class type of any property is a cell
array, then the resultant field in the output p will also be a cell array.

Input
Arguments

p1, p2, ...

mappoint vectors that need to be concatenated.

Output
Arguments

p

Concatenated mappoint vector.

Examples Concatenate mappoint vectors

Concatenate two mappoint vectors.

pt1 = mappoint(42, -110, 'Temperature', 65, 'Name', 'point1');
pt2 = mappoint(42.1, -110.4, 'Temperature', 65.5, 'Name', 'point2');
pts = vertcat(pt1, pt2)

pts =

2x1 mappoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Feature properties:
X: [42 42.1000]
Y: [-110 -110.4000]

Temperature: [65 65.5000]
Name: {'point1' 'point2'}

See Also mappoint.cat |

3-691

mapprofile

Purpose Interpolate between waypoints on regular data grid

Syntax [zi,ri,lat,lon] = mapprofile
[zi,ri,lat,lon] = mapprofile(Z,R,lat,lon)
[zi,ri,lat,lon] = mapprofile(Z,R,lat,lon,units)
[zi,ri,lat,lon] = mapprofile(Z,R,lat,lon,ellipsoid)
[zi,ri,lat,lon] = ... mapprofile(Z,R,lat,lon,units,

'trackmethod','interpmethod')
[zi,ri,lat,lon] = ... mapprofile(Z,R,lat,lon,ellipsoid,

'trackmethod','interpmethod')

Description mapprofile plots a profile of values between waypoints on a displayed
regular data grid. mapprofile uses the current object if it is a regular
data grid, or the first regular data grid found on the current axes. The
grid’s zdata is used for the profile. The color data is used in the absence
of zdata. The result is displayed in a new figure.

[zi,ri,lat,lon] = mapprofile returns the values of the profile
without displaying them. The output zi contains interpolated values
along great circles between the waypoints. ri is a vector of associated
distances from the first waypoint in units of degrees of arc along the
surface. lat and lon are the corresponding latitudes and longitudes.

[zi,ri,lat,lon] = mapprofile(Z,R,lat,lon) accepts as input a
regular data grid and waypoint vectors. No displayed grid is required.
Sets of waypoints may be separated by NaNs into line sequences. The
output ranges are measured from the first waypoint within a sequence.
R can be a spatialref.GeoRasterReference object, a referencing
vector, or a referencing matrix.

If R is a spatialref.GeoRasterReference object, its RasterSize
property must be consistent with size(Z).

If R is a referencing vector, it must be a 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to or from geographic coordinates according to:

3-692

mapprofile

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel.

[zi,ri,lat,lon] = mapprofile(Z,R,lat,lon,units) specifies the
units of the output ranges along the profile. Valid range units inputs are
any distance string recognized by unitsratio. Surface distances are
computed using the default radius of the earth. If omitted, 'degrees'
are assumed.

[zi,ri,lat,lon] = mapprofile(Z,R,lat,lon,ellipsoid) uses
the provided ellipsoid definition in computing the range along the
profile. ellipsoid is a referenceSphere, referenceEllipsoid, or
oblateSpheroid object, or a vector of the form [semimajor_axis
eccentricity]. The output range is reported in the same distance
units as the semimajor axes of the ellipsoid. If omitted, the range vector
is for a sphere.

[zi,ri,lat,lon] = ...
mapprofile(Z,R,lat,lon,units,'trackmethod','interpmethod')
and [zi,ri,lat,lon] = ...
mapprofile(Z,R,lat,lon,ellipsoid,'trackmethod','interpmethod')
control the interpolation methods used. Valid track methods are 'gc'
for great circle tracks between waypoints, and 'rh' for rhumb lines.
Valid methods for interpolation within the matrix are 'bilinear'
for linear interpolation, 'bicubic' for cubic interpolation,
and 'nearest' for nearest neighbor interpolation. If omitted,
'gc' and 'bilinear' are assumed.

Examples Example 1

Create a map axes for the Korean peninsula. Specify an elevation
profile across the sample Korean digital elevation data and plot it,
combined with a coastline and city markers:

load korea
h = worldmap(map, refvec); % The figure has no map content.

3-693

mapprofile

plat = [43 43 41 38];
plon = [116 120 126 128];
mapprofile(map, refvec, plat, plon)
load coast
plotm(lat, long)
geoshow('worldcities.shp', 'Marker', '.', 'Color', 'red')

When you select more than two waypoints, the automatically generated
figure displays the result in three dimensions. The following example
shows the relative sizes of the mountains in northern China compared
to the depths of the Sea of Japan. The call to mapprofile without input
arguments requires you to interactively pick waypoints on the figure
using the mouse, and press Enter after you select the final point:

axes(h);
meshm(map, refvec, size(map))
demcmap(map)
[zi,ri,lat,lon] = mapprofile

Adding output arguments suppresses the display of the results in a
new figure. You can then use the results in further calculations or
display the results yourself. Here the profile from the upper left to
lower right is computed from waypoints interactively picked on the map
(your profile will not be identical to what is shown below). The example
converts ranges and elevations to kilometers and displays them in a new

3-694

mapprofile

figure, setting the vertical exaggeration factor to 20. With no vertical
exaggeration, the changes in elevation would be almost too small to see.

figure
plot(deg2km(ri),zi/1000)
daspect([1 1/20 1]);
xlabel 'Range (km)'
ylabel 'Elevation (km)'

Naturally, the profile you get depends on the transect locations you pick.

Example 2

You can compute values along a path without reference to an existing
figure by providing a regular data grid and vectors of waypoint
coordinates. Optional arguments allow control over the units of the

3-695

mapprofile

range output and interpolation methods between waypoints and data
grid elements.

Show what land and ocean areas lie under a great circle track from
Frankfurt to Seattle:

cities = shaperead('worldcities.shp', 'UseGeoCoords', true);
Seattle = strcmp('Seattle', {cities(:).Name});
Frankfurt = strcmp('Frankfurt', {cities(:).Name});
lat = [cities(Seattle).Lat cities(Frankfurt).Lat]
lon = [cities(Seattle).Lon cities(Frankfurt).Lon]
load topo
[valp,rp,latp,lonp] = ...

mapprofile(double(topo),topolegend, ...
lat,lon,'km','gc','nearest');

figure
worldmap([40 80],[-135 20])
land = shaperead('landareas.shp', 'UseGeoCoords', true);
faceColors = makesymbolspec('Polygon',...

{'INDEX', [1 numel(land)], 'FaceColor', ...
polcmap(numel(land))});

geoshow(land,'SymbolSpec',faceColors)
plotm(latp,lonp,'r')
plotm(lat,lon,'ro')
axis off

3-696

mapprofile

See Also ltln2val | los2

3-697

maprasterref

Purpose Construct spatialref.MapRasterReference object

Syntax R = maprasterref()
R = maprasterref(Name,Value)
R = maprasterref(W, rasterSize, rasterInterpretation)

Description R = maprasterref() constructs a spatialref.MapRasterReference
object with default property values.

R = maprasterref(Name,Value) accepts a list of name-value pairs
that are used to assign selected properties when initializing a
spatialref.MapRasterReference object.

R = maprasterref(W, rasterSize, rasterInterpretation)
constructs a spatialref.MapRasterReference object with the specified
raster size and interpretation properties, and with remaining properties
defined by a 2-by-3 world file matrix, W.

Input
Arguments

W

2-by-3 world file matrix

rasterSize

Number of cells or samples in each spatial dimension. Two-element
vector [M N] specifying the number of rows (M) and columns (N) of the
raster or image associated with the referencing object. For convenience,
you may assign a size vector having more than two elements to
RasterSize. This flexibility enables assignments like R.RasterSize =
size(RGB), for example, where RGB is M-by-N-by-3. However, in such
cases, only the first two elements of the size vector are actually stored.
The higher (non-spatial) dimensions are ignored

rasterInterpretation

Controls handling of raster edges. This argument is optional and can
equal either 'cells' or 'postings'.

Default: 'cells'

3-698

maprasterref

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

You can include any of the following properties, overriding their default
values as needed. Alternatively, you may omit any or all properties
when constructing your spatialref.MapRasterReference object.
Then, you can customize the result by resetting properties from this
list one at a time. This name-value syntax always results in an object
with a 'rectilinear' TransformationType. If your image is rotated
with respect to the world coordinate axes, you need an object with
a TransformationType of 'affine'. You can obtain such an object
directly from the spatialref.MapRasterReference constructor.
Alternately, you can provide an appropriate world file matrix as input,
as shown in the third syntax. You cannot do it by resetting properties of
an existing rectilinear spatialref.MapRasterReference object.

XLimWorld

Limits of raster in world x

Two-element row vector of the form [xMin xMax].

Default: [0.5 2.5]

YLimWorld

Limits of raster in world y

Two-element row vector of the form [yMin yMax].

Default: [0.5 2.5]

RasterSize

3-699

maprasterref

Two-element vector [M N] specifying the number of rows (M) and
columns (N) of the raster or image associated with the referencing
object. For convenience, you may assign a size vector having more than
two elements to RasterSize. This flexibility enables assignments like
R.RasterSize = size(RGB), for example, where RGB is M-by-N-by-3.
However, in such cases, only the first two elements of the size vector are
actually stored. The higher (non-spatial) dimensions are ignored.

Default: [2 2]

RasterInterpretation

Controls handling of raster edges. A string that equals either 'cells'
or 'postings'.

Default: 'cells'

ColumnsStartFrom

Edge where column indexing starts. A string that equals either 'south'
or 'north'.

Default: 'south'

RowsStartFrom

Edge from which row indexing starts. A string that equals either
'west' or ’east’.

Default: 'west'

Output
Arguments

R

spatialref.MapRasterReference object

Examples Construct a referencing object for an 1000-by-2000 image with square,
half-meter pixels referenced to a planar map coordinate system (the
"world" system). The X-limits in the world system are 207000 and
208000. The Y-limits are 912500 and 913000. The image follows the

3-700

maprasterref

popular convention in which world X increases from column to column
and world Y decreases from row to row.

% Override the default MATLAB display format. This is not strictly
% required, but tends to produces the most readable displays.
format short g

% Construct a spatialref.MapRasterReference object.
R = maprasterref('RasterSize', [1000 2000], ...

'YLimWorld', [912500 913000], 'ColumnsStartFrom','north', ...
'XLimWorld', [207000 208000])

Repeat the first example with a different strategy: Create a default
object, and then modify that object’s property settings as needed.

R = maprasterref;
R.XLimWorld = [207000 208000];
R.YLimWorld = [912500 913000];
R.ColumnsStartFrom = 'north';
R.RasterSize = [1000 2000]

Repeat the first example again, this time using a world file matrix.

W = [0.5 0.0 207000.25; ...
0.0 -0.5 912999.75];

rasterSize = [1000 2000];
R = maprasterref(W, rasterSize)

See Also georasterref | spatialref.MapRasterReference

3-701

spatialref.MapRasterReference

Purpose Reference raster to map coordinates

Description A spatialref.MapRasterReference object encapsulates the
relationship between a planar map coordinate system and a system
of intrinsic coordinates anchored to the columns and rows of a 2-D
spatially referenced raster grid or image.

Typically, the raster is sampled regularly in the planar world x and
world y coordinates of the map system, such that the intrinsic x and
world x axes align and the intrinsic y and world y axes align. When this
is true, the relationship between the two systems is rectilinear.

More generally, and much more rarely, their relationship is affine. The
affine relationship allows for a possible rotation (and skew).

In either case, rectilinear or affine, the sample spacing from row to
row need not equal the sample spacing from column to column. If the
raster data set is interpreted as comprising a grid of cells or pixels,
the cells or pixels need not be square. In the most general case, they
could conceivably be parallelograms, but in practice they are always
rectangular.

Construction Construct a MapRasterReference object using either the:

• maprasterref function (recommended)

• spatialref.MapRasterReference class constructor

• refmatToMapRasterReference conversion function used to convert
an existing referencing matrix

R = maprasterref() constructs a MapRasterReference object with
these default property settings:

XLimWorld: [0.5 2.5]
YLimWorld: [0.5 2.5]

RasterSize: [2 2]
RasterInterpretation: 'cells'

ColumnsStartFrom: 'south'

3-702

spatialref.MapRasterReference

RowsStartFrom: 'west'
DeltaX: 1
DeltaY: 1

RasterWidthInWorld: 2
RasterHeightInWorld: 2

XLimIntrinsic: [0.5 2.5]
YLimIntrinsic: [0.5 2.5]

TransformationType: 'rectilinear'
CoordinateSystemType: 'planar'

Properties XLimWorld

Limits of raster in world x.

Two-element row vector of the form [xMin xMax].

Default: [0.5000 2.5000]

YLimWorld

Limits of raster in world y.

Two-element row vector of the form [yMin yMax].

Default: [0.5000 2.5000]

RasterSize

Two-element vector [M N] specifying the number of rows (M) and
columns (N) of the raster or image associated with the referencing
object. For convenience, you can assign a size vector having more
than two elements to RasterSize. This enables assignments
like R.RasterSize = size(RGB), where RGB is M-by-N-by-3.
In cases like this, only the first two elements of the size vector
are stored. Higher (non-spatial) dimensions are ignored. M and
N must be positive in all cases and must be 2 or greater when
RasterInterpretation is 'postings'.

Default: [2 2]

3-703

spatialref.MapRasterReference

RasterInterpretation

Controls handling of raster edges. A string that equals 'cells'
or 'postings'.

Default: 'cells'

ColumnsStartFrom

Edge where column indexing starts. A string that equals 'south'
or 'north'.

Default: 'south'

RowsStartFrom

Edge from which row indexing starts. A string that equals 'west'
or 'east'.

Default: 'west'

DeltaX

Cell width or sample spacing along rows. When you set
RasterInterpretation to 'cells', DeltaX equals the cell width.
When you set RasterInterpretation to 'postings', DeltaX is
the sample spacing along rows, from column to column.

In the case of a rectilinear transformation, DeltaX is signed. A
positive sign indicates that world x increases when intrinsic x
increases, and a negative sign indicates otherwise. In the case of
a general affine transformation, where the x-axes might not align,
DeltaX also indicates either cell width or sample spacing along
rows. In this case, DeltaX cannot have a meaningful sign, so it
is strictly positive.

Cannot be set.

DeltaY

3-704

spatialref.MapRasterReference

Cell height or sample spacing along columns. When you set
RasterInterpretation to 'cells', DeltaY equals the cell height.
When you set RasterInterpretation to 'postings', DeltaY is
the sample spacing along columns, from row to row. In the case
of a rectilinear transformation, DeltaY is signed. A positive sign
indicates that world y increases when intrinsic y increases, and a
negative sign indicates otherwise. In the case of a general affine
transformation, where the y-axes might not align, DeltaY also
indicates either cell height or sample spacing along columns. In
this case, DeltaY cannot have a meaningful sign, so it is strictly
positive.

Cannot be set.

RasterWidthInWorld

Extent of the full raster or image as measured in the world system
in a direction parallel to its rows. In the case of a rectilinear
geometry, which is most typical, this is the horizontal direction
(east-west).

Cannot be set.

RasterHeightInWorld

Extent of the full raster or image as measured in the world system
in a direction parallel to its columns. In the case of a rectilinear
geometry, which is most typical, this is the vertical direction
(north-south).

Cannot be set.

XLimIntrinsic

Raster limits in intrinsic x.

Two-element row vector of the form [xMin xMax]. For an M-by-N
raster with RasterInterpretation equal to 'postings', it
equals [1 N]. For 'cells', it equals [0.5, N + 0.5].

Cannot be set.

YLimIntrinsic

3-705

spatialref.MapRasterReference

Raster limits in intrinsic y

Two-element row vector of the form [yMin yMax]. For an M-by-N
raster with RasterInterpretation equal to 'postings', it
equals [1 M]. For 'cells', it equals [0.5, M + 0.5].

Cannot be set.

TransformationType

Type of geometric relationship between the intrinsic coordinate
system and the world coordinate system. The string has the value
'rectilinear' or 'affine'. Its value is 'rectilinear' when
world x depends only on intrinsic x and vice versa, and world y
depends only on intrinsic y and vice versa. When the value is
'rectilinear', the image displays without rotation in the world
system, although it might be flipped. Otherwise, the value is
'affine'.

Cannot be set.

CoordinateSystemType

Type of coordinate system to which the image or raster is
referenced. It is a constant string with value 'planar'.

Cannot be set.

Methods contains True if raster contains points in
world coordinate system

firstCornerX World x coordinate of the (1,1)
corner of the raster

firstCornerY World y coordinate of the (1,1)
corner of the raster

intrinsicToWorld Convert from intrinsic to world
coordinates

3-706

spatialref.MapRasterReference

sizesMatch True if object and raster or image
are size compatible

worldFileMatrix World file parameters for
transformation

worldToIntrinsic Convert from world to intrinsic
coordinates

worldToSub World coordinates to row and
column subscripts

Definitions Intrinsic Coordinate System

A 2-D Cartesian system with its x-axis running parallel to the rows
of a raster or image and its y-axis running parallel to the columns. x
increases by 1 from column to column, and y increases by 1 from row
to row.

The Mapping Toolbox and Image Processing Toolbox use the convention
for the location of the origin relative to the raster cells or sampling
points such that, at a sample location or at the center of a cell, x has an
integer value equal to the column index. Likewise, at a sample location
or at the center of a cell, y has an integer value equal to the row index.
For details, see Image Coordinate Systems in the Image Processing
Toolbox documentation.

See Also maprasterref | refmatToMapRasterReference |
spatialref.GeoRasterReference

3-707

spatialref.MapRasterReference.contains

Purpose True if raster contains points in world coordinate system

Syntax TF = R.contains(xWorld, yWorld)

Description TF = R.contains(xWorld, yWorld) returns a logical array TF having
the same size as xWorld and yWorld such that TF(k) is true if and
only if the point (xWorld(k), yWorld(k)) falls within the bounds of
the raster associated with referencing object R.

3-708

spatialref.MapRasterReference.firstCornerX

Purpose World x coordinate of the (1,1) corner of the raster

Syntax R.firstCornerX

Description R.firstCornerX returns the world x coordinate of either the:

• Outermost corner of the first cell (1,1) of the raster associated with
referencing object R, if R.RasterInterpretation is 'cells'

• First sample point, if R.RasterInterpretation is 'postings'

3-709

spatialref.MapRasterReference.firstCornerY

Purpose World y coordinate of the (1,1) corner of the raster

Syntax R.firstCornerY

Description R.firstCornerY returns the world y coordinate of the:

• Outermost corner of the first cell (1,1) of the raster associated with
referencing object R, if R.RasterInterpretation is 'cells'

• First sample point, if R.RasterInterpretation is 'postings'

3-710

spatialref.MapRasterReference.intrinsicToWorld

Purpose Convert from intrinsic to world coordinates

Syntax [xWorld, yWorld] = R.intrinsicToWorld(xIntrinsic, yIntrinsic)

Description [xWorld, yWorld] = R.intrinsicToWorld(xIntrinsic,
yIntrinsic) maps point locations from the intrinsic system
(xIntrinsic, yIntrinsic) to the world system (xWorld, yWorld)
based on the relationship defined by the referencing object R. If your
input includes values outside the limits of the raster or image in the
intrinsic system, intrinsicToWorld extrapolates world x and y outside
the bounds of the image in the world system.

3-711

spatialref.MapRasterReference.sizesMatch

Purpose True if object and raster or image are size compatible

Syntax TF = R.sizesMatch(A)

Description TF = R.sizesMatch(A) returns true if the size of the raster or image
A is consistent with the RasterSize property of referencing object R.
That is:

R.RasterSize == [size(A,1) size(A,2)]

3-712

spatialref.MapRasterReference.worldFileMatrix

Purpose World file parameters for transformation

Syntax W = R.worldFileMatrix

Description W = R.worldFileMatrix returns a 2-by-3 world file matrix. Each of the
six elements in Wmatches one of the lines in a world file corresponding to
the rectilinear or affine transformation defined by referencing object R.

Given W with the form:

W = [A B C;
D E F]

a point (xi, yi) in intrinsic coordinates maps to a point (xw, yw) in
planar world coordinates like this:

xw = A * (xi 1) + B * (yi 1) + C
yw = D * (xi 1) + E * (yi 1) + F

More compactly:

[xw yw]' = W * [xi - 1 yi - 1 1]'

The 1s are needed to maintain the Mapping Toolbox convention for
intrinsic coordinates, which is consistent with the 1-based indexing
used throughout MATLAB.

W is stored in a world file with one term per line in column-major order:
A, D, B, E, C, F. That is, a world file contains the elements of W in
this order:

W(1,1)
W(2,1)
W(1,2)
W(2,2)
W(1,3)
W(2,3)

3-713

spatialref.MapRasterReference.worldFileMatrix

The previous expressions hold for both affine and rectilinear
transformations. But whenever R.TransformationType is
'rectilinear', B, D, W(2,1) and W(1,2) are identically 0.

See Also worldfileread | worldfilewrite

3-714

spatialref.MapRasterReference.worldToIntrinsic

Purpose Convert from world to intrinsic coordinates

Syntax [xIntrinsic, yIntrinsic] = R.worldToIntrinsic(xWorld, yWorld)

Description [xIntrinsic, yIntrinsic] = R.worldToIntrinsic(xWorld,
yWorld) maps point locations from the world system (xWorld, yWorld)
to the intrinsic system (xIntrinsic, yIntrinsic) based on the
relationship defined by the referencing object R. The input can include
values outside limits of the raster (or image) in the world system. In
this case, world x and y are extrapolated outside the bounds of the
image in the intrinsic system.

3-715

spatialref.MapRasterReference.worldToSub

Purpose World coordinates to row and column subscripts

Syntax [I,J] = R.worldToSub(xWorld, yWorld)

Description [I,J] = R.worldToSub(xWorld, yWorld) returns subscript arrays
I and J. When referencing object R has RasterInterpretation
'cells', these are the row and column subscripts of the raster cells (or
image pixels) containing each element of a set of points given their
world coordinates (xWorld, yWorld). If R.RasterInterpretation
is 'postings', then the subscripts refer to the nearest sample point
(posting). xWorld and yWorld must have the same size. I and J have
the same size as xWorld and yWorld. For an M-by-N raster, 1 <= I <=
M and 1 <= J <= N, except when a point xWorld(k), yWorld(k) falls
outside the image, as defined by R.contains(xWorld,yWorld). Then
both I(k) and J(k) are NaN.

3-716

maps

Purpose List available map projections and verify names

Syntax strmat = maps('namelist')
strmat = maps('idlist')
stdstr = maps(id_string)

Description maps displays in the Command Window a table describing all projections
available for use.

strmat = maps('namelist') returns the English names for the
available projections as a matrix of strings.

strmat = maps('idlist') returns the standard projection
identification strings for the available projections as a matrix of strings.

stdstr = maps(id_string) returns the specific standard projection
identification string associated with a unique truncation abbreviation.

Examples To show the first five entries of the projections name list,

str1 = maps('namelist');
str1(1:5,:)
ans =
Balthasart Cylindrical
Behrmann Cylindrical
Bolshoi Sovietskii Atlas Mira
Braun Perspective Cylindrical
Cassini Cylindrical

The corresponding shorthand names are

str2 = maps('idlist');
str2(1:5,:)
ans =
balthsrt
behrmann
bsam
braun
cassini

3-717

maps

These are the strings used, for example, when setting the axesm
property MapProjection.

The functions setm and axesm recognize unique abbreviations
(truncations) of these strings. The maps function can be used to convert
such an abbreviation to the standard ID string:

stdstr = maps('merc')
stdstr =
mercator

When the function name alone is used,

maps

MapTools Projections

CLASS NAME ID STRING

Cylindrical Balthasart Cylindrical balthsrt

Cylindrical Behrmann Cylindrical behrmann

Cylindrical Bolshoi Sovietskii Atlas Mira* bsam

Cylindrical Braun Perspective Cylindrical* braun

Cylindrical Cassini Cylindrical cassini

Cylindrical Central Cylindrical* ccylin

Cylindrical Equal Area Cylindrical eqacylin

Cylindrical Equidistant Cylindrical eqdcylin

Cylindrical Gall Isographic giso...

The actual result contains all defined projections.

See Also axesm | setm

3-718

mapshape

Purpose Planar shape vector

Syntax s = mapshape()
s = mapshape(x,y)
s = mapshape(x,y,Name,Value)
s = mapshape(structArray)
s = mapshape(x,y,structArray)

Description A mapshape vector is an object that represents planar vector features
with either point, line, or polygon topology. The features consist of X
and Y coordinates and associated attributes. If these attributes vary
spatially they are termed Vertex properties. These elements of the
mapshape vector are coupled such that the length of the X and Y
coordinate property values are always equal in length to any additional
dynamic Vertex properties. Attributes which only pertain to the overall
feature (point, line, polygon) are termed Feature properties. Feature
properties are not linked to the auto-sizing mechanism of the Vertex
properties. Both of the property types can be dynamically added to a
mapshape vector using the standard dot notation.

A mapshape vector is always a column vector.

Construction s = mapshape() constructs an empty mapshape vector, s, with the
following default property settings.

s =

0x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
X: []
Y: []

For an additional example see: “Constructor: mapshape()” on page 3-726

3-719

mapshape

s = mapshape(x,y) constructs a mapshape vector and sets the X and Y
property values equal to vectors x and y. x and y may be either numeric
vectors of class single or double, or cell arrays containing numeric
vectors of class single or double. For an example, see “Constructor:
mapshape(x,y)” on page 3-726.

s = mapshape(x,y,Name,Value) constructs a mapshape vector from
the input x and y vectors, and then adds dynamic properties to the
mapshape vector using the Name, Value argument pairs.

• If Value is in a cell array containing numeric, logical or cell array
of strings, then this property is designated as a Vertex property.
Otherwise, this property is designated as a Feature property.

• If the specified Name is Metadata and the corresponding Value is
a scalar structure, then Value is copied to the Metadata property.
Otherwise, an error is issued.

For an example, see: “Constructor: mapshape(x,y,Name,Value)” on
page 3-727.

s = mapshape(structArray) constructs a mapshape vector from the
fields of the structure array, structArray.

• If structArray is a scalar structure which contains the field
Metadata and the field value is a scalar structure, then the Metadata
field is copied to the Metadata property. If structArray is a scalar
structure and the Metadata field is present and is not a scalar
structure, then an error is issued. If structArray is not scalar then
the Metadata field is ignored.

• Other fields of structArray are assigned to s and become dynamic
properties. Field values in structArray that are not numeric,
strings, logical, or cell arrays of numeric, logical, or string values
are ignored.

For an example, see “Constructor: mapshape(structArray)” on page
3-727.

3-720

mapshape

s = mapshape(x,y,structArray) constructs a new mapshape vector
and sets the X and Y properties equal to the numeric vectors, x and y,
and sets the field values of struct structArray as dynamic properties.

• If structArray is a scalar structure and contains the field Metadata,
and the field value is a scalar structure, then it is copied to the
Metadata property value. Otherwise, an error is issued if the
Metadata field is not a structure, or ignored if structArray is not
scalar.

For an example, see “Constructor: mapshape(x,y,structArray)” on page
3-728.

Input Arguments

x

vector of X coordinates

Data Types
double | single | cell

y

vector of Y coordinates

Data Types
double | single | cell

structArray

An array of structures containing fields to be assigned as dynamic
properties.

Name

Name of dynamic property

Data Types
char

Value

3-721

mapshape

Property value associated with dynamic property Name. The class
type of the values for the Feature dynamic properties may be
either numeric, logical, char, or a cell array of strings. Values for
the Vertex dynamic properties may be either numeric, logical, cell
array of strings, or a cell array of numeric, logical, or cell array
of strings.

Output Arguments

s

mapshape vector.

Properties mapshape class is a general class that represents a variety of planar
features. The class permits features to have more than one vertex and
can thus represent lines and polygons in addition to multipoints. The
class has the following property types.

Types of Properties Description

Collection Properties Collection properties contain only one value
per class instance. This is in contrast to the
other two property types which can have
attribute values associated with each feature
or with each vertex in a set that defines a
feature. Geometry and Metadata are the only
two Collection properties.

Vertex Properties Vertex properties provide a scalar number
or a string for each vertex in a mapshape
object. Vertex properties are suitable for
attributes that vary spatially from point to
point (vertex to vertex) along a line. Examples
of such spatially varying attributes could be
elevation, speed, temperature, or time. X and
Y are vertex properties since they contain a
scalar number for each vertex in a mapshape
vector. Attribute values can be dynamically
associated with each vertex by using dot

3-722

mapshape

Types of Properties Description

notation. This is similar to adding dynamic
fields to a structure. The dynamically added
vertex property values of an individual feature
match its X and Y values in length.

Feature Properties Feature properties provide one value (a
scalar number or a string) for each feature
in a mapshape vector. They are suitable
for properties, such as name, owner, serial
number, age, etc., that describe a given feature
(an element of a mapshape vector) as a whole.
Like Vertex properties, Feature properties can
be added dynamically.Geometry

The Geometry property is a string that denotes the shape type for
all the features in the mapshape vector. As a Collection Property
there is only one value per object instance. Its purpose is purely
informational; the three allowable string values for Geometry do
not change class behavior. Additionally, the class does not provide
validation for line or polygon topologies.

Default value for Geometry is `line'.

Geometry 'point', 'line',
'polygon'

Metadata

Metadata is a scalar structure containing information for all
the features. You can add any data type to the structure. As a
Collection Property type, only one instance per object is allowed.

Metadata Scalar struct

X

Vector of X coordinates. The values can be either a row or column
vector, but are stored as a row vector.

3-723

mapshape

Attributes:

X single | double vector

Y

Vector of Y coordinates. The values can be either a row or column
vector, but are stored as a row vector.

Attributes:

Y single | double vector

Methods append Append features to mapshape
vector

cat Concatenate mapshape vectors

disp Display mapshape vector

fieldnames Dynamic properties of mapshape
vector

isempty True if mapshape vector is empty

isfield True if dynamic property exists

isprop True if property exists

length Number of elements in mapshape
vector

properties Properties of a mapshape vector

rmfield Remove dynamic property from
mapshape vector

rmprop Remove properties from
mapshape vector

size Size of mapshape vector

3-724

mapshape

struct Convert mapshape vector to
scalar structure

vertcat Vertical concatenation for
mapshape vectors

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Class
Behaviors

• The following examples show how to build a mapshape vector by
dynamically adding a single features after construction using dot
(.) notation.

“Add a Feature Property” on page 3-729

• The following extended example adds multiple features that are
both Vertex and Feature properties. It also demonstrates property
behaviors when vector lengths are either changed or set to [].

“Add Multiple Features” on page 3-730

• This example uses the Name-Value constructor to build a mapshape
vector and define two dynamic features.

“Two Features defined by Name-Value pairs” on page 3-735

• The mapshape vector can be indexed like any MATLAB vector. You
can access any element of the vector to obtain a specific feature. The
following example demonstrates this behavior.

“Multiple Features and Indexing Behaviors” on page 3-736

• This example builds a mapshape vector from a structure array; adds
a Metadata property and demonstrates selective indexing behavior.

“Structure Array, add Metadata and Indexing” on page 3-739

• The following example shows a variety of indexing behaviors.

“Indexing Behaviors” on page 3-741

3-725

mapshape

• If either X or Y is set to [], then both coordinate properties are set to [
] and all dynamic Vertex or Feature properties are removed.

• If a Vertex or Feature property is set to [], then it is removed from
the object.

Examples Constructor: mapshape()

Construct a default mapshape vector, dynamically set the X and Y
property values, and dynamically add Vertex property Z.

s = mapshape();
s(1).X = 0:45:90;
s(1).Y= [10 10 10];
s(1).Z = [10 20 30]

s =

1x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
X: [0 45 90]
Y: [10 10 10]
Z: [10 20 30]

Constructor: mapshape(x,y)

Construct a mapshape vector from X and Y values.

x = [40, 50, 60];
y = [10, 20, 30];
shape = mapshape(x, y)

shape =

1x1 mapshape vector with properties:

3-726

mapshape

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
X: [40 50 60]
Y: [10 20 30]

Constructor: mapshape(x,y,Name,Value)

Construct a mapshape vector with one feature from a single position
coordinate, and a Name,Value pair defining a ’Temperature’ Feature
property.

x = 1:10;
y = 21:30;
temperature = {61:70};
shape = mapshape(x, y, 'Temperature', temperature)

shape =

1x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
X: [1 2 3 4 5 6 7 8 9 10]
Y: [21 22 23 24 25 26 27 28 29 30]

Temperature: [61 62 63 64 65 66 67 68 69 70]

When Value is a cell array containing numeric, logical, or cell array of
strings, it is construed as a Vertex property. Otherwise the Name-Value
pair is designated as being a Feature property.

Constructor: mapshape(structArray)

Construct a mapshape vector from a structure array.

structArray = shaperead('concord_roads');

3-727

mapshape

shape = mapshape(structArray)

shape =

609x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(609 features concatenated with 608 delimiters)

X: [1x5422 double]
Y: [1x5422 double]

Feature properties:
STREETNAME: {1x609 cell}
RT_NUMBER: {1x609 cell}

CLASS: [1x609 double]
ADMIN_TYPE: [1x609 double]

LENGTH: [1x609 double]

Constructor: mapshape(x,y,structArray)

Construct a mapshape vector using cell arrays to define multifeatures
and a structure array to define a set of Feature properties.

[structArray, A] = shaperead('concord_hydro_area');
shape = mapshape({structArray.X}, {structArray.Y}, A);
shape.Geometry = structArray(1).Geometry

shape =

98x1 mapshape vector with properties:

Collection properties:
Geometry: 'polygon'
Metadata: [1x1 struct]

Vertex properties:
(98 features concatenated with 97 delimiters)

3-728

mapshape

X: [1x4902 double]
Y: [1x4902 double]

Feature properties:
AREA: [1x98 double]

PERIMETER: [1x98 double]

Add a Feature Property

Construct a mapshape vector from x and y coordinates and add a
Feature Property.

x = 0:10:100;
y = 0:10:100;
shape = mapshape(x, y)

shape =

1x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
X: [0 10 20 30 40 50 60 70 80 90 100]
Y: [0 10 20 30 40 50 60 70 80 90 100]

Add a feature dynamic property.

shape.FeatureName = 'My Feature'

shape =

1x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
X: [0 10 20 30 40 50 60 70 80 90 100]

3-729

mapshape

Y: [0 10 20 30 40 50 60 70 80 90 100]
Feature properties:

FeatureName: 'My Feature'

Add a vertex dynamic property to the first feature.

shape(1).Temperature = 65 + rand(1, length(shape.X))

shape =

1x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
X: [0 10 20 30 40 50 60 70 80 90 100]
Y: [0 10 20 30 40 50 60 70 80 90 100]

Temperature: [1x11 double]
Feature properties:

FeatureName: 'My Feature

Add Multiple Features

Construct a mapshape vector for two features, and show class behaviors.

x = {1:3, 4:6};
y = {[0 0 0], [1 1 1]};
shape = mapshape(x, y)

shape =

2x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:

3-730

mapshape

(2 features concatenated with 1 delimiter)
X: [1 2 3 NaN 4 5 6]
Y: [0 0 0 NaN 1 1 1]

Add a two element feature dynamic property.

shape.FeatureName = {'Feature 1', 'Feature 2'}

shape =

2x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(2 features concatenated with 1 delimiter)

X: [1 2 3 NaN 4 5 6]
Y: [0 0 0 NaN 1 1 1]

Feature properties:
FeatureName: {'Feature 1' 'Feature 2'}

Add a vertex dynamic property.

z = {101:103, [115, 114, 110]}
shape.Z = z

z =

[1x3 double] [1x3 double]

shape =

2x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'

3-731

mapshape

Metadata: [1x1 struct]
Vertex properties:
(2 features concatenated with 1 delimiter)

X: [1 2 3 NaN 4 5 6]
Y: [0 0 0 NaN 1 1 1]
Z: [101 102 103 NaN 115 114 110]

Feature properties:
FeatureName: {'Feature 1' 'Feature 2'}

Display the second feature.

shape(2)

ans =

1x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
X: [4 5 6]
Y: [1 1 1]
Z: [115 114 110]

Feature properties:
FeatureName: 'Feature 2'

Add a third feature. The lengths of all the properties are synchronized.

shape(3).X = 5:9

shape =

3x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

3-732

mapshape

Vertex properties:
(3 features concatenated with 2 delimiters)

X: [1 2 3 NaN 4 5 6 NaN 5 6 7 8 9]
Y: [0 0 0 NaN 1 1 1 NaN 0 0 0 0 0]
Z: [101 102 103 NaN 115 114 110 NaN 0 0 0 0 0]

Feature properties:
FeatureName: {'Feature 1' 'Feature 2' ''}

Set the values for the Z vertex property with fewer values than
contained in X or Y. The Z values expand to match the length of X and Y.

shape(3).Z = 1:3

shape =

3x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(3 features concatenated with 2 delimiters)

X: [1 2 3 NaN 4 5 6 NaN 5 6 7 8 9]
Y: [0 0 0 NaN 1 1 1 NaN 0 0 0 0 0]
Z: [101 102 103 NaN 115 114 110 NaN 1 2 3 0 0]

Feature properties:
FeatureName: {'Feature 1' 'Feature 2' ''}

Set the values for either coordinate property (X or Y) and all properties
shrink in size to match the new vertex length of that feature.

shape(3).Y = 1

shape =

3x1 mapshape vector with properties:

Collection properties:

3-733

mapshape

Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(3 features concatenated with 2 delimiters)

X: [1 2 3 NaN 4 5 6 NaN 5]
Y: [0 0 0 NaN 1 1 1 NaN 1]
Z: [101 102 103 NaN 115 114 110 NaN 1]

Feature properties:
FeatureName: {'Feature 1' 'Feature 2' ''}

Set the values for the Z vertex property with more values % than
contained in X or Y. All properties expand in length % to match Z.

shape(3).Z = 1:6

shape =

3x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(3 features concatenated with 2 delimiters)

X: [1 2 3 NaN 4 5 6 NaN 5 0 0 0 0 0]
Y: [0 0 0 NaN 1 1 1 NaN 1 0 0 0 0 0]
Z: [101 102 103 NaN 115 114 110 NaN 1 2 3 4 5 6]

Feature properties:
FeatureName: {'Feature 1' 'Feature 2' ''}

Remove the FeatureName property.

shape.FeatureName = []

shape =

3x1 mapshape vector with properties:

3-734

mapshape

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(3 features concatenated with 2 delimiters)

X: [1 2 3 NaN 4 5 6 NaN 5 0 0 0 0 0]
Y: [0 0 0 NaN 1 1 1 NaN 1 0 0 0 0 0]
Z: [101 102 103 NaN 115 114 110 NaN 1 2 3 4 5 6]

Remove all dynamic properties and set the object to empty.

shape.X = []

shape =

0x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
X: []
Y: []

Two Features defined by Name-Value pairs

Construct a mapshape vector with two features by % specifying
name-value pairs in the constructor.

x = {1:3, 4:6};
y = {[0 0 0], [1 1 1]};
z = {41:43, [56 50 59]};
name = {'Feature 1', 'Feature 2'};
id = [1 2];
shape = mapshape(x, y, 'Z', z, 'Name', name, 'ID', id)

shape =

2x1 mapshape vector with properties:

3-735

mapshape

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(2 features concatenated with 1 delimiter)

X: [1 2 3 NaN 4 5 6]
Y: [0 0 0 NaN 1 1 1]
Z: [41 42 43 NaN 56 50 59]

Feature properties:
Name: {'Feature 1' 'Feature 2'}

ID: [1 2]

Multiple Features and Indexing Behaviors

Construct a mapshape vector to hold multiple features using data from
the seamount MAT-file.

Add dynamic vertex properties to indicate the Z values. Add dynamic
feature properties to indicate the color and level values. Include
metadata information.

Load the data and create x, y, and z arrays. Create a level list to use
to bin the z values.

seamount = load('seamount');
x = seamount.x; y = seamount.y; z = seamount.z;

levels = [unique(floor(seamount.z/1000)) * 1000; 0];

Construct a mapshape object and assign the X and Y vertex properties
to the binned x and y values. Create a new Z vertex property to contain
the binned z values. Add a Levels feature property to contain the lowest
level value per feature.

shape = mapshape;
for k = 1:length(levels) - 1

index = z >= levels(k) & z < levels(k+1);
shape(k).X = x(index);

3-736

mapshape

shape(k).Y = y(index);
shape(k).Z = z(index);
shape(k).Level = levels(k);

end

Add a Color feature property to denote a color for that feature, and
specify that the geometry is ‘point’

shape.Color = {'red', 'green', 'blue', 'cyan', 'black'};
shape.Geometry = 'point'

shape =

5x1 mapshape vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Vertex properties:
(5 features concatenated with 4 delimiters)

X: [1x298 double]
Y: [1x298 double]
Z: [1x298 double]

Feature properties:
Level: [-5000 -4000 -3000 -2000 -1000]
Color: {'red' 'green' 'blue' 'cyan' 'black'}

Add metadata information. Metadata is a scalar structure containing
information for the entire set of properties. Any type of data may be
added to the structure.

shape.Metadata.Caption = seamount.caption;
shape.Metadata

ans =

Caption: [1x229 char]

3-737

mapshape

Display the point data in 2D.

figure
for k=1:length(shape)

mapshow(shape(k).X, shape(k).Y, ...
'MarkerEdgeColor', shape(k).Color, ...
'Marker', 'o', ...
'DisplayType', shape.Geometry)

end
legend(num2str(shape.Level'))

3-738

mapshape

Display data as a 3-D scatter plot.

figure
scatter3(shape.X, shape.Y, shape.Z)

Structure Array, add Metadata and Indexing

This example demonstrates how to add to Metadata Collection property
and indexing behavior.

Construct a mapshape vector from a structure array

3-739

mapshape

filename = 'concord_roads.shp';
S = shaperead(filename);
shape = mapshape(S)

shape =

609x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(609 features concatenated with 608 delimiters)

X: [1x5422 double]
Y: [1x5422 double]

Feature properties:
STREETNAME: {1x609 cell}
RT_NUMBER: {1x609 cell}

CLASS: [1x609 double]
ADMIN_TYPE: [1x609 double]

LENGTH: [1x609 double]

Add a Filename to the Metadata structure and then construct a new
mapshape object with only CLASS 4 (major road) designation.

shape.Metadata.Filename = filename;
class4 = shape(shape.CLASS == 4)

class4 =

26x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(26 features concatenated with 25 delimiters)

X: [1x171 double]

3-740

mapshape

Y: [1x171 double]
Feature properties:

STREETNAME: {1x26 cell}
RT_NUMBER: {1x26 cell}

CLASS: [4 4]
ADMIN_TYPE: [0 0]

LENGTH: [1x26 double]

Indexing Behaviors

Construct a mapshape vector and sort the dynamic properties.

You can create a new mapshape vector that contains a subset of
dynamic properties by adding the name of a property or a cell array of
property names to the last index in the () operator.

Read data from file directly in mapshape constructor.

shape = mapshape(shaperead('tsunamis'))

shape =

162x1 mapshape vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Vertex properties:
(162 features concatenated with 161 delimiters)

X: [1x323 double]
Y: [1x323 double]

Feature properties:
Cause: {1x162 cell}

Cause_Code: [1x162 double]
Country: {1x162 cell}

Day: [1x162 double]
Desc_Deaths: [1x162 double]

Eq_Mag: [1x162 double]
Hour: [1x162 double]

3-741

mapshape

Iida_Mag: [1x162 double]
Intensity: [1x162 double]
Location: {1x162 cell}

Max_Height: [1x162 double]
Minute: [1x162 double]
Month: [1x162 double]

Num_Deaths: [1x162 double]
Second: [1x162 double]

Val_Code: [1x162 double]
Validity: {1x162 cell}

Year: [1x162 double]

Alphabatize Feature properties.

shape = shape(:, sort(fieldnames(shape)))

shape =

162x1 mapshape vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Vertex properties:
(162 features concatenated with 161 delimiters)

X: [1x323 double]
Y: [1x323 double]

Feature properties:
Cause: {1x162 cell}

Cause_Code: [1x162 double]
Country: {1x162 cell}

Day: [1x162 double]
Desc_Deaths: [1x162 double]

Eq_Mag: [1x162 double]
Hour: [1x162 double]

Iida_Mag: [1x162 double]
Intensity: [1x162 double]

3-742

mapshape

Location: {1x162 cell}
Max_Height: [1x162 double]

Minute: [1x162 double]
Month: [1x162 double]

Num_Deaths: [1x162 double]
Second: [1x162 double]

Val_Code: [1x162 double]
Validity: {1x162 cell}

Year: [1x162 double]

Modify the mapshape vector to contain only the specified dynamic
properties.

shape = shape(:, {'Year', 'Month', 'Day', 'Hour', 'Minute'})

shape =

162x1 mapshape vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Vertex properties:
(162 features concatenated with 161 delimiters)

X: [1x323 double]
Y: [1x323 double]

Feature properties:
Year: [1x162 double]

Month: [1x162 double]
Day: [1x162 double]

Hour: [1x162 double]
Minute: [1x162 double]

Create a new mapshape vector in which each feature contains the points
for the same year. Copy the data from a mappoint vector to ensure that
NaN feature separators are not included. Create a subsection of data to
include only Year and Country dynamic properties.

3-743

mapshape

points = mappoint(shaperead('tsunamis'));
points = points(:, {'Year', 'Country'});
years = unique(points.Year);
multipoint = mapshape();
multipoint.Geometry = 'point';
for k = 1:length(years)

index = points.Year == years(k);
multipoint(k).X = points(index).X;
multipoint(k).Y = points(index).Y;
multipoint(k).Year = years(k);
multipoint(k).Country = points(index).Country;

end
multipoint % Display

multipoint =

53x1 mapshape vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Vertex properties:
(53 features concatenated with 52 delimiters)

X: [1x214 double]
Y: [1x214 double]

Country: {1x214 cell}
Feature properties:

Year: [1x53 double]

Display the third from the end feature.

multipoint(end-3)

ans =

1x1 mapshape vector with properties:

Collection properties:

3-744

mapshape

Geometry: 'point'
Metadata: [1x1 struct]

Vertex properties:
X: [3.6340 -62.1800 143.9100]
Y: [36.9640 16.7220 41.8150]

Country: {'ALGERIA' 'MONTSERRAT' 'JAPAN'}
Feature properties:

Year: 2003

See Also geopoint | geoshape | mapshape | gpxread | shaperead

3-745

mapshape.append

Purpose Append features to mapshape vector

Syntax s = append(s,x,y)
s = append(s,x,y,Name,Value)

Description s = append(s,x,y) appends the vector, x, to the X property values
of the mapshape vector, s, and the vector, y, to the Y property values
of s. x and y are either vectors of class single or double or cell arrays
containing numeric arrays of class single or double.

s = append(s,x,y,Name,Value) appends the x and y vectors to
the X and Y property values of the mapshape vector, s, and appends
the values specified in the Name,Value pairs to the corresponding
dynamic properties specified by the names in the Name,Value pairs
if the properties are present in the object. Otherwise, the method
adds dynamic properties to the object using the Name for the dynamic
property names and assigns the corresponding Value.

Input
Arguments

s

mapshape vector.

X

Numeric vector of planar X values.

Y

Numeric vector of planar Y values.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Name,Value

3-746

mapshape.append

Parameter Name-Value pairs of the dynamic properties that are
to be added to the mapshape vector, s.

Output
Arguments

s

Modified mapshape vector with additional entries in X and Y fields
along with any new fields for dynamic properties that you added.

Examples Append Values to Fields in a mapshape vector

Append values to existing fields of a mapshape vector

shape = mapshape(42:44,30:32, 'Temperature', {65:67})

shape =

1x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
X: [42 43 44]
Y: [30 31 32]

Temperature: [65 66 67]

Now append data representing another feature.

shape = append(shape, 42.1, 33, 'Temperature', 65.5)

shape =

2x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:

3-747

mapshape.append

(2 features concatenated with 1 delimiter)
X: [42 43 44 NaN 42.1000]
Y: [30 31 32 NaN 33]

Temperature: [65 66 67 NaN 65.5000]

Note that the mapshape vector grew from 1x1 to 2x1 in length.

See Also mapshape | mapshape.vertcat |

3-748

mapshape.cat

Purpose Concatenate mapshape vectors

Syntax s= cat(dim,s1, s2, ...)

Description s= cat(dim,s1, s2, ...) concatenates the mapshape vectors s1,s2
and so on along dimensions dim. dim must be 1.

Input
Arguments

s1, s2, ...

mapshape vectors to be concatenated.

Output
Arguments

s

Concatenated mapshape vector.

Examples Concatenate two mapshape vectors

Create two mapshape vectors and concatenate them into a single vector.

s1 = mapshape(42,-110, 'Temperature', 65);
s2 = mapshape(42.2, -110.5, 'Temperature', 65.6);
s1s2 = cat(1,s1,s2)

s1s2 =

2x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(2 features concatenated with 1 delimiter)

X: [42 NaN 42.2000]
Y: [-110 NaN -110.5000]

Feature properties:
Temperature: [65 65.6000]

See Also mapshape.vertcat |

3-749

mapshape.disp

Purpose Display mapshape vector

Syntax disp(s)

Description disp(s) prints the size of the mapshape vector, s, and its properties
and dynamic properties, if they exist. If the command window is large
enough, the values of the properties are also shown, otherwise only
their size is shown. You can control the display of the numerical values
by using the format command.

Input
Arguments

s

mapshape vector.

Examples Display a mapshape vector

Display a mapshape vector.

s = mapshape(shaperead('worldcities', 'UseGeo', true));
disp(s)
disp(s(1:2))

318x1 mapshape vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Vertex properties:
(318 features concatenated with 317 delimiters)

X: [1x635 double]
Y: [1x635 double]

Feature properties:
Lon: [1x318 double]
Lat: [1x318 double]

Name: {1x318 cell}

2x1 mapshape vector with properties:

3-750

mapshape.disp

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Vertex properties:
(2 features concatenated with 1 delimiter)

X: [0 NaN 0]
Y: [0 NaN 0]

Feature properties:
Lon: [-3.9509 54.7589]
Lat: [5.2985 24.6525]

Name: {'Abidjan' 'Abu Dhabi'}

See Also formatmapshape |

3-751

mapshape.fieldnames

Purpose Dynamic properties of mapshape vector

Syntax names = fieldnames(s)

Description names = fieldnames(s) returns the names of the dynamic properties
of the mapshape vector, s.

Input
Arguments

s

mapshape vector for which the properties are to be queried.

Output
Arguments

names

Names of the dynamic properties in the mapshape vector s

Examples Find dynamic properties

Return the dynamic properties of a mapshape vector

s = mapshape(shaperead('worldcities'))
fieldnames(s)

s =

318x1 mapshape vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]

Vertex properties:
(318 features concatenated with 317 delimiters)

X: [1x635 double]
Y: [1x635 double]

Feature properties:
Name: {1x318 cell}

ans =

3-752

mapshape.fieldnames

'Name'

See Also mapshape.properties |

3-753

mapshape.isempty

Purpose True if mapshape vector is empty

Syntax tf = isempty(s)

Description tf = isempty(s) returns true if the mapshape vector, s, is empty and
false otherwise.

Input
Arguments

s

mapshape vector.

Output
Arguments

tf

Boolean. 1 if s is empty or 0 if not.

Examples Check if a mapshape vector is empty

Check if the mapshape vector is empty.

s = mapshape();
isempty(s)

ans =

1

See Also mapshape.end |

3-754

mapshape.isfield

Purpose True if dynamic property exists

Syntax tf = isfield(s,name)
tf = isfield(s,names)

Description tf = isfield(s,name) returns true if the value specified by the string
name is a dynamic property of the mapshape vector, s.

tf = isfield(s,names) return true for each element of the cell array,
names, that is a dynamic property of s. tf is a logical array of the
same size as names.

Input
Arguments

s

mapshape vector.

name

Name of the dynamic property.

names

Cell array of names of dynamic properties.

Output
Arguments

tf

Boolean. 1 if s contains the specified fields or 0 otherwise.

Examples Check for fieldname

Check if a field is present in a mapshape vector.

s = mapshape(-33.961, 18.484, 'Name', 'Cape Town')
isfield(s, 'X')
isfield(s, 'Name')

s =

1x1 mapshape vector with properties:

3-755

mapshape.isfield

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
X: -33.9610
Y: 18.4840

Feature properties:
Name: 'Cape Town'

ans =

0

ans =

1

Note that X returns 0 because it is not a dynamically added property.

See Also mapshape.isprop | mapshape.fieldnames |

3-756

mapshape.isprop

Purpose True if property exists

Syntax tf = isprop(s,name)
tf = isprop(s,names)

Description tf = isprop(s,name) returns true if the value specified by the string,
name is a property of the mapshape vector, s.

tf = isprop(s,names) returns true for each element of the cell array
of strings, names, that is a property of s. tf is a logical array the same
size as names.

Input
Arguments

s

mapshape vector.

name

String specifying the property of the mapshape vector, s.

names

Cell array of strings specifying the property of the mapshape
vector, s.

Output
Arguments

tf

Boolean. 1 if the property exists with s ,0 otherwise.

Examples Check if property exists

This example shows how to check if a string is a property of a mapshape
vector.

s = mapshape(-33.961, 18.484, 'Name', 'Cape Town');
isprop(s, 'X')
isprop(s, 'Name')

ans =

1

3-757

mapshape.isprop

ans =

1

See Also mapshape.isfield | mapshape.properties |

3-758

mapshape.length

Purpose Number of elements in mapshape vector

Syntax N = length(s)

Description N = length(s) returns the number of elements contained in the
mapshape vector, s. The result is equivalent to size(s,1).

Input
Arguments

s

mapshape vector.

Output
Arguments

N

Length of the mapshape vector, s.

Examples Find the length of the mapshape vector.

coast = load('coast');
s = mapshape(coast.lat, coast.long);
length(s)
length(coast.lat)

ans =

1

ans =

9865

See Also mapshape.size |

3-759

mapshape.properties

Purpose Properties of a mapshape vector

Syntax prop = properties(s)
properties(s)

Description prop = properties(s) returns a cell of the property names of the
mapshape vector, s.

properties(s) displays the names of the properties of s.

Input
Arguments

s

mapshape vector.

Output
Arguments

prop

Cell variable consisting of property names of the mapshape vector,
s.

Examples Properties of a mapshape vector

Query for properties of a mapshape vector.

s = mapshape(shaperead('tsunamis', 'UseGeo', true));
properties(s)

Properties for class mapshape:

Geometry
Metadata
X
Y
Lon
Lat
Year
Month
Day
Hour

3-760

mapshape.properties

Minute
Second
Val_Code
Validity
Cause_Code
Cause
Eq_Mag
Country
Location
Max_Height
Iida_Mag
Intensity
Num_Deaths
Desc_Deaths

See Also mapshape.fieldnames |

3-761

mapshape.rmfield

Purpose Remove dynamic property from mapshape vector

Syntax s = rmfield(s, fieldname)
s = rmfield(s, fields)

Description s = rmfield(s, fieldname) removes the field specified by the string,
fieldname , from the mapshape vector, s.

s = rmfield(s, fields) removes all the fields specified by the cell
array, fields.

Note rmfield cannot remove X, Y, Metadata and Geometry fields. The
specified string, ‘fieldname, is case sensitive.

Input
Arguments

s

mapshape vector.

fieldname

Exact string representing the name of the property.

fields

Cell array of strings specifying the names of the properties.

Output
Arguments

s

Updated mapshape vector with the field(s) removed.

Examples Remove fields from a mapshape vector

Remove a field from a mapshape vector.

s = mapshape(shaperead('tsunamis'));
tf = isfield(s,'Intensity')
s2 = rmfield(s,'Intensity');
tf = isfield(s2,'Intensity')

3-762

mapshape.rmfield

tf =

1

tf =

0

See Also mapshape.fieldnames | mapshape.rmprop |

3-763

mapshape.rmprop

Purpose Remove properties from mapshape vector

Syntax sf = rmprop(s,propname)
sf = rmprop(s,propnames)

Description sf = rmprop(s,propname) removes the property specified by the
string, propname from the mapshape vector, s.

sf = rmprop(s,propnames) removes all the properties specified in
the cell array, propnames, from the mapshape vector, s. If propnames
contains a coordinate property an error is issued.

Note rmprop cannot remove X, Y, Metadata and Geometry fields. The
specified string, propname, is case sensitive.

Input
Arguments

s

mapshape vector.

Output
Arguments

sf

Modified mapshape vector with the specified property(s) removed.

Examples Remove a property of a mapshape vector

Remove a property from a mapshape vector.

s = mapshape(shaperead('tsunamis'));
tf = isfield(s,'Validity')
s2 = rmprop(s, 'Validity');
tf = isfield(s2,'Validity')

tf =

1

3-764

mapshape.rmprop

tf =

0

See Also mapshape.fieldnames |

3-765

mapshape.size

Purpose Size of mapshape vector

Syntax val = size(s)
val = size(s,1)
val = size(s, n)
[m,k] = size(s)

Description val = size(s) returns the vector [length(val), 1].

val = size(s,1) returns the length of s.

val = size(s, n) returns 1 for n >= 2.

[m,k] = size(s) returns length(s) for m and 1 for k.

Input
Arguments

s

mapshape vector.

n

Number of the dimension at which size of s is required.

Output
Arguments

val

Vector of the form [length(s), 1].

m

Length of s.

k

Length of second dimension of s. k is always 1.

Examples Size of a mapshape vector

Find the size of a mapshape vector.

structArray = shaperead('worldrivers');
s= mapshape(structArray);
structSize = size(structArray)

3-766

mapshape.size

sSize = size(s)

structSize =

128 1

sSize =

128 1

The second dimension is always 1.

See Also geoshape.length | size

3-767

mapshape.struct

Purpose Convert mapshape vector to scalar structure

Syntax structArray = struct(s)

Description structArray = struct(s) converts the mapshape vector, s, to a scalar
structure array, structArray.

Input
Arguments

s

mapshape vector.

Output
Arguments

structArray

Scalar structure of the mapshape vector s.

Examples Converting a mapshape vector into struct

This example shows how to convert a mapshape vector to struct.

structArray = shaperead('worldcities')
s= mapshape(structArray);
structArray2 = struct(s)

structArray =

318x1 struct array with fields:
Geometry
X
Y
Name

structArray2 =

Geometry: 'point'
Metadata: [1x1 struct]

X: [1x635 double]
Y: [1x635 double]

3-768

mapshape.struct

Name: {1x318 cell}

See Also geoshape.properties |

3-769

mapshape.vertcat

Purpose Vertical concatenation for mapshape vectors

Syntax s = vertcat(s1,s2, ...)

Description s = vertcat(s1,s2, ...) vertically concatenates the mapshape
vector, s1, s2, and so on. If the class type of any property is a cell
array, then the resultant field in the output s will also be a cell array.

Input
Arguments

s1, s2, ...

mapshape vectors to be concatenated.

Output
Arguments

s

Concatenated mapshape vector.

Examples Concatenate mapshape vectors

Concatenate two mapshape vectors.

s1 = mapshape(42, -110, 'Temperature', 65, 'Name', 'point1');
s2 = mapshape(42.1, -110.4, 'Temperature', 65.5, 'Name', 'point2');
s = vertcat(s1, s2)

s =

2x1 mapshape vector with properties:

Collection properties:
Geometry: 'line'
Metadata: [1x1 struct]

Vertex properties:
(2 features concatenated with 1 delimiter)

X: [42 NaN 42.1000]
Y: [-110 NaN -110.4000]

Feature properties:
Temperature: [65 65.5000]

Name: {'point1' 'point2'}

3-770

mapshape.vertcat

See Also mapshape.cat |

3-771

mapshow

Purpose Display map data without projection

Syntax mapshow(x,y)
mapshow(s)
mapshow(x,y,z)
mapshow(Z,R)
mapshow(x,y,image)
mapshow(x,y,A,cmap)
mapshow(image,R)
mapshow(A,cmap,R)
mapshow(ax,...)
mapshow('Parent',ax,...)
mapshow(filename)
mapshow(...,Name,Value)
h = mapshow(...)

Description mapshow(x,y) displays the coordinate vectors x and y. The default
behavior for mapshow is to display x and y as lines.

mapshow(s) displays the vector geographic features stored in the
geographic data structure s as points, multipoints, lines, or polygons
according to the Geometry field of s. If s includes X and Y fields, then
these fields are used directly to plot features in map coordinates. If s
includes Lat and Lon fields instead, the coordinates are projected with
the Plate Carrée projection and a warning is issued.

mapshow(x,y,z) displays a geolocated data grid. x and y are M-by-N
coordinate arrays, and z is an M-by-N array of class double.

mapshow(Z,R) displays a regular data grid, Z.

mapshow(x,y,image) or mapshow(x,y,A,cmap) displays a geolocated
image as a texturemap on a zero-elevation surface. x and y are
geolocation arrays in map coordinates. x, y, and the image array must
match in size. Examples of geolocated images include a color composite
from a satellite swath or an image originally referenced to a different
coordinate system.

3-772

mapshow

mapshow(image,R) or mapshow(A,cmap,R) displays an image
georeferenced to map coordinates through R. The mapshow function
constructs an image object if the display geometry permits. Otherwise,
mapshow displays the image as a texturemap on a zero-elevation surface.

mapshow(ax,...) and mapshow('Parent',ax,...) set the axes parent
to ax.

mapshow(filename) displays data from the file specified according to
the type of file format.

mapshow(...,Name,Value) specifies parameters and corresponding
values that modify the type of display or set MATLAB graphics
properties. Parameter names can be abbreviated, and case does not
matter.

h = mapshow(...) returns a handle to a MATLAB graphics object.

Tips • If you do not want geoshow to draw on top of an existing map, create
a new figure or subplot before calling it.

• You can use mapshow to display vector data in an axesm figure.
However, you should not subsequently change the map projection
using setm.

• If you display a polygon, do not set 'EdgeColor' to either 'flat' or
'interp'. This combination may result in a warning.

• You can access mapshow through the Plot Selector workspace tool,

which is represented by this icon . In
your workspace, select the data you want to display. The Plot Selector

icon changes to look like this: .
Scroll down to mapshow(s): Plot a mapstruct array in an
ordinary axes.

• If s is a geostruct (has Lat and Lon fields), it may be more appropriate
to use geoshow to display them. You can project latitude and
longitude coordinate values to map coordinates by displaying with
geoshow on a map axes.

3-773

mapshow

Input
Arguments

x

Coordinate vector, M-by-N coordinate array, or geolocation array in
map coordinates, depending on the syntax. x can contain embedded
NaNs to delimit individual lines or polygon parts.

y

Coordinate vector, M-by-N coordinate array, or geolocation array in
map coordinates, depending on the syntax. y can contain embedded
NaNs to delimit individual lines or polygon parts.

z

M-by-N array. z can contain NaN values.

s

Geographic data structure.

Z

Regular data grid.

R

Referencing matrix or spatialref.MapRasterReference object
that relates the subscripts of Z to map coordinates. If R is a
spatialref.MapRasterReference object with raster interpretation
'postings', then mapshow does not accept the 'image' and
'texturemap' display types.

image

Grayscale, logical, or truecolor image.

A

Indexed image.

cmap

3-774

mapshow

Colormap.

ax

Axes object.

filename

Name of file.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

SymbolSpec

A structure returned by makesymbolspec that specifies the
symbolization rules used for vector data. When both SymbolSpec and
one or more graphics properties are specified, the graphics properties
will override any settings in the symbolspec structure.

To change the default symbolization rule for a Name,Value pair in the
symbolspec, prefix the word 'Default' to the graphics property name.

DisplayType

Type of graphic display for the data. You can set any MATLAB Graphics
line, patch, image, surface, and contour properties. See the table for
links to the MATLAB documentation on these properties.

3-775

mapshow

Data
Type

DisplayType Type of Property

'point' line marker

On the MATLAB Line
Properties reference
page, under Line Property
Descriptions, see Marker.

'multipoint' line marker

On the MATLAB Line
Properties reference
page, under Line Property
Descriptions, see Marker.

'line' (default) line

See the MATLAB Line
Properties reference page.

Vector

'polygon' patch

See the MATLAB Patch
Properties reference page.

Image 'image' or 'surface' image or surface

See the MATLAB Image
Properties or Surface
Properties reference page.

3-776

mapshow

Data
Type

DisplayType Type of Property

'surface' surface

See the MATLAB Surface
Properties reference page.

'mesh' surface

See the MATLAB Surface
Properties reference page.

'texturemap' surface

See the MATLAB Surface
Properties reference page.

Grid

'contour' contour

See the MATLAB
Contourgroup Properties
reference page.

If DisplayType is 'texturemap', geoshow constructs a surface with
ZData values set to 0.

Set the DisplayType to 'image' if you are using the syntax
mapshow(image, R, ...).

When using the filename argument, the DisplayType parameter is
automatically set, according to the following table:

Format DisplayType

Shapefile 'point', 'line', or 'polygon'

GeoTIFF 'image'

TIFF/JPEG/PNG with
a world file

'image'

ARC ASCII GRID 'surface' (can be overridden)

SDTS raster 'surface' (can be overridden)

3-777

mapshow

Output
Arguments

h

Handle to a MATLAB graphics object or, in the case of polygons, a
modified patch object. If a mapstruct or shapefile name is input,
mapshow returns the handle to an hggroup object with one child per
feature in the mapstruct or shapefile. In the case of a polygon mapstruct
or shapefile, each child is a modified patch object; otherwise it is a
line object.

Class
Support

Display Type Supported Class Types

Image logical, uint8, uint16, and double

Surface single and double

Texture map All numeric types and logical

Examples Overlay Boston roads on an orthophoto. Convert Boston road vectors
to units of survey feet before overlaying them on the image. (Note
that mapshow draws a new layer in the axes rather than replacing its
contents.)

figure
mapshow boston.tif
axis image off

% The orthophoto is in survey feet and the roads are in meters.
% Convert the road units to feet before overlaying them.
S = shaperead('boston_roads.shp');
surveyFeetPerMeter = unitsratio('sf','meter');
x = surveyFeetPerMeter * [S.X];
y = surveyFeetPerMeter * [S.Y];
mapshow(x,y)

3-778

mapshow

boston.tif image copyright © GeoEye, all rights reserved.

Display Boston roads and change the line style:

roads = shaperead('boston_roads.shp');
figure
mapshow(roads,'LineStyle',':');

3-779

mapshow

Display the Boston roads shapes using a symbolspec:

% Create a SymbolSpec to color local roads:
% (ADMIN_TYPE=0) cyan, state roads (ADMIN_TYPE=3) red.
% Hide very minor roads (CLASS=6).
% Make all roads that are major or larger (CLASS=1-4)
% have a LineWidth of 2.
roadspec = makesymbolspec('Line',...

{'ADMIN_TYPE',0,'Color','cyan'}, ...
{'ADMIN_TYPE',3,'Color','red'},...
{'CLASS',6,'Visible','off'},...
{'CLASS',[1 4],'LineWidth',2});

figure
mapshow('boston_roads.shp','SymbolSpec',roadspec);

3-780

mapshow

Override default properties in combination with a symbolspec:

roadspec = makesymbolspec('Line',...
{'Default', 'Color', 'yellow'}, ...
{'ADMIN_TYPE',0,'Color','c'}, ...
{'ADMIN_TYPE',3,'Color','r'},...
{'CLASS',6,'Visible','off'},...
{'CLASS',[1 4],'LineWidth',2});

figure
mapshow('boston_roads.shp', 'Color', 'black', ...

'SymbolSpec', roadspec);

3-781

mapshow

Override default properties of the line with a symbolspec:

roadspec = makesymbolspec('Line',...
{'Default', 'Color', 'black'}, ...
{'ADMIN_TYPE',0,'Color','c'}, ...
{'ADMIN_TYPE',3,'Color','r'},...
{'CLASS',6,'Visible','off'},...
{'CLASS',[1 4],'LineWidth',2});

figure
mapshow('boston_roads.shp','SymbolSpec',roadspec);

3-782

mapshow

Overlay a pond polygon and roads on an orthophoto:

% Display an orthophoto of Concord, MA, including a pond with
% three large islands:
[ortho, cmap] = imread('concord_ortho_w.tif');
R = worldfileread('concord_ortho_w.tfw', 'planar', size(ortho));
figure
mapshow(ortho, cmap, R)

% Overlay a polygon representing the same pond
% (feature 14 in the concord_hydro_area shapefile).
% Note that the islands are visible in the orthophoto
% through three "holes" in the pond polygon.
pond = shaperead('concord_hydro_area.shp', 'RecordNumbers', 14);
mapshow(pond, 'FaceColor', [0.3 0.5 1], 'EdgeColor', 'black')

3-783

mapshow

% Overlay roads in the same figure.
mapshow('concord_roads.shp', 'Color', 'red', 'LineWidth', 1);

Read and view the Mount Washington SDTS DEM terrain data three
different ways:

[Z, R] = sdtsdemread('9129CATD.DDF');

% View the Mount Washington terrain data as a mesh.
figure
mapshow(Z, R, 'DisplayType', 'mesh');
demcmap(Z)

3-784

mapshow

% View the Mount Washington terrain data as a surface.
figure
mapshow(Z, R, 'DisplayType', 'surface');
demcmap(Z)

3-785

mapshow

% View as a 3-D surface.
view(3);
axis normal

3-786

mapshow

Display the grid and contour lines of Mount Washington and Mount
Dartmouth:

% Read the terrain data files.
[Z_W, R_W] = arcgridread('MtWashington-ft.grd');
[Z_D, R_D] = arcgridread('MountDartmouth-ft.grd');

% Display the terrain data as a surface.
figure('Renderer', 'zbuffer')
hold on
mapshow(Z_W, R_W, 'DisplayType', 'surface');
mapshow(Z_D, R_D, 'DisplayType', 'surface');

% Overlay black contour lines with labels onto the surface.
% Set the Z values of the contours to the maximum value of the
% corresponding surface.

3-787

mapshow

cW = mapshow(Z_W, R_W, 'DisplayType', 'contour', ...
'LineColor','black', 'ShowText', 'on');

cD = mapshow(Z_D, R_D, 'DisplayType', 'contour', ...
'LineColor','black', 'ShowText', 'on');

zdatam(get(cW,'Children'), max(Z_W(:)));
zdatam(get(cD,'Children'), max(Z_D(:)));

% Set the colormap appropriate to terrain elevation.
demcmap(Z_W)

See Also geoshow | makesymbolspec | mapview | shaperead

How To • “Displaying Vector Data with Mapping Toolbox Functions”

3-788

maptriml

Purpose Trim lines to latitude-longitude quadrangle

Syntax [lat,lon] = maptriml(lat0,lon0,latlim,lonlim)

Description [lat,lon] = maptriml(lat0,lon0,latlim,lonlim) returns filtered
NaN-delimited vector map data sets from which all points lying outside
the desired latitude and longitude limits have been discarded. These
limits are specified by the two-element vectors latlim and lonlim,
which have the form [south-limit north-limit] and [west-limit
east-limit], respectively.

Examples Following is a simple example:

lat0 = [1:10,9:-1:0]; lon0 = -30:-11;
[lat,lon] = maptriml(lat0,lon0,[3 7],[-29 -12]);
[lat lon]

ans =
NaN NaN

3 -28
4 -27
5 -26
6 -25
7 -24

NaN NaN
7 -18
6 -17
5 -16
4 -15
3 -14

NaN NaN

Notice that trimmed line segment ends have NaNs inserted at trim
points.

See Also maptrimp | maptrims

3-789

maptrimp

Purpose Trim polygons to latitude-longitude quadrangle

Syntax [latTrimmed,lonTrimmed] = maptrimp(lat,lon,latlim,lonlim)

Description [latTrimmed,lonTrimmed] = maptrimp(lat,lon,latlim,lonlim)
trims the polygons in lat and lon to the quadrangle specified by latlim
and lonlim. latlim and lonlim are two-element vectors, defining the
latitude and longitude limits respectively. lat and lon must be vectors
that represent valid polygons.

Tips maptrimp conditions the longitude limits such that:

• lonlim(2) always exceeds lonlim(1)

• lonlim(2) never exceeds lonlim(1) by more than 360

• lonlim(1) < 180 or lonlim(2) > -180

• Should the quadrangle span the Greenwich meridian, then that
meridian appears at longitude = 0.

Examples Display a world map of coastline data, trim the dataset to a specific
geographic area, and display a map of this trimmed data.

coast = load('coast.mat');
figure
mapshow(coast.long, coast.lat, 'DisplayType', 'polygon');

3-790

maptrimp

Original Map

latlim = [-50 50];
lonlim = [-100 50];
[latTrimmed, lonTrimmed] = maptrimp(coast.lat, coast.long, ...

latlim, lonlim);
figure
mapshow(lonTrimmed, latTrimmed, 'DisplayType', 'polygon');

Map with Trimmed Data

See Also maptriml | maptrims

3-791

maptrims

Purpose Trim regular data grid to latitude-longitude quadrangle

Syntax [Z_trimmed] = maptrims(Z,R,latlim,lonlim)
[Z_trimmed] = maptrims(Z,R,latlim,lonlim,cellDensity)
[Z_trimmed, R_trimmed] = maptrims(...)

Description [Z_trimmed] = maptrims(Z,R,latlim,lonlim) trims a regular data
grid Z to the region specified by latlim and lonlim. By default, the
output grid Z_trimmed has the same sample size as the input. R can
be a spatialref.GeoRasterReference object, a referencing vector,
or a referencing matrix. If R is a spatialref.GeoRasterReference
object, its RasterSize property must be consistent with size(Z) and
its RasterInterpretation must be 'cells'.

If R is a referencing vector, it must be a 1-by-3 vector with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to/from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel. latlim and
lonlim are two-element vectors, defining the latitude and longitude
limits, respectively. The latlim vector has the form:

[southern_limit northern_limit]

Likewise, the lonlim vector has the form:

[western_limit eastern_limit]

When an individual value in latlim or lonlim corresponds to a parallel
or meridian that runs precisely along cell boundaries, the output grid
will extend all the way to that limit. But if a limiting parallel or
meridian cuts through a column or row of input cells, then the limit

3-792

maptrims

will be adjusted inward. In other words, the requested limits will be
truncated as necessary to avoid partial cells.

[Z_trimmed] = maptrims(Z,R,latlim,lonlim,cellDensity) uses
the scalar cellDensity to reduce the size of the output. If R is a
referencing vector, then R(1) must be evenly divisible by cellDensity.
If R is a referencing matrix, then the inverse of each element in the
first two rows (containing "deltaLat" and "deltaLon") must be evenly
divisible by cellDensity.

[Z_trimmed, R_trimmed] = maptrims(...) returns a referencing
vector, matrix, or object for the trimmed data grid. If R is a
referencing vector, then R_trimmed is a referencing vector. If R is
a referencing matrix, then R_trimmed is a referencing matrix. If R
is a spatialref.GeoRasterReference object, then R_trimmed is
either a spatialref.GeoRasterReference object (when Z_trimmed is
non-empty) or [] (when Z_trimmed is empty).

Examples load topo
[subgrid,subrefvec] = maptrims(topo,topolegend,...

[80.25 85.3],[165.2 170.7])

subgrid =
-2826 -2810 -2802 -2793
-2915 -2913 -2905 -2884
-3192 -3186 -3165 -3122
-3399 -3324 -3273 -3214

subrefvec =
1 85 166

The upper left corner of the grid might differ slightly from that of the
requested region. maptrims uses the corner coordinates of the first
cell inside the limits.

See Also maptriml | maptrimp | resizem

3-793

mapview

Purpose Interactive map viewer

Syntax mapview

Description Use the Map Viewer to work with vector, image, and raster data grids in
a map coordinate system: load data, pan and zoom on the map, control
the map scale of your screen display, control the order, visibility, and
symbolization of map layers, annotate your map, and click to learn more
about individual vector features. mapview complements mapshow and
geoshow, which are for constructing maps in ordinary figure windows in
a less interactive, script-oriented way.

mapview (with no arguments) starts a new Map Viewer in an empty
state. The Map Viewer is a self-contained GUI for viewing geospatial
data in map (x-y) coordinates. For usage information, see the following
sections. You can also work through the Map Viewer tutorial, “Tour
Boston with the Map Viewer”.

Importing
Data

The Map Viewer opens with no data loaded and an empty map display
window. The first step is to import a data set. Use the options in the
File menu to select data from a file or from the MATLAB workspace:

Import From File

Use the file browsing dialog to open a file in one of the following formats:
Shapefile, GeoTIFF, SDTS DEM, Arc ASCII Grid, TIFF, JPEG, or PNG
with world file. This option imports the data into the viewer but does
not add it to your workspace.

To view standard-format geodata files provided with the toolbox, set
your working folder or navigate the Map Viewer Open dialog to

matlabroot/toolbox/map/mapdata

3-794

mapview

Import From Workspace

Images. Use the Raster Data > Image import dialog to select a
Referencing matrix or object name and Raster data name for
the image from the list of workspace variables. If the image type is
truecolor (RGB), specify which band represents the red, green, and
blue intensities. (The RasterInterpretation of the referencing object
must be 'cells'.)

Data grids. Use the Raster Data > Grid import dialog to select X
and Y geolocation and data grid array names from the list of workspace
variables.

Vector data. Use the Vector Data > Map coordinates import
dialog to select X and Y variables for map coordinates from the list of
workspace variables and identify the type of geometry to be displayed
(Point, Line, or Polygon). The X and Y variables can specify multiple
line segments or multiple polygons if they contain NaNs at matching
locations in the coordinate vectors.

Vector geographic data structure. Use the Vector
Data > Geographic data structure import dialog to select the struct
that contains vector map data from the list of workspace variables.

Once you import your first data set, the Map Viewer automatically
sets the limits of its map display window to the spatial extent of the
imported data.

Working
in Map
Coordinates

As you move any of the Map Viewer cursors across the map display
area, the coordinate readout in the lower left corners shows you the
cursor position in map X and Y coordinates.

The Map Viewer requires that all currently viewed data sets possess
the same coordinate system and length units. This is likely to be the
case for data sets that originated from a common source. If it is not the
case, you will need to adjust coordinates before importing data into
the Map Viewer.

3-795

mapview

If some or all of your data is in geographic coordinates, use projfwd
or mfwdtran to project latitudes and longitudes to your desired map
coordinate system before you import it. When starting from a different
projection, you must first unproject to latitude and longitude using
projinv or minvtran, then reproject with projfwd or mfwdtran.
You might also need to adjust the horizontal datum of your data
using, for example, the free GEOTRANS (Geographic Translator)
application from the Geospatial Sciences Division of the U.S. National
Geospatial-Intelligence Agency (NGA). If you simply need a change
of units, multiply by the appropriate conversion factor obtained from
unitsratio.

mapview can also display data in unprojected geographic coordinates, if
you consistently substitute longitude for map X and latitude for map Y.
Geographic coordinates must be consistently expressed in either degrees
or radians (not both at once). When using geographic coordinates, do
not specify the viewer’s map units (see below); you can only use the Map
Viewer’s map scale display when working in linear units of length.

Setting
Map Units
and Scale

If you tell the Map Viewer which length unit you are using, it can
calculate an approximate map scale for your onscreen display. Set the
map units with either the drop-down menu at the bottom of the display
or the Set Map Units item in the Tools menu.

The scale computed by the Map Viewer is displayed in the window just
above the map units drop-down. To change your display scale while
keeping the center of the map display fixed, simply edit this text box.

Make sure to format your text in the standard way (1:N, where N is a
positive number such that a distance on the ground is N times the same
distance on your screen, e.g., 1:24000).

The scale is approximate because it depends on the MATLAB estimate
of the size of your screen pixels. It is also approximate if your projection
introduces significant distortion. If your data falls in a fairly small area
and you use a conformal projection (e.g., UTM with all data in a single
zone), the scale will be very consistent across your entire map.

3-796

mapview

Navigating
Your Map

By default, the Map Viewer sets the limits of your map window to match
the extent of the first data set that you load. You will probably want to
adjust this to see some areas in greater detail.

The Map Viewer provides several tools to control the limits of your map
window and the map scale of the data display. Some are familiar from
standard MATLAB figure windows.

• Zoom in: Drag a box to zoom in on a specific area or click a point to
zoom in with that point centered in the map display.

• Zoom out: Click a point to zoom out with that point centered in
the map display.

• Pan tool: Click, hold, and drag to reposition the selected point in the
display window, while holding the map scale fixed. Release when you
are satisfied with new display limits.

• Fit to window: Set the map display to enclose all currently loaded
data layers. This is equivalent to selecting Fit to Window in the
View menu.

• Back to previous view: Click this button once to return the map
scale and display center to their values prior to the most recent zoom,
pan, or scale change. Click repeatedly to undo earlier changes. This
is equivalent to selecting Previous View in the View menu.

Another way to zoom in or out while keeping the center of the view
fixed at the same map coordinates is to directly edit the map scale box
at the bottom of the screen.

Managing
Map
Layers

Each time you import a set of vectors, an image, or a data grid into the
Map Viewer, the new data is stored in a new map layer. The layers form
an ordered stack. Each layer is listed as an item in the Layers menu,
with its position in the menu indicating its position in the stack.

When you import a new layer, the Map Viewer automatically places it
at the top of the layer stack. To reposition a layer in the stack, select it
in the Layers menu, slide right, and select To Top, To Bottom,Move
Up, or Move Down from the pop-up submenu.

3-797

mapview

The vector features or raster in a given layer obscure coincident
elements of any underlying layers. To control layers that are obscuring
one another, you can also toggle layer visibility on and off. Use the item
Visible in the slide-right menu. Or, simply remove a layer from the
Map Viewer via the Remove item in the slide-right menu. Remember
that even if a layer’s visibility is on, the layer does not appear if its
contents are located completely outside the current display limits or are
obscured by another layer.

Symbolizing
Vector
Features

When point, line, and polygon layers are loaded, the Map Viewer
initializes their graphics properties as follows:

Geometry Properties

Point (line objects) LineStyle = 'none
Marker = 'x'
MarkerEdgeColor = <randomly generated
value>
MarkerFaceColor = 'none’

Line (line objects) Color = <randomly generated value>
LineStyle = '-'
Marker = 'none'

Polygon (patch objects) EdgeColor = [0 0 0] FaceColor =
<randomly generated value>

To override symbolism defaults for a vector layer, use makesymbolspec
to create a symbol specification in the workspace. A symbolspec
contains a set of rules for setting vector graphics properties based on
the values of feature attributes. For instance, if you have a line layer
representing roads of various classes (e.g., major highway, secondary
road, etc.), you can create a symbolspec to use a different color, line
width, or line style for each road class. See the makesymbolspec help for
examples and to learn how to construct a symbolspec. If you regularly
work with data sets sharing a common set of feature attributes, you
might want to save one or more symbolspecs in a MAT-file (or save calls
to makesymbolspec in a MATLAB program file).

3-798

mapview

Once you have a symbolspec in your workspace, select your vector layer
in the Layers menu, then slide right and click Set Symbol Spec,
which opens a dialog box. Use the dialog box to select the symbolspec
from your workspace.

Getting
Information
About
Vector
Features

The Datatip tool and the Info tool provide different ways to check the
attributes of vector features that you select graphically. Before using
either tool you must designate one of your vector layers as active. (The
default active layer is the first one that you imported.) Either use the
Active Layer drop-down menu at the bottom of your screen or select
the layer in the Layers menu, slide right, and select Active. Having a
designated active layer ensures that when you click a feature you don’t
inadvertently select an overlapping feature from a different layer.

• Datatip tool: The Datatip tool displays a feature attribute in a text
label each time you click a vector feature. By default the attribute is
the first one in the layer’s attribute list. To change which attribute
is used, select the layer in the Layers menu, slide right, and click
Set Layer Attribute. In the dialog that follows, select a different
attribute, or Index. If you choose Index, the Map Viewer displays
the one-based index value corresponding to a given feature—based
on its position in the input file or workspace array. To remove a text
label, right-click it and choose Delete datatip from the context
menu. Or choose Delete all datatips from the context menu or the
Tools menu.

• Info tool: The Info tool opens a separate text window each time
you click a vector feature. The window displays all the attribute
names and values for that feature, in contrast to the Datatip tool,
which displays only the value of a single attribute. If you need to
compare two or more features, simply click each one and view the
info windows together. Use its close button to close an info window
when you’re done with it, or choose Close All Info Windows from
the Tools menu.

Annotating
Your Map

Use the text, line, or arrow annotation tools to mark and highlight
points of interest on your map, or select the corresponding items in the
Insert menu. Note that to insert an additional object of the same type,

3-799

mapview

you must reselect the appropriate tool. In addition, the Insert menu
allows you to insert axis labels and a title. Use the Select annotations
tool and Edit menu to modify or remove your annotations. The Map
Viewer manages annotations separately from data layers; annotations
always stay on top. Note that annotations cannot be saved as graphic
objects, although you can export maps containing annotations to an
image format as described below.

Creating
and Using
Additional
Views

Use New View on the File menu to create an additional Map Viewer
window linked to an existing window. Consider using an additional
window when you want to see your map at different scales at the same
time (e.g., a detailed view plus an overview), or when you want to
simultaneously see different areas of the map at large scale. You can
create as many additional windows as you need, and close them when
you want. Your mapview session ends when you close the last window.

Options for creating a new viewer window include: Duplicate Current
View, Full Extent, Full Extent of Active Layer, and Selected Area.
Click and drag with the Select area tool to define a selected area.

A new viewer window differs from existing windows mainly in terms
of the visible map extent and scale (it also omits annotations and any
labels you added with the datatip tool). You will see the same layers
in the same order with the same settings (including the active layer).
Updates to layers (insertion/removal, order, visibility, label attribute,
and symbolization) in one viewer window are propagated automatically
to all the windows with which it is linked. Updates to annotations and
datatip labels are not propagated between viewers. If you need two
different layer configurations in different windows, launch a second
mapview from the command line instead of creating an additional
window. The views it contains will not be linked to previous ones.

Exporting
Your Map

The Map Viewer allows you to export all or part of your map for use in
a publication or on a Web page. Use File > Save As Raster Map to
export an image of either the current display extent or an area outlined
with the Select area tool. Select a format (PNG, TIFF, JPEG) from the
drop-down menu in the export dialog. For maps including vector layers,
PNG (Portable Network Graphics) is often the best choice. This format

3-800

mapview

provides excellent quality, good compression, and is well supported
by modern Web browsers. The export process automatically creates
a world file (ending with suffix tfw, jgw, or pgw) as well; the pair of
files constitute a georeferenced image that itself can be displayed with
mapview, mapshow, and many external GIS packages.

See Also arcgridread | geoshow | geotiffread | makesymbolspec | mapshow |
sdtsdemread | shaperead | updategeostruct | worldfileread

3-801

mdistort

Purpose Display contours of constant map distortion

Syntax mdistort
mdistort off
mdistort(parameter)
mdistort parameter
mdistort(parameter,levels)
mdistort(parameter,levels,gsize)
h = mdistort(...)

Description mdistort, with no input arguments, toggles the display of contours of
projection-induced distortion on the current map axes. The magnitude
of the distortion is reported in percent.

mdistort off removes the contours.

mdistort(parameter) or mdistort parameter displays contours of
distortion for the specified parameter. Recognized parameter strings
are 'area', 'angles' for the maximum angular distortion of right
angles, 'scale' or 'maxscale' for the maximum scale, 'minscale'
for the minimum scale, 'parscale' for scale along the parallels,
'merscale' for scale along the meridians, and 'scaleratio' for the
ratio of maximum and minimum scale. If omitted, the 'maxscale'
parameter is displayed. All parameters are displayed as percent
distortion except angles, which are displayed in degrees.

mdistort(parameter,levels) specifies the levels for which the
contours are drawn. levels is a vector of values as used by contour. If
empty, the default levels are used.

mdistort(parameter,levels,gsize) controls the size of the
underlying graticule matrix used to compute the contours. gsize is
a two-element vector containing the number of rows and columns. If
omitted, the default Mapping Toolbox graticule size of [50 100] is
assumed.

h = mdistort(...) returns a handle to the contourgroup object
containing the contours and text.

3-802

mdistort

Background Map projections inevitably introduce distortions in the shape and size
of objects as they are transformed from three-dimensional spherical
coordinates to two-dimensional Cartesian coordinates. The amount and
type of distortion vary between projections, over the projection, and
with the selection of projection parameters such as standard parallels.
This function provides a quantitative graphical display of distortion
parameters.

mdistort is not intended for use with UTM. Distortion is minimal
within a given UTM zone. mdistort issues a warning if a UTM
projection is encountered.

Examples Example 1

Note the extreme area distortion of the Mercator projection. This makes
it ill-suited for global displays.

figure
axesm mercator
load coast
framem;
plotm(lat, long,'color',.5*[1 1 1])
mdistort('area', [1 30 100 200 500 1000])

3-803

mdistort

Example 2

The lines of zero distortion for the Bonne projection follow the central
meridian and the standard parallel.

figure
axesm bonne
load coast
framem;plotm(lat, long,'color',.5*[1 1 1])
mdistort('angles', 0:15:90)
parallelui

3-804

mdistort

Example 3

An equidistant conic projection with properly chosen parallels can map
the conterminous United States with less than 1.5% distortion.

figure
usamap conus
load conus
patchm(uslat, uslon, [1 0.7 0])
plotm(statelat, statelon)
patchm(gtlakelat, gtlakelon, 'cyan')
framem off; gridm off; mlabel off; plabel off
mdistort('parscale', -2:.5:2)
parallelui

3-805

mdistort

Tips mdistort can help in the placement of standard parallels for projections.
Standard parallels are generally placed to minimize distortion over
the region of interest. The default parallel locations might not be
appropriate for maps of smaller regions. By using mdistort and
parallelui, you can immediately see how the movement of parallels
reduces distortion.

See Also tissot | distortcalc | vfwdtran

3-806

meanm

Purpose Mean location of geographic coordinates

Syntax [latmean,lonmean] = meanm(lat,lon)
[latmean,lonmean] = meanm(lat,lon,units)
[latmean,lonmean] = meanm(lat,lon,ellipsoid)

Description [latmean,lonmean] = meanm(lat,lon) returns row vectors of the
geographic mean positions of the columns of the input latitude and
longitude points.

[latmean,lonmean] = meanm(lat,lon,units) indicates the angular
units of the data. When the standard angle string units is omitted,
'degrees' is assumed.

[latmean,lonmean] = meanm(lat,lon,ellipsoid) specifies the
shape of the Earth using ellipsoid, which can be a referenceSphere,
referenceEllipsoid, or oblateSpheroid object, or a vector of the form
[semimajor_axis eccentricity]. The default ellipsoid model is a
spherical Earth, which is sufficient for most applications.

If a single output argument is used, then geomeans =
[latmean,longmean]. This is particularly useful if the original lat
and lon inputs are column vectors.

Background Finding the mean position of geographic points is more complicated than
simply averaging the latitudes and longitudes. meanm determines mean
position through three-dimensional vector addition. See “Geographic
Statistics” in the Mapping Toolbox User’s Guide.

Examples Create random latitude and longitude matrices:

lat = rand(3)

lat =
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

3-807

meanm

lon = rand(3)

lon =
0.4447 0.9218 0.4057
0.6154 0.7382 0.9355
0.7919 0.1763 0.9169

[latmean,lonmean] = meanm(lat,lon,'radians')

latmean =
0.6004 0.7395 0.4448

lonmean =
0.6347 0.6324 0.7478

See Also filterm | hista | histr | stdist | stdm

3-808

meridianarc

Purpose Ellipsoidal distance along meridian

Syntax s = meridianarc(phi1,phi2,ellipsoid)

Description s = meridianarc(phi1,phi2,ellipsoid) calculates the (signed)
distance s between latitudes phi1 and phi2 along a meridian on the
ellipsoid defined by ellipsoid, which can be a referenceSphere,
referenceEllipsoid, or oblateSpheroid object, or a vector of the form
[semimajor_axis eccentricity]. Latitudes phi1 and phi2 are in
radians. The distance s has the same units as the semimajor axis of the
ellipsoid. If phi2 is less than phi1, s is negative.

See Also meridianfwd

3-809

meridianfwd

Purpose Reckon position along meridian

Syntax phi2 = meridianfwd(phi1,s,ellipsoid)

Description phi2 = meridianfwd(phi1,s,ellipsoid) determines the geodetic
latitude phi2 reached by starting at geodetic latitude phi1 and
traveling distance s north (positive s) or south (negative s) along a
meridian on the specified ellipsoid. ellipsoid is a referenceSphere,
referenceEllipsoid, or oblateSpheroid object, or a vector of the form
[semimajor_axis eccentricity]. Latitudes phi1 and phi2 are in
radians, and s has the same units as the semimajor axis of the ellipsoid.

See Also meridianarc

3-810

meshgrat

Purpose Construct map graticule for surface object display

Syntax [lat, lon] = meshgrat(Z, R)
[lat, lon] = meshgrat(Z, R, gratsize)
[lat, lon] = meshgrat(lat, lon)
[lat, lon] = meshgrat(latlim, lonlim, gratsize)
[lat, lon] = meshgrat(lat, lon, angleunits)
[lat, lon] = meshgrat(latlim, lonlim, angleunits)
[lat, lon] = meshgrat(latlim, lonlim, gratsize, angleunits)

Description [lat, lon] = meshgrat(Z, R) constructs a graticule for use in
displaying a regular data grid, Z. In typical usage, a latitude-longitude
graticule is projected, and the grid is warped to the graticule
using MATLAB graphics functions. In this two-argument calling
form, the graticule size is equal to the size of Z. R can be a
spatialref.GeoRasterReference object, a referencing vector, or a
referencing matrix.

If R is a spatialref.GeoRasterReference object, its RasterSize
property must be consistent with size(Z).

If R is a referencing vector, it must be 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to/from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel.

[lat, lon] = meshgrat(Z, R, gratsize) produces a graticule
of size gratsize. gratsize is a two-element vector of the form
[number_of_parallels number_of_meridians]. If gratsize = [],
then the graticule returned has the default size 50-by-100. (But if
gratsize is omitted, a graticule of the same size as Z is returned.) A

3-811

meshgrat

finer graticule uses larger arrays and takes more memory and time
but produces a higher fidelity map.

[lat, lon] = meshgrat(lat, lon) takes the vectors lat and lon and
returns graticule arrays of size numel(lat)-by-numel(lon). In this
form, meshgrat is similar to the MATLAB function meshgrid.

[lat, lon] = meshgrat(latlim, lonlim, gratsize) returns a
graticule mesh of size gratsize that covers the geographic limits
defined by the two-element vectors latlim and lonlim.

[lat, lon] = meshgrat(lat, lon, angleunits), [lat,
lon] = meshgrat(latlim, lonlim, angleunits), and [lat,
lon] = meshgrat(latlim, lonlim, gratsize, angleunits) use
the string angleunits to specify the angle units of the inputs and
outputs. The string angleunits can be either 'degrees' (the default)
or 'radians'.

The graticule mesh is a grid of points that are projected on a map
axes and to which surface map objects are warped. The fineness, or
resolution, of this grid determines the quality of the projection and
the speed of plotting. There is no hard and fast rule for sufficient
graticule resolution, but in general, cylindrical projections need very few
graticules in the longitudinal direction, while complex curve-generating
projections require more.

Examples Make a (coarse) graticule for the entire world:

latlim = [-90 90];
lonlim = [-180 180];
[lat,lon] = meshgrat(latlim,lonlim,[3 6])

lat =
-90.0000 -90.0000 -90.0000 -90.0000 -90.0000 -90.0000

0 0 0 0 0 0
90.0000 90.0000 90.0000 90.0000 90.0000 90.0000

lon =
-180.0000 -108.0000 -36.0000 36.0000 108.0000 180.0000
-180.0000 -108.0000 -36.0000 36.0000 108.0000 180.0000

3-812

meshgrat

-180.0000 -108.0000 -36.0000 36.0000 108.0000 180.0000

These paired coordinates are the graticule vertices, which are projected
according to the requirements of the desired map projection. Then a
surface object like the topo map can be warped to the grid.

See Also meshgrid | meshm | surfacem | surfm

3-813

meshlsrm

Purpose 3-D lighted shaded relief of regular data grid

Syntax meshlsrm(Z,R)
meshlsrm(Z,R,[azim elev])
meshlsrm(Z,R,[azim elev],cmap)
meshlsrm(Z,R,[azim elev],cmap,clim)
h = meshlsrm(...)

Description meshlsrm(Z,R) displays the regular data grid Z colored according to
elevation and surface slopes. R can be a referencing vector, a referencing
matrix, or a spatialref.GeoRasterReference object.

If R is a spatialref.GeoRasterReference object, its RasterSize
property must be consistent with size(Z).

If R is a referencing vector, it must be a 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to/from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel. By default,
shading is based on a light to the east (90 deg.) at an elevation of 45
degrees. Also by default, the colormap is constructed from 16 colors and
16 grays. Lighting is applied before the data is projected. The current
axes must have a valid map projection definition.

meshlsrm(Z,R,[azim elev]) displays the regular data grid Z with
the light coming from the specified azimuth and elevation. Angles are
specified in degrees, with the azimuth measured clockwise from North,
and elevation up from the zero plane of the surface.

meshlsrm(Z,R,[azim elev],cmap) displays the regular data grid Z
using the specified colormap. The number of grayscales is chosen to

3-814

meshlsrm

keep the size of the shaded colormap below 256. If the vector of azimuth
and elevation is empty, the default locations are used. Color axis
limits are computed from the data.

meshlsrm(Z,R,[azim elev],cmap,clim) uses the provided color axis
limits, which by default are computed from the data.

h = meshlsrm(...) returns the handle to the surface drawn.

Tips This function effectively multiplies two colormaps, one with color based
on elevation, the other with a grayscale based on the slope of the
surface, to create a new colormap. This produces an effect similar to
using a light on a surface, but with all of the visible colors actually in the
colormap. Lighting calculations are performed on the unprojected data.

Examples Create a new colormap using demcmap, with white colors for the sea and
default colors for land. Use this colormap for a lighted shaded relief
map of the world.

korea = load('korea.mat');
Z = korea.map;
R = georasterref('RasterSize', size(Z), ...

'Latlim', [30 45], 'Lonlim', [115 135]);
worldmap(Z, R)
meshlsrm(Z, R, [45, 65])

3-815

meshlsrm

See Also meshgrat | meshm | pcolorm | surfacem | surflm | surflsrm

3-816

meshm

Purpose Project regular data grid on map axes

Syntax meshm(Z, R)
meshm(Z, R, gratsize)
meshm(Z, R, gratsize, alt)
meshm(..., param1, val1, param2, val2, ...)
H = meshm(...)

Description meshm(Z, R) will display the regular data grid Z warped to the default
projection graticule. R can be a referencing vector, a referencing matrix,
or a spatialref.GeoRasterReference object.

If R is a spatialref.GeoRasterReference object, its RasterSize
property must be consistent with size(Z).

If R is a referencing vector, it must be a 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to/from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel. The current axes
must have a valid map projection definition.

meshm(Z, R, gratsize) displays a regular data grid warped to a
graticule mesh defined by the 1-by-2 vector gratsize. gratsize(1)
indicates the number of lines of constant latitude (parallels) in the
graticule, and gratsize(2) indicates the number of lines of constant
longitude (meridians).

meshm(Z, R, gratsize, alt) displays the regular surface map at the
altitude specified by alt. If alt is a scalar, then the grid is drawn in the
z = alt plane. If alt is a matrix, then size(alt) must equal gratsize,

3-817

meshm

and the graticule mesh is drawn at the altitudes specified by alt. If the
default graticule is desired, set gratsize = [].

meshm(..., param1, val1, param2, val2, ...) uses optional
parameter name-value pairs to control the properties of the surface
object constructed by meshm. (If data is placed in the UserData property
of the surface, then the projection of this object can not be altered once
displayed.)

H = meshm(...) returns the handle to the surface drawn.

Examples korea = load('korea.mat');
Z = korea.map;
R = georasterref('RasterSize', size(Z), ...

'Latlim', [30 45], 'Lonlim', [115 135]);
worldmap(Z, R)
meshm(Z, R)
demcmap(Z)

See Also geoshow | mapshow | meshgrat | pcolorm | surfacem | surfm

3-818

mfwdtran

Purpose Project geographic features to map coordinates

Syntax [x,y] = mfwdtran(lat,lon)
[x,y,z] = mfwdtran(lat,lon,alt)
[...] = mfwdtran(mstruct,...)

Description [x,y] = mfwdtran(lat,lon) applies the forward transformation
defined by the map projection in the current map axes. You can use this
function to convert point locations and line and polygon vertices given in
latitudes and longitudes to a planar, projected map coordinate system.

[x,y,z] = mfwdtran(lat,lon,alt) applies the forward projection to
3-D input, resulting in 3-D output. If the input alt is empty or omitted,
then alt = 0 is assumed.

[...] = mfwdtran(mstruct,...) requires a valid map projection
structure as the first argument. In this case, no map axes is needed.

Examples The following latitude and longitude data for the District of Columbia is
obtained from the usastatelo shapefile:

dc = shaperead('usastatelo', 'UseGeoCoords', true,...
'Selector',{@(name) strcmpi(name,'District of Columbia'),...
'Name'});

lat = [dc.Lat]';
lon = [dc.Lon]';
[lat lon]

ans =
38.9000 -77.0700
38.9500 -77.1200
39.0000 -77.0300
38.9000 -76.9000
38.7800 -77.0300
38.8000 -77.0200
38.8700 -77.0200
38.9000 -77.0700
38.9000 -77.0500

3-819

mfwdtran

38.9000 -77.0700
NaN NaN

Before projecting the data, it is necessary to define projection
parameters. You can do this with the axesm function or with the
defaultm function:

mstruct = defaultm('mercator');
mstruct.origin = [38.89 -77.04 0];
mstruct = defaultm(mstruct);

Now that the projection parameters have been set, transform the
District of Columbia data into map coordinates using the Mercator
projection:

[x,y] = mfwdtran(mstruct,lat,lon);
[x y]

ans =
-0.0004 0.0002
-0.0011 0.0010
0.0001 0.0019
0.0019 0.0002
0.0001 -0.0019
0.0003 -0.0016
0.0003 -0.0003

-0.0004 0.0002
-0.0001 0.0002
-0.0004 0.0002

NaN NaN

See Also defaultm | gcm | minvtran | projfwd | projinv | vfwdtran |
vinvtran

3-820

minaxis

Purpose Semiminor axis of ellipse

Syntax b = minaxis(semimajor,e)
b = minaxis(vec)

Description b = minaxis(semimajor,e) computes the semiminor axis of an ellipse
(or ellipsoid of revolution) given the semimajor axis and eccentricity.
The input data can be scalar or matrices of equal dimensions.

b = minaxis(vec) assumes a 2 element vector (vec) is supplied, where
vec = [semimajor, e].

See Also axes2ecc | flat2ecc | majaxis | n2ecc

3-821

minvtran

Purpose Unproject features from map to geographic coordinates

Syntax [lat,lon] = minvtran(x,y)
[lat,lon,alt] = minvtran(x,y,z)
[...] = minvtran(mstruct,...)

Description [lat,lon] = minvtran(x,y) applies the inverse transformation
defined by the map projection in the current map axes. Using minvtran,
you can convert point locations and line and polygon vertices in a
planar, projected map coordinate system to latitudes and longitudes.

[lat,lon,alt] = minvtran(x,y,z) applies the inverse projection to 3-D
input, resulting in 3-D output. If the input Z is empty or omitted, then Z
= 0 is assumed.

[...] = minvtran(mstruct,...) takes a valid map projection
structure as the first argument. In this case, no map axes is needed.

Examples Before using any transformation functions, it is necessary to create a
map projection structure. You can do this with axesm or the defaultm
function:

mstruct = defaultm('mercator');
mstruct.origin = [38.89 -77.04 0];
mstruct = defaultm(mstruct);

The following latitude and longitude data for the District of Columbia is
obtained from the usastatelo shapefile:

dc = shaperead('usastatelo', 'UseGeoCoords', true,...
'Selector',{@(name) strcmpi(name,'District of Columbia'),...
'Name'});

lat = [dc.Lat]';
lon = [dc.Lon]';
[lat lon]

ans =
38.9000 -77.0700

3-822

minvtran

38.9500 -77.1200
39.0000 -77.0300
38.9000 -76.9000
38.7800 -77.0300
38.8000 -77.0200
38.8700 -77.0200
38.9000 -77.0700
38.9000 -77.0500
38.9000 -77.0700

NaN NaN

This data can be projected into Cartesian coordinates of the Mercator
projection using the mfwdtran function:

[x,y] = mfwdtran(mstruct,lat,lon);
[x y]

ans =
-0.0004 0.0002
-0.0011 0.0010
0.0001 0.0019
0.0019 0.0002
0.0001 -0.0019
0.0003 -0.0016
0.0003 -0.0003

-0.0004 0.0002
-0.0001 0.0002
-0.0004 0.0002

NaN NaN

To transform the projected x-y data back into the unprojected geographic
system, use the minvtran function:

[lat2,lon2] = minvtran(mstruct,x,y);
[lat2 lon2]

ans =
38.9000 -77.0700

3-823

minvtran

38.9500 -77.1200
39.0000 -77.0300
38.9000 -76.9000
38.7800 -77.0300
38.8000 -77.0200
38.8700 -77.0200
38.9000 -77.0700
38.9000 -77.0500
38.9000 -77.0700

NaN NaN

See Also axesm | defaultm | gcm | mfwdtran | projfwd | projinv | vfwdtran
| vinvtran

3-824

mlabel

Purpose Toggle and control display of meridian labels

Syntax mlabel
mlabel('on')
mlabel('off')
mlabel('reset')
mlabel(parallel)
mlabel(MapAxesPropertyName,PropertyValue,...)

Description mlabel toggles the visibility of meridian labeling on the current map
axes.

mlabel('on') sets the visibility of meridian labels to 'on'.

mlabel('off') sets the visibility of meridian labels to 'off'.

mlabel('reset') resets the displayed meridian labels using the
currently defined meridian label properties.

mlabel(parallel) sets the value of the MLabelParallel property of
the map axes to the value of parallel. This determines the parallel
upon which the labels are placed (see axesm). The options for parallel
are a scalar latitude or the strings 'north', 'south', or 'equator'.

mlabel(MapAxesPropertyName,PropertyValue,...) allows paired
map axes’ property names and property values to be passed in. For a
complete description of map axes properties, see the axesm reference
page in this guide.

Meridian label handles can be returned in h if desired.

See Also axesm | mlabelzero22pi | plabel | setm

3-825

mlabelzero22pi

Purpose Convert meridian labels to 0-360 degree range

Syntax mlabelzero22pi

Description mlabelzero22pi displays longitude labels in the range of 0 to 360
degrees east of the prime meridian.

Examples % create a map
figure('color','w'); axesm('miller','grid','on'); tightmap;
mlabel on; plabel on

% Display longitude labels in the range of 0 to 360 degrees
mlabelzero22pi

3-826

mlabelzero22pi

See Also mlabel

3-827

n2ecc

Purpose Eccentricity of ellipse from third flattening

Syntax

Description ecc = n2ecc(n) computes the eccentricity of an ellipse (or ellipsoid of
revolution) given the parameter n (the "third flattening"). n is defined
as (a-b)/(a+b), where a is the semimajor axis and b is the semiminor
axis. Except when the input has 2 columns (or is a row vector), each
element is assumed to be a third flattening and the output ecc has the
same size as n.

ecc = n2ecc(n), where n has two columns (or is a row vector), assumes
that the second column is a third flattening, and a column vector is
returned.

See Also axes2ecc | ecc2n

3-828

namem

Purpose Determine names of valid graphics objects

Syntax objects = namem
objects = namem(handles)

Description objects = namem returns the object names for all objects on the current
axes. The object name is defined as its tag, if the object Tag property is
supplied. Otherwise, it is the object Type. Duplicate object names are
removed from the output string matrix.

objects = namem(handles) returns the object names for the objects
specified by the input handles.

The names returned are either set at object creation or defined by the
user with the tagm function.

See Also clma | clmo | handlem | hidem | showm | tagm

3-829

nanclip

Purpose Clip vector data with NaNs at specified pen-down locations

Syntax dataout = nanclip(datain)
dataout = nanclip(datain,pendowncmd)

Description dataout = nanclip(datain) and dataout =
nanclip(datain,pendowncmd) return the pen-down delimited data in
the matrix datain as NaN-delimited data in dataout. When the first
column of datain equals pendowncmd, a segment is started and a NaN is
inserted in all columns of dataout. The default pendowncmd is -1.

Pen-down delimited data is a matrix with a first column consisting of
pen commands. At the beginning of each segment in the data, this first
column has an entry corresponding to a pen-down command. Other
entries indicate that the segment is continuing. NaN-delimited data
consists of columns of data, each segment of which ends in a NaN in every
data column. Since there is no pen command column, the NaN-delimited
format can represent the same data in one fewer columns; the remaining
columns have more entries, one for each NaN (that is, for each segment).

Examples datain = [-1 45 67; 0 23 54; 0 28 97; -1 47 89; 0 56 12]

datain =
-1 45 67 % Begin first segment
0 23 54
0 28 97

-1 47 89 % Begin second segment
0 56 12

dataout = nanclip(datain)

dataout =
45 67
23 54
28 97

NaN NaN % End first segment
47 89

3-830

nanclip

56 12
NaN NaN % End second segment

See Also spcread

3-831

nanm

Purpose Construct regular data grid of NaNs

Syntax [Z,refvec] = nanm(latlim,lonlim,scale)

Description [Z,refvec] = nanm(latlim,lonlim,scale) returns a regular data
grid consisting entirely of NaNs and a three-element referencing vector
for the returned Z. The two-element vectors latlim and lonlim define
the latitude and longitude limits of the geographic region. They should
be of the form [south north] and [west east], respectively. The
scalar scale specifies the number of rows and columns per degree of
latitude and longitude.

Examples [Z,refvec] = nanm([46,51],[-79,-75],1)

Z =
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN

refvec =
1 51 -79

See Also limitm | onem | sizem | spzerom | zerom

3-832

navfix

Purpose Mercator-based navigational fix

Syntax [latfix,lonfix] = navfix(lat,long,az)
[latfix,lonfix] = navfix(lat,long,range,casetype)
[latfix,lonfix] = navfix(lat,long,az_range,casetype)
[latfix,lonfix] = navfix(lat,long,az_range,casetype,drlat,

drlon)

Description [latfix,lonfix] = navfix(lat,long,az) returns the intersection
points of rhumb lines drawn parallel to the observed bearings, az, of
the landmarks located at the points lat and long and passing through
these points. One bearing is required for each landmark. Each possible
pairing of the n landmarks generates one intersection, so the total
number of resulting intersection points is the combinatorial n choose 2.
The calculation time therefore grows rapidly with n.

[latfix,lonfix] = navfix(lat,long,range,casetype) returns the
intersection points of Mercator projection circles with radii defined
by range, centered on the landmarks located at the points lat and
long. One range value is required for each landmark. Each possible
pairing of the n landmarks generates up to two intersections (circles can
intersect twice), so the total number of resulting intersection points is
the combinatorial 2 times (n choose 2). The calculation time therefore
grows rapidly with n. In this case, the variable casetype is a vector of
0s the same size as the variable range.

[latfix,lonfix] = navfix(lat,long,az_range,casetype)
combines ranges and bearings. For each element of casetype equal to
1, the corresponding element of az_range represents an azimuth to the
associated landmark. Where casetype is a 0, az_range is a range.

[latfix,lonfix] =
navfix(lat,long,az_range,casetype,drlat,drlon) returns for each
possible pairing of landmarks only the intersection that lies closest to
the dead reckoning position indicated by drlat and drlon. When this
syntax is used, all included landmarks’ bearing lines or range arcs must
intersect. If any possible pairing fails, the warning No Fix is displayed.

3-833

navfix

Background This is a navigational function. It assumes that all latitudes and
longitudes are in degrees and all distances are in nautical miles.
In navigation, piloting is the practice of fixing one’s position based
on the observed bearing and ranges to fixed landmarks (points of
land, lighthouses, smokestacks, etc.) from the navigator’s vessel.
In conformance with navigational practice, bearings are treated as
rhumb lines and ranges are treated as the radii of circles on a Mercator
projection.

In practice, at least three azimuths (bearings) and/or ranges are
required for a usable fix. The resulting intersections are unlikely to
coincide exactly. Refer to “Navigation” in the Mapping Toolbox User’s
Guide for a more complete description of the use of this function.

Tips The outputs of this function are matrices providing the locations of the
intersections for all possible pairings of the n entered lines of bearing
and range arcs. These matrices therefore have n-choose-2 rows. In order
to allow for two intersections per combination, these matrices have two
columns. Whenever there are fewer than two intersections for that
combination, one or two NaNs are returned in that row.

When a dead reckoning position is included, these matrices are column
vectors.

Examples For a fully illustrated example of the application of this function, refer
to the “Navigation” section in the Mapping Toolbox User’s Guide.

Imagine you have two landmarks, at (15ºN,30.4ºW) and (14.8ºN,30.1ºW).
You have a visual bearing to the first of 280º and to the second of
160º. Additionally, you have a range to the second of 12 nm. Find the
intersection points:

[latfix,lonfix] = navfix([15 14.8 14.8],[-30.4 -30.1 -30.1],...
[280 160 12],[1 1 0])

latfix =
14.9591 NaN
14.9680 14.9208

3-834

navfix

14.9879 NaN
lonfix =

-30.1599 NaN
-30.2121 -29.9352
-30.1708 NaN

Here is an illustration of the geometry:

Limitations Traditional plotting and the navfix function are limited to relatively
short distances. Visual bearings are in fact great circle azimuths, not
rhumb lines, and range arcs are actually arcs of small circles, not
of the planar circles plotted on the chart. However, the mechanical
ease of the process and the practical limits of visual bearing ranges
and navigational radar ranges (~30 nm) make this limitation moot
in practice. The error contributed because of these assumptions is
minuscule at that scale.

See Also crossfix | gcxgc | gcxsc | scxsc | rhxrh | polyxpoly | dreckon |
gcwaypts | legs | track

3-835

ned2aer

Purpose Local Cartesian NED to local spherical AER

Syntax [az,elev,slantRange] = ned2aer(xNorth,yEast,zDown)
[___] = ned2aer(___ ,angleUnit)

Description [az,elev,slantRange] = ned2aer(xNorth,yEast,zDown) returns
coordinates in a local spherical system corresponding to coordinates
xNorth, yEast, zDown in a local north-east-down (NED) Cartesian
system having the same local origin. Any of the three numerical input
arguments can be scalar, even when the others are nonscalar; but all
nonscalar numeric arguments must match in size.

[___] = ned2aer(___ ,angleUnit) adds angleUnit which specifies
the units outputs az, elev.

Input
Arguments

xNorth - Local NED x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the the local NED system,
specified as a scalar value, vector, matrix, or N-D array.

Data Types
single | double

yEast - Local NED y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the local NED system, specified
as a scalar value, vector, matrix, or N-D array.

Data Types
single | double

zDown - Local NED z-coordinates
scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the local NED system, specified
as a scalar value, vector, matrix, or N-D array.

3-836

ned2aer

Data Types
single | double

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

az - Azimuth angles
scalar value | vector | matrix | N-D array

Azimuth angles in the local spherical system, returned as a scalar
value, vector, matrix, or N-D array. Azimuths are measured clockwise
from north. Units are determined by the input argument angleUnit, if
supplied; values are in degrees, otherwise. When in degrees, they lie
in the half-open interval [0 360).

elev - Elevation angles
scalar value | vector | matrix | N-D array

Elevation angles in the local spherical system, returned as a scalar
value, vector, matrix, or N-D array. Elevations are with respect to a
plane perpendicular to the spheroid surface normal. Units determined
by the input argument angleUnit, if supplied; values are in degrees,
otherwise. When in degrees, they lie in the closed interval [-90 90].

slantRange - Distances from local origin
scalar value | vector | matrix | N-D array

Distances from origin in the local spherical system, returned as a
scalar, vector, matrix, or N-D array. The straight-line, 3-D Cartesian
distance is computed.

See Also aer2ned | enu2aer

3-837

ned2ecef

Purpose Local Cartesian NED to geocentric ECEF

Syntax [X,Y,Z] =
ned2ecef(xNorth,yEast,zDown,lat0,lon0,h0,spheroid)
[___] = ned2ecef(___ ,angleUnits)

Description [X,Y,Z] =
ned2ecef(xNorth,yEast,zDown,lat0,lon0,h0,spheroid) returns
Earth-Centered Earth-Fixed (ECEF) spheroid-centric Cartesian
coordinates corresponding to coordinates xNorth, yEast, zDown in a
local north-east-down (NED) Cartesian system. Any of the first six
numeric input arguments can be scalar, even when the others are
nonscalar; but all nonscalar numeric arguments must match in size.

[___] = ned2ecef(___ ,angleUnits) adds angleUnit which
specifies the units of inputs lat0 and lon0.

Input
Arguments

xNorth - Local NED x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the local NED system, specified
as a scalar value, vector, matrix, or N-D array. Values must be in units
that match the LengthUnit property of the spheroid input.

Data Types
single | double

yEast - Local NED y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the local NED system, specified
as a scalar value, vector, matrix, or N-D array. Values must be in units
that match the LengthUnit property of the spheroid input.

Data Types
single | double

zDown - Local NED z-coordinates

3-838

ned2ecef

scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the local NED system, specified
as a scalar value, vector, matrix, or N-D array. Values must be in units
that match the LengthUnit property of the spheroid input.

Data Types
single | double

lat0 - Geodetic latitude of local origin
scalar value | vector | matrix | N-D array

Geodetic latitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lat0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

lon0 - Longitude of local origin
scalar value | vector | matrix | N-D array

Longitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lon0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

h0 - Ellipsoidal height of local origin
scalar value | vector | matrix | N-D array

Ellipsoidal height of local origin (reference) point(s), specified as a
scalar value, vector, matrix, or N-D array. In many cases there is one

3-839

ned2ecef

origin (reference) point, and the value of h0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

X - ECEF x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the spheroid-centric ECEF
system, returned as a scalar value, vector, matrix, or N-D array. Units
are determined by the LengthUnit property of the spheroid object.

Y - ECEF y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the spheroid-centric ECEF
system, returned as a scalar value, vector, matrix, or N-D array. Units
are determined by the LengthUnit property of the spheroid object.

Z - ECEF y-coordinates
scalar value | vector | matrix | N-D array

3-840

ned2ecef

z-coordinates of one or more points in the spheroid-centric ECEF
system, returned as a scalar value, vector, matrix, or N-D array. Units
are determined by the LengthUnit property of the spheroid object.

See Also aer2ecef | ned2geodetic | ecef2ned | enu2ecef

3-841

ned2ecefv

Purpose Rotate vector from local NED to geocentric ECEF

Syntax [U,V,W] = ned2ecefv(uNorth,vEast,wDown,lat0,lon0)
[___] = ned2ecefv(___ ,angleUnit)

Description [U,V,W] = ned2ecefv(uNorth,vEast,wDown,lat0,lon0) returns
Cartesian 3-vector components in an Earth-Centered Earth-Fixed
(ECEF) spheroid-centric Cartesian system corresponding to the 3-vector
with components uNorth, vEast, wDown in a local north-east-down
(NED) system. Any of the five numerical input arguments can be
scalar, even when the others are nonscalar; but all nonscalar numeric
arguments must match in size.

[___] = ned2ecefv(___ ,angleUnit) adds angleUnit which
specifies the units of inputs lat0 and lon0.

Input
Arguments

uNorth - Vector x-components in NED system
scalar value | vector | matrix | N-D array

x-components of one or more Cartesian vectors in the local NED system,
specified as a scalar value, vector, matrix, or N-D array.

Data Types
single | double

vEast - Vector y-components in NED system
scalar value | vector | matrix | N-D array

y-components of one or more Cartesian vectors in the local ENU system,
specified as a scalar value, vector, matrix, or N-D array.

Data Types
single | double

wDown - Vector z-components in NED system
scalar value | vector | matrix | N-D array

3-842

ned2ecefv

z-components of one or more Cartesian vectors in the local NED system,
specified as a scalar value, vector, matrix, or N-D array.

Data Types
single | double

lat0 - Geodetic latitude of local origin
scalar value | vector | matrix | N-D array

Geodetic latitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lat0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

lon0 - Longitude of local origin
scalar value | vector | matrix | N-D array

Longitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lon0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

3-843

ned2ecefv

Output
Arguments

U - Vector x-components in ECEF system
scalar value | vector | matrix | N-D array

x-components of one or more Cartesian vectors in the spheroid-centric
ECEF system, returned as a scalar value, vector, matrix, or N-D array.

V - Vector y-components in ECEF system
scalar value | vector | matrix | N-D array

y-components of one or more Cartesian vectors in the spheroid-centric
ECEF system, returned as a scalar value, vector, matrix, or N-D array.

W - Vector z-components in ECEF system
scalar value | vector | matrix | N-D array

z-components of one or more Cartesian vectors in the spheroid-centric
ECEF system, returned as a scalar value, vector, matrix, or N-D array.

See Also ecef2ned | ned2ecef | enu2ecefv

3-844

ned2geodetic

Purpose Local Cartesian NED to geodetic

Syntax [lat,lon,h] = ned2geodetic(xNorth,yEast,zDown,lat0,lon0,h0,
spheroid)

[___] = ned2geodetic(___ ,angleUnits)

Description [lat,lon,h] =
ned2geodetic(xNorth,yEast,zDown,lat0,lon0,h0,spheroid))
returns geodetic coordinates corresponding to coordinates xNorth,
yEast, zDown in a local north-east-down (NED) Cartesian
system. Any of the first six numeric input arguments can be
scalar, even when the others are nonscalar; but all nonscalar
numeric arguments must match in size.

[___] = ned2geodetic(___ ,angleUnits) adds angleUnit which
specifies the units of inputs lat0, lon0, and outputs lat, lon.

Input
Arguments

xNorth - Local NED x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the local NED system, specified
as a scalar value, vector, matrix, or N-D array. Values must be in units
that match the LengthUnit property of the spheroid input.

Data Types
single | double

yEast - Local NED y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the local NED system, specified
as a scalar value, vector, matrix, or N-D array. Values must be in units
that match the LengthUnit property of the spheroid input.

Data Types
single | double

zDown - Local NED z-coordinates

3-845

ned2geodetic

scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the local NED system, specified
as a scalar value, vector, matrix, or N-D array. Values must be in units
that match the LengthUnit property of the spheroid input.

Data Types
single | double

lat0 - Geodetic latitude of local origin
scalar value | vector | matrix | N-D array

Geodetic latitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lat0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

lon0 - Longitude of local origin
scalar value | vector | matrix | N-D array

Longitude of local origin (reference) point(s), specified as a scalar
value, vector, matrix, or N-D array. In many cases there is one origin
(reference) point, and the value of lon0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

h0 - Ellipsoidal height of local origin
scalar value | vector | matrix | N-D array

Ellipsoidal height of local origin (reference) point(s), specified as a
scalar value, vector, matrix, or N-D array. In many cases there is one

3-846

ned2geodetic

origin (reference) point, and the value of h0 is scalar, but it need not be.
(It may refer to a moving platform, for example). Values must be in
units that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

lat - Geodetic latitudes
scalar value | vector | matrix | N-D array

Geodetic latitudes of one or more points, returned as a scalar value,
vector, matrix, or N-D array. Units are determined by the input
argument angleUnit, if supplied; values are in degrees, otherwise.
When in degrees, they lie in the closed interval [-90 90].

lon - Longitudes
scalar value | vector | matrix | N-D array

Longitudes of one or more points, returned as a scalar value, vector,
matrix, or N-D array. Units are determined by the input argument
angleUnit, if supplied; values are in degrees, otherwise. When in
degrees, they lie in the interval [-180 180].

h - Ellipsoidal heights
scalar value | vector | matrix | N-D array

3-847

ned2geodetic

Ellipsoidal heights of one or more points, returned as a scalar value,
vector, matrix, or N-D array. Units are determined by the LengthUnit
property of the spheroid object

See Also aer2geodetic | enu2geodetic | geodetic2ned | ned2ecef

3-848

neworig

Purpose Orient regular data grid to oblique aspect

Syntax [Z,lat,lon] = neworig(Z0,R,origin)
[Z,lat,lon] = neworig(Z0,R,origin,'forward')
[Z,lat,lon] = neworig(Z0,R,origin,'inverse')

Description [Z,lat,lon] = neworig(Z0,R,origin) and [Z,lat,lon] =
neworig(Z0,R,origin,'forward') will transform regular data grid
Z0 into an oblique aspect, while preserving the matrix storage format.
In other words, the oblique map origin is not necessarily at (0,0) in the
Greenwich coordinate frame. This allows operations to be performed
on the matrix representing the oblique map. For example, azimuthal
calculations for a point in a data grid become row and column operations
if the data grid is transformed so that the north pole of the oblique map
represents the desired point on the globe.

R can be a spatialref.GeoRasterReference object, a referencing vector,
or a referencing matrix. If R is a spatialref.GeoRasterReference
object, its RasterSize property must be consistent with size(Z).

If R is a referencing vector, it must be a 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to or from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel. Nearest-neighbor
interpolation is used by default. NaN is returned for points outside
the grid limits or for which lat or lon contain NaN. All angles are in
units of degrees.

[Z,lat,lon] = neworig(Z0,R,origin,'inverse') transforms the
regular data grid from the oblique frame to the Greenwich coordinate
frame.

3-849

neworig

The neworig function transforms a regular data grid into a new matrix
in an altered coordinate system. An analytical use of the new matrix
can be realized in conjunction with the newpole function. If a selected
point is made the north pole of the new system, then when a new matrix
is created with neworig, each row of the new matrix is a constant
distance from the selected point, and each column is a constant azimuth
from that point.

Limitations neworig only supports data grids that cover the entire globe.

Examples This is the topo map transformed to put Sri Lanka at the North Pole:

load topo
origin = newpole(7,80)
origin =

83.0000 -100.0000 0
[Z,lat,lon] = neworig(topo,topolegend,origin);
axesm miller
latlim = [-90 90];
lonlim = [-180 180];
gratsize = [90 180];
[lat,lon] = meshgrat(latlim,lonlim,gratsize);
surfm(lat,lon,Z)
demcmap(topo)
tightmap

3-850

neworig

See Also org2pol | rotatem | setpostn

3-851

newpole

Purpose Origin vector to place specific point at pole

Syntax origin = newpole(polelat,polelon)
origin = newpole(polelat,polelon,units)

Description origin = newpole(polelat,polelon) provides the origin vector for a
transformed coordinate system based upon moving the point (polelat,
polelon) to become the north pole singularity in the new system. The
origin is a three-element vector of the form [latitude longitude
orientation], where the latitude and longitude are the coordinates
the new center (origin) had in the untransformed system, and the
orientation is the azimuth of the true North Pole from the new origin
point. For the newpole calculation, this orientation is constrained to
be always 0º.

origin = newpole(polelat,polelon,units) specifies the units of
the inputs and output, where units is any valid angle units string.
The default is 'degrees'.

When developing transverse or oblique projections, you need
transformed coordinate systems. One way to define these systems is
to establish the point in the original (untransformed) system that will
become the new (transformed) north pole.

Examples Take a point and make it the new North Pole:

origin = newpole(60,180)

origin =
30.0000 0 0

This makes sense: as a point 30º beyond the true North Pole on the
original origin’s meridian is pulled up to become the pole, the point
originally 30º above the origin is pulled down into the origin spot.

See Also neworig | org2pol | putpole

3-852

nm2deg

Purpose Convert distance from nautical miles to degrees

Syntax deg = nm2deg(nm)
deg = nm2deg(nm,radius)
deg = nm2deg(nm,sphere)

Description deg = nm2deg(nm) converts distances from nautical miles to degrees,
as measured along a great circle on a sphere with a radius of 6371 km,
the mean radius of the Earth.

deg = nm2deg(nm,radius) converts distances from nautical miles
to degrees, as measured along a great circle on a sphere having the
specified radius. radius must be in units of nautical miles.

deg = nm2deg(nm,sphere) converts distances from nautical miles to
degrees, as measured along a great circle on a sphere approximating an
object in the Solar System. sphere may be one of the following strings:
'sun', 'moon', 'mercury', 'venus', 'earth', 'mars', 'jupiter',
'saturn', 'uranus', 'neptune', or 'pluto', and is case-insensitive.

See Also degtorad | radtodeg | deg2km | deg2nm | deg2sm | km2deg | km2nm |
km2rad | km2sm | nm2km | nm2sm | sm2deg | sm2km | sm2nm

3-853

nm2km

Purpose Convert nautical miles to kilometers

Syntax km = nm2km(nm)

Description km = nm2km(nm) converts distances from nautical miles to kilometers.

Examples How fast is 30 knots (nautical miles per hour) in kph?

km = nm2km(30)

km =
55.5600

See Also deg2km | km2deg | km2rad | rad2km | deg2nm | nm2deg | nm2rad |
rad2nm | deg2sm | sm2deg | deg2sm | sm2rad | rad2sm

3-854

nm2rad

Purpose Convert distance from nautical miles to radians

Syntax rad = nm2rad(nm)
rad = nm2rad(nm,radius)
rad = nm2rad(nm,sphere)

Description rad = nm2rad(nm) converts distances from nautical miles to radians as
measured along a great circle on a sphere with a radius of 6371 km, the
mean radius of the Earth.

rad = nm2rad(nm,radius) converts distances from nautical miles
to radians as measured along a great circle on a sphere having the
specified radius. radius must be in units of nautical miles.

rad = nm2rad(nm,sphere) converts distances from nautical miles to
radians, as measured along a great circle on a sphere approximating an
object in the Solar System. sphere may be one of the following strings:
'sun', 'moon', 'mercury', 'venus', 'earth', 'mars', 'jupiter',
'saturn', 'uranus', 'neptune', or 'pluto', and is case-insensitive.

See Also degtorad | radtodeg | rad2km | km2deg | km2nm | km2sm | rad2nm |
nm2deg | nm2km | nm2sm | rad2sm | sm2deg | sm2km | sm2nm

3-855

nm2sm

Purpose Convert nautical to statute miles

Syntax sm = nm2sm(nm)

Description sm = nm2sm(nm) converts distances from nautical miles to statute miles.

See Also deg2km | km2deg | km2rad | rad2km | deg2nm | nm2deg | nm2rad |
rad2nm | deg2sm | sm2deg | deg2sm | sm2rad | rad2sm

3-856

northarrow

Purpose Add graphic element pointing to geographic North Pole

Syntax northarrow
northarrow('property',value,...)

Description northarrow creates a default north arrow.

northarrow('property',value,...) creates a north arrow using
the specified property/value pairs. Valid entries for properties are
'latitude', 'longitude', 'facecolor', 'edgecolor', 'linewidth',
and 'scaleratio'. The 'latitude' and 'longitude' properties
specify the location of the north arrow. The 'facecolor', 'edgecolor',
and 'linewidth' properties control the appearance of the north arrow.
The 'scaleratio' property represents the size of the north arrow as a
fraction of the size of the axes. A 'scaleratio' value of 0.10 creates
a north arrow one-tenth (1/10) the size of the axes. You can change
the appearance ('facecolor', 'edgecolor', and 'linewidth') of the
north arrow using the set command.

northarrow creates a north arrow symbol at the map origin on the
displayed map. You can reposition the north arrow symbol by clicking
and dragging its icon. Alternate clicking the icon creates an input dialog
box that you can also use to change the location of the north arrow.

Modifying some of the properties of the north arrow results in
replacement of the original object. Use HANDLEM('NorthArrow') to get
the handles associated with the north arrow.

Examples Create a map of the South Pole and then add the north arrow in the
upper left of the map.

Antarctica = shaperead('landareas', 'UseGeoCoords', true, ...
'Selector',{@(name) strcmpi(name,{'Antarctica'}), 'Name'});

figure;
worldmap('south pole')
geoshow(Antarctica,'FaceColor',[.9 .9 .9])
northarrow('latitude', -57, 'longitude', 135);

3-857

northarrow

Right-click the north arrow icon to activate the input dialog box.
Increase the size of the north arrow symbol by changing the
'ScaleRatio' property.

3-858

northarrow

Create a map of Texas and add the north arrow in the lower left of
the map.

figure; usamap('texas')
states = shaperead('usastatelo.shp','UseGeoCoords',true);
faceColors = makesymbolspec('Polygon',...

{'INDEX', [1 numel(states)], 'FaceColor', ...
polcmap(numel(states))});

geoshow(states, 'DisplayType', 'polygon', ...
'SymbolSpec', faceColors)

northarrow('latitude',25,'longitude',-105,'linewidth',1.5);

3-859

northarrow

Change the 'FaceColor' and 'EdgeColor' properties of the north
arrow.

h = handlem('NorthArrow');
set(h,'FaceColor',[1.000 0.8431 0.0000],...

'EdgeColor',[0.0100 0.0100 0.9000])

3-860

northarrow

Limitations You can draw multiple north arrows on the map. However, the
callbacks will only work with the most recently created north arrow.
In addition, since it can be displayed outside the map frame limits, the
north arrow is not converted into a “mapped” object. Hence, the location
and orientation of the north arrow have to be updated manually if the
map origin or projection changes.

See Also scaleruler

3-861

npi2pi

Purpose Wrap longitudes to [-180 180] degree interval

Note The npi2pi function has been replaced by wrapTo180 and
wrapToPi.

Syntax anglout = npi2pi(anglin)
anglout = npi2pi(anglin,units)
anglout = npi2pi(anglin,units,method)

Description anglout = npi2pi(anglin) wraps the input angle anglin (typically
representing a longitude) to lie on the range -180 to 180 (e.g., 270º is
renamed -90º).

anglout = npi2pi(anglin,units) specifies the angle units with any
valid angle units string units. The default is 'degrees'.

anglout = npi2pi(anglin,units,method) allows special alternative
computations to be used when npi2pi is called from within certain
Mapping Toolbox functions. method can be one of the following strings:

• 'exact', for exact wrapping (the default value)

• 'inward', where angles are scaled by a factor of (1 -
epsm('radians')) before wrapping

• 'outward’, where angles are scaled by a factor of (1 +
epsm('radians')) before wrapping

Examples npi2pi(315)

ans =
-45

npi2pi(181)

ans =
-179

3-862

npi2pi

See Also wrapToPi | wrapTo180

3-863

onem

Purpose Construct regular data grid of 1s

Syntax [Z,refvec] = onem(latlim,lonlim,scale)

Description [Z,refvec] = onem(latlim,lonlim,scale) returns a regular data
grid consisting entirely of 1s and a three-element referencing vector for
the returned data grid, Z.. The two-element vectors latlim and lonlim
define the latitude and longitude limits of the geographic region. They
should be of the form [south north] and [west east], respectively.
The scalar scale specifies the number of rows and columns per degree
of latitude and longitude.

Examples [Z,refvec] = onem([46,51],[-79,-75],1)

Z =
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

refvec =
1 51 -79

See Also limitm | nanm | sizem | spzerom | zerom

3-864

org2pol

Purpose Location of north pole in rotated map

Syntax pole = org2pol(origin)
pole = org2pol(origin,units)

Description pole = org2pol(origin) returns the location of the North Pole in
terms of the coordinate system after transformation based on the input
origin. The origin is a three-element vector of the form [latitude
longitude orientation], where latitude and longitude are the
coordinates that the new center (origin) had in the untransformed
system, and orientation is the azimuth of the true North Pole from
the new origin point in the transformed system. The output pole is a
three-element vector of the form [latitude longitude meridian],
which gives the latitude and longitude point in terms of the original
untransformed system of the new location of the true North Pole. The
meridian is the longitude from the original system upon which the new
system is centered.

pole = org2pol(origin,units) allows the specification of the angular
units of the origin vector, where units is any valid angle units string.
The default is 'degrees'.

When developing transverse or oblique projections, transformed
coordinate systems are required. One way to define these systems is to
establish the point at which, in terms of the original (untransformed)
system, the (transformed) true North Pole will lie.

Examples Perhaps you want to make (30ºN,0º) the new origin. Where does the
North Pole end up in terms of the original coordinate system?

pole = org2pol([30 0 0])

pole =
60.0000 0 0

This makes sense: pull a point 30º down to the origin, and the North
Pole is pulled down 30º. A little less obvious example is the following:

3-865

org2pol

pole = org2pol([5 40 30])

pole =
59.6245 80.0750 40.0000

See Also neworig | putpole

3-866

outlinegeoquad

Purpose Polygon outlining geographic quadrangle

Syntax [lat,lon] = outlinegeoquad(latlim,lonlim,dlat,dlon)

Description [lat,lon] = outlinegeoquad(latlim,lonlim,dlat,dlon)
constructs a polygon that traces the outline of the geographic
quadrangle defined by latlim and lonlim. Such a polygon can be useful
for displaying the quadrangle graphically, especially on a projection
where the meridians and/or parallels do not project to straight
lines. latlim is a two-element vector of the form: [southern-limit
northern-limit] and lonlim is a two-element vector of the form:
[western-limit eastern-limit]. dlat is a positive scalar that
specifies a minimum vertex spacing in degrees to be applied along the
meridians that bound the eastern and western edges of the quadrangle.
Likewise, dlon is a positive scalar that specifies a minimum vertex
spacing in degrees of longitude to be applied along the parallels that
bound the northern and southern edges of the quadrangle. The outputs
lat and lon contain the vertices of a simple closed polygon with
clockwise vertex ordering.

Tips All input and output angles are in units of degrees. Choose a reasonably
small value for dlat (a few degrees, perhaps) when using a projection
with curved meridians or curved parallels.

To avoid interpolating extra vertices along meridians or parallels, set
dlat or dlon to a value of Inf.

Special Cases

The insertion of additional vertices is suppressed at the poles (that is,
if latlim(1) == -90 or latlim(2) == 90). If lonlim corresponds to
a quadrangle width of exactly 360 degrees (lonlim == [-180 180],
for example), then it covers a full latitudinal zone and includes two
separate, NaN-separated parts, unless either

• latlim(1) == -90 or latlim(2) == 90, so that only one part is
needed—a polygon that follows a parallel clockwise around one of
the poles.

3-867

outlinegeoquad

• latlim(1) == -90 and latlim(2) == 90, so that the quadrangle
encompasses the entire planet. In this case, the quadrangle cannot
be represented by a latitude-longitude polygon, and an error results.

Examples Display the outlines of three geographic quadrangles having very
different qualities on top of a simple base map:

figure('Color','white')
axesm('ortho','Origin',[-45 110],'frame','on','grid','on')
axis off
coast = load('coast');
geoshow(coast.lat, coast.long)

% Quadrangle covering Australia and vicinity
[lat, lon] = outlinegeoquad([-45 5],[110 175],5,5);
geoshow(lat,lon,'DisplayType','polygon','FaceAlpha',0.5);

% Quadrangle covering Antarctic region
antarcticCircleLat = dms2degrees([-66 33 39]);
[lat, lon] = outlinegeoquad([-90 antarcticCircleLat], ...

[-180 180],5,5);
geoshow(lat,lon,'DisplayType','polygon', ...

'FaceColor','cyan','FaceAlpha',0.5);

% Quadrangle covering nominal time zone 9 hours ahead of UTC
[lat, lon] = outlinegeoquad([-90 90], 135 + [-7.5 7.5], 5, 5);
geoshow(lat,lon,'DisplayType','polygon', ...

'FaceColor','green','FaceAlpha',0.5);

3-868

outlinegeoquad

See Also ingeoquad | intersectgeoquad

3-869

paperscale

Purpose Set figure properties for printing at specified map scale

Syntax paperscale(paperdist,punits,surfdist,sunits)
paperscale(paperdist,punits,surfdist,sunits,lat,long)
paperscale(paperdist,punits,surfdist,sunits,lat,long,az)
paperscale(paperdist,punits,surfdist,sunits,lat,long,az,

gunits)
paperscale(paperdist,punits,surfdist,sunits,lat,long,az,gunits,
radius)
paperscale(scale,...)
[paperXdim,paperYdim] = paperscale(...)

Description paperscale(paperdist,punits,surfdist,sunits) sets the figure
paper position to print the map in the current axes at the desired scale.
The scale is described by the geographic distance that corresponds to
a paper distance. For example, a scale of 1 inch = 10 kilometers is
specified as degrees(1,'inch',10,'km'). See below for an alternate
method of specifying the map scale. The surface distance units string
sunits can be any string recognized by unitsratio. The paper units
string punits can be any dimensional units string recognized for the
figure PaperUnits property.

paperscale(paperdist,punits,surfdist,sunits,lat,long) sets the
paper position so that the scale is correct at the specified geographic
location. If omitted, the default is the center of the map limits.

paperscale(paperdist,punits,surfdist,sunits,lat,long,az) also
specifies the direction along which the scale is correct. If omitted, 90
degrees (east) is assumed.

paperscale(paperdist,punits,surfdist,sunits,lat,long,az,gunits)
also specifies the units in which the geographic position and direction
are given. If omitted, 'degrees’ is assumed.

paperscale(paperdist,punits,surfdist,sunits,lat,long,az,gunits,
radius) uses the last input to determine the radius of the sphere.
radius can be one of the strings supported by km2deg, or it can be the
(numerical) radius of the desired sphere in zunits. If omitted, the
default radius of the Earth is used..

3-870

paperscale

paperscale(scale,...), where the numeric scale replaces the two
property/value pairs, specifies the scale as a ratio between distance on
the sphere and on paper. This is commonly notated on maps as 1:scale
(e.g. 1:100 000, or 1:1 000 000). For example, paperscale(100000) or
paperscale(100000,lat,long).

[paperXdim,paperYdim] = paperscale(...) returns the computed
paper dimensions. The dimensions are in the paper units specified. For
the scale calling form, the returned dimensions are in centimeters.

Background Maps are usually printed at a size that allows an easy comparison of
distances measured on paper to distances on the Earth. The relationship
of geographic distance and paper distance is termed scale. It is usually
expressed as a ratio, such as 1 to 100,000 or 1:100,000 or 1 cm = 1 km.

Examples The small circle measures 10 cm across when printed.

axesm mercator
[lat,lon] = scircle1(0,0,km2deg(5));
plotm(lat,lon)
[x,y] = paperscale(1,'centimeter',1,'km'); [x y]

ans =
13.154 12.509

set(gca,'pos', [0 0 1 1])
[x,y] = paperscale(1,'centimeter',1,'km'); [x y]

ans =
10.195 10.195

Limitations The relationship between the paper and geographic coordinates holds
only as long as there are no changes to the display that affect the axes
limits or the relationship between geographic coordinates and projected
coordinates. Changes of this type include the ellipsoid or scale factor
properties of the map axes, or adding elements to the display that cause

3-871

paperscale

MATLAB to modify the axes autoscaling. To be sure that the scale is
correct, execute paperscale just before printing.

See Also pagesetupdlg | axesscale | daspectm

3-872

patchesm

Purpose Project patches on map axes as individual objects

Syntax patchesm(lat,lon,cdata)
patchesm(lat,lon,z,cdata)
patchesm(...,'PropertyName',PropertyValue,...)
h = patchesm(...)

Description patchesm(lat,lon,cdata) projects 2-D patch objects onto the current
map axes. The input latitude and longitude data must be in the same
units as specified in the current map axes. The input cdata defines the
patch face color. If the input vectors are NaN clipped, then multiple
patches are drawn each with a single face. Unlike fillm and fill3m,
patchesm will always add the patches to the current map regardless
of the current hold state.

patchesm(lat,lon,z,cdata) projects 3-D planar patches at the
uniform elevation given by scalar z.

patchesm(...,'PropertyName',PropertyValue,...) uses the patch
properties supplied to display the patch. Except for xdata, ydata, and
zdata, all patch properties available through patch are supported by
patchesm.

h = patchesm(...) returns the handles to the patch objects drawn.

Tips Differences between patchesm and patchm

The patchesm function is very similar to the patchm function. The
significant difference is that in patchesm, separate patches (delineated
by NaNs in the inputs lat and lon) are separated and plotted as distinct
patch objects on the current map axes. The advantage to this is that
less memory is required. The disadvantage is that multifaced objects
cannot be treated as a single object. For example, the archipelago
of the Philippines cannot be treated and handled as a single Handle
Graphics object.

3-873

patchesm

When Patches Are Completely Trimmed Away

Removing graphic objects that fall outside the map frame is called
trimming. If, after trimming no polygons remain to be seen within
it, patchesm creates no patches and returns an empty 1-by-0 list of
handles. When this occurs, automatic reprojection of the patch data (by
changing the projection or any of its parameters) is not possible. In
cases where some polygons are completely trimmed away but not others,
handles returned for the trimmed polygons will be empty. No polygons
or rings that have been totally trimmed away can be reprojected; to plot
them again, you will need to call patchesm again with the original data.

Examples load coast
axesm sinusoid; framem
h = patchesm(lat,long,'b');

length(h)

ans =
238

See Also geoshow | fill3m | fillm | patchm

3-874

patchm

Purpose Project patch objects on map axes

Syntax h = patchm(lat,lon,cdata)
h = patchm(lat,lon,cdata,PropertyName,PropertyValue,...)
h = patchm(lat,lon,PropertyName,PropertyValue,...)
h = patchm(lat,lon,z,cdata)
h = patchm(lat,lon,z,cdata, PropertyName,PropertyValue,...)

Description h = patchm(lat,lon,cdata) and h =
patchm(lat,lon,cdata,PropertyName,PropertyValue,...) project
and display patch (polygon) objects defined by their vertices given in
lat and lon on the current map axes. lat and lon must be vectors.
The color data, cdata, can be any color data designation supported
by the standard MATLAB patch function. The object handle or
handles, h, can be returned.

h = patchm(lat,lon,PropertyName,PropertyValue,...) allows any
property name/property value pair supported by patch to be assigned
to the patchm object.

h = patchm(lat,lon,z,cdata) and h = patchm(lat,lon,z,cdata,
PropertyName,PropertyValue,...) allow the assignment of an
altitude, z, to each patch object. The default altitude is z = 0.

Tips How patchm Works

This Mapping Toolbox function is very similar to the standard MATLAB
patch function. Like its analog, and unlike higher level functions such
as fillm and fill3m, patchm adds patch objects to the current map axes
regardless of hold state. Except for XData, YData, and ZData, all line
properties and styles available through patch are supported by patchm.

When A Patch Is Completely Trimmed Away

Removing graphic objects that fall outside the map frame is called
trimming. If, after trimming to the map frame no polygons remain to be
seen within it, patchm creates no patches and returns an empty 0-by-1
handle. When this occurs, automatic reprojection of the patch data (by

3-875

patchm

changing the projection or any of its parameters) will not be possible.
Instead, after changing the projection, call patchm again.

Examples load coast
axesm sinusoid; framem
h = patchm(lat,long,'b');

length(h)

ans =
1

See Also patchesm | fill3m | fillm

3-876

pcolorm

Purpose Project regular data grid on map axes in z = 0 plane

Syntax pcolorm(lat,lon,Z)
pcolorm(latlim,lonlim,Z)
pcolorm(...,prop1,val1,prop2,val2,...)
h = pcolorm(...)

Description pcolorm(lat,lon,Z) constructs a surface to represent the data grid
Z in the current map axes. The surface lies flat in the horizontal
plane with its CData property set to Z. Lat and lon are vectors or 2-D
arrays that define the latitude-longitude graticule mesh on which Z is
displayed. For a complete description of the various forms that lat
and lon can take, see surfm. If the hold state is 'off', pcolorm clears
the current map.

pcolorm(latlim,lonlim,Z) defines the graticule using the latitude
and longitude limits latlim and lonlim. These limits should match the
geographic extent of Z, the data grid. Latlim is a two-element vector
of the form:

[southern_limit northern_limit]

Likewise, lonlim has the form:

[western_limit eastern_limit]

A latitude-longitude graticule of size 50-by-100 is constructed. The
surface FaceColor property is 'texturemap', except when Z is precisely
50-by-100, in which case it is 'flat'.

pcolorm(...,prop1,val1,prop2,val2,...) applies additional
MATLAB graphics properties to the surface via property/value pairs.
Any property accepted by the surface may be specified, except for
XData, YData, and ZData.

h = pcolorm(...) returns a handle to the surface object.

Tips This function warps a data grid to a graticule mesh, which is projected
according to the map axes property MapProjection. The fineness, or

3-877

pcolorm

resolution, of this grid determines the quality of the projection and the
speed of plotting it. There is no hard and fast rule for sufficient graticule
resolution, but in general, cylindrical projections need fewer graticule
points in the longitudinal direction than do complex curve-generating
projections.

Examples Construct a surface to represent the data grid topo.

figure('Color','white')
load topo
axesm miller
axis off; framem on; gridm on;
[lat lon] = meshgrat(topo,topolegend,[90 180]);
pcolorm(lat,lon,topo)
demcmap(topo)
tightmap

See Also geoshow | meshgrat | meshm | surfacem | surfm

3-878

pix2latlon

Purpose Convert pixel coordinates to latitude-longitude coordinates

Syntax [lat, lon] = pix2latlon(R,row,col)

Description [lat, lon] = pix2latlon(R,row,col) calculates latitude-longitude
coordinates lat, lon from pixel coordinates row, col. R is either a
3-by-2 referencing matrix that transforms intrinsic pixel coordinates to
geographic coordinates, or a spatialref.GeoRasterReference object. row
and col are vectors or arrays of matching size. The outputs lat and
lon have the same size as row and col.

Examples Find the latitude and longitude of the upper left outer corner of a 2-by-2
degree gridded data set.

R = makerefmat(1, 89, 2, 2);
[UL_lat, UL_lon] = pix2latlon(R, .5, .5)

The output appears as follows:

UL_lat =
88

UL_lon =
0

Find the latitude and longitude of the lower right outer corner of a
2-by-2 degree gridded data set.

[LR_lat, LR_lon] = pix2latlon(R, 90.5, 180.5)

The output appears as follows:

LR_lat =
268

LR_lon =
360

See Also latlon2pix | makerefmat | pix2map

3-879

pix2map

Purpose Convert pixel coordinates to map coordinates

Syntax [x,y] = pix2map(R,row,col)
s = pix2map(R,row,col)
[...] = pix2map(R,p)

Description [x,y] = pix2map(R,row,col) calculates map coordinates x,y from
pixel coordinates row,col. R is either a 3-by-2 referencing matrix
defining a two-dimensional affine transformation from intrinsic pixel
coordinates to map coordinates, or a spatialref.MapRasterReference
object. row and col are vectors or arrays of matching size. The outputs
x and y have the same size as row and col.

s = pix2map(R,row,col) combines x and y into a single array s. If
row and col are column vectors of length n, then s is an n-by-2 matrix
and each row (s(k,:)) specifies the map coordinates of a single
point. Otherwise, s has size [size(row) 2], and s(k1,k2,...,kn,:)
contains the map coordinates of a single point.

[...] = pix2map(R,p) combines row and col into a single array p. If
row and col are column vectors of length n, then p should be an n-by-2
matrix such that each row (p(k,:)) specifies the pixel coordinates
of a single point. Otherwise, p should have size [size(row) 2], and
p(k1,k2,...,kn,:) should contain the pixel coordinates of a single
point.

Examples % Find the map coordinates for the pixel at (100,50).
R = worldfileread('concord_ortho_w.tfw');
[x,y] = pix2map(R,100,50);

See Also makerefmat | map2pix | pix2latlon | worldfileread

3-880

pixcenters

Purpose Compute pixel centers for georeferenced image or data grid

Syntax [x,y] = pixcenters(R, height, width)
[x,y] = pixcenters(r,sizea)
[x,y] = pixcenters(..., 'makegrid')

Description [x,y] = pixcenters(R, height, width) returns the spatial
coordinates of a spatially-referenced image or regular gridded data set.
R is either a 3-by-2 referencing matrix defining a 2-dimensional affine
transformation from intrinsic pixel coordinates to map coordinates,
or a spatialref.MapRasterReference object. height and width are
the image dimensions. If r does not include a rotation (i.e., r(1,1)
= r(2,2) = 0), then x is a 1-by-width vector and y is a height-by-1
vector. In this case, the spatial coordinates of the pixel in row row and
column col are given by x(col), y(row). Otherwise, x and y are each
a height-by-width matrix such that x(col,row), y(col,row) are the
coordinates of the pixel with subscripts (row,col).

[x,y] = pixcenters(r,sizea) accepts the size vector sizea =
[height, width, ...] instead of height and width.

[x,y] = pixcenters(info) accepts a scalar struct array with the fields

'RefMatrix' 3-by-2 referencing matrix

'Height' Scalar number

'Width' Scalar number

[x,y] = pixcenters(..., 'makegrid') returns x and y as
height-by-width matrices even if r is irrotational. This syntax can be
helpful when you call pixcenters from within a function or script.

Tips For more information on referencing matrices, see the makerefmat
reference page.

pixcenters is useful for working with surf, mesh, or surface, and for
coordinate transformations.

3-881

pixcenters

Examples [Z,R] = arcgridread('MtWashington-ft.grd');
[x,y] = pixcenters(R, size(Z));
h = surf(x,y,Z); axis equal; demcmap(Z)
set(h,'EdgeColor','none')
xlabel('x (easting in meters)')
ylabel('y (northing in meters')
zlabel('elevation in feet')

See Also arcgridread | makerefmat | mapbbox | mapoutline | pix2map |
worldfileread | mapshow

3-882

plabel

Purpose Toggle and control display of parallel labels

Syntax plabel
plabel('on')
plabel('off')
plabel(meridian)
plabel(MapAxesPropertyName,PropertyValue,...)

Description plabel toggles the visibility of parallel labeling on the current map axes.

plabel('on') sets the visibility of parallel labels to 'on'.

plabel('off') sets the visibility of parallel labels to 'off'.

plabel('reset') resets the displayed parallel labels using the
currently defined parallel label properties.

plabel(meridian) sets the value of the PLabelMeridian property of
the map axes to the value meridian. This determines the meridian upon
which the labels are placed (see axesm). The options for meridian are a
scalar longitude or the strings 'east', 'west', or 'prime'.

plabel(MapAxesPropertyName,PropertyValue,...) allows paired
map axes property names and property values to be passed in. For a
complete description of map axes properties, see the axesm reference
page.

Parallel label handles can be returned in h if desired.

See Also axesm | setm | mlabel

3-883

plot3m

Purpose Project 3-D lines and points on map axes

Syntax h = plot3m(lat,lon,z)
h = plot3m(lat,lon,linetype)
h = plot3m(lat,lon,PropertyName,PropertyValue,...)

Description h = plot3m(lat,lon,z) displays projected line objects on the current
map axes. lat and lon are the latitude and longitude coordinates,
respectively, of the line object to be projected. Note that this ordering
is conceptually reversed from the MATLAB line function, because the
vertical (y) coordinate comes first. However, the ordering latitude, then
longitude, is standard geographic usage. lat and lon must be the same
size, and in the AngleUnits of the map axes. z is the altitude data
associated with each point in lat and lon. The object handle for the
displayed line can be returned in h.

The units of z are arbitrary, except when using the Globe projection.
In the case of globe, z should have the same units as the radius of the
earth or semimajor axis specified in the 'geoid' (reference ellipsoid)
property of the map axes. This implies that when the reference ellipsoid
is a unit sphere, the units of z are earth radii.

h = plot3m(lat,lon,linetype) allows the specification of the line
style, where linetype is any string recognized by the MATLAB line
function.

h = plot3m(lat,lon,PropertyName,PropertyValue,...) allows the
specification of any number of property name/property value pairs for
any properties recognized by the MATLAB line function except for
XData, YData, and ZData.

Tips plot3m is the mapping equivalent of the MATLAB plot3 function.

Examples axesm sinusoid; framem; view(3)
[lats,longs] = interpm([45 -45 -45 45 45 -45]',...

[-100 -100 100 100 -100 -100]',1);
z = (1:671)'/100;
plot3m(lats,longs,z,'m')

3-884

plot3m

See Also linem | plot3 | plotm

3-885

plotm

Purpose Project 2-D lines and points on map axes

Syntax h = plotm(lat,lon)
h = plotm(lat,lon,linetype)
h = plotm(lat,lon,PropertyName,PropertyValue,...)
h = plotm([lat lon],...)

Description h = plotm(lat,lon) displays projected line objects on the current
map axes. lat and lon are the latitude and longitude coordinates,
respectively, of the line object to be projected. Note that this ordering
is conceptually reversed from the MATLAB line function, because the
vertical (y) coordinate comes first. However, the ordering latitude, then
longitude, is standard geographic usage. lat and lon must be the same
size, and in the AngleUnits of the map axes. The object handle for the
displayed line can be returned in h.

h = plotm(lat,lon,linetype) allows the specification of the line
style, where linetype is any string recognized by the MATLAB line
function.

h = plotm(lat,lon,PropertyName,PropertyValue,...) allows the
specification of any number of property name/property value pairs for
any properties recognized by the MATLAB line function except for
XData, YData, and ZData.

h = plotm([lat lon],...) allows the coordinates to be packed into a
single two-column matrix.

plotm is the mapping equivalent of the MATLAB plot function.

Examples load coast
axesm sinusoid; framem
plotm(lat,long,'g')

3-886

plotm

See Also linem | plot | plot3m

3-887

polcmap

Purpose Colormaps appropriate to political regions

Syntax polcmap
polcmap(ncolors)
polcmap(ncolors,maxsat)
polcmap(ncolors,huelimits,saturationlimits,valuelimits)
cmap = polcmap(...)

Description polcmap applies a random muted colormap to the current figure. The
size of the colormap is the same as the existing colormap.

polcmap(ncolors) creates a colormap with the specified number of
colors.

polcmap(ncolors,maxsat) controls the maximum saturation of the
colors. Larger maximum saturation values produce brighter, more
saturated colors. If omitted, the default is 0.5.

polcmap(ncolors,huelimits,saturationlimits,valuelimits)
controls the colors. Hue, saturation, and value are randomly selected
values within the limit vectors. These are two-element vectors of the
form [min max]. Valid values range from 0 to 1. As the hue varies from
0 to 1, the resulting color varies from red, through yellow, green, cyan,
blue, and magenta, back to red. When the saturation is 0, the colors are
unsaturated; they are simply shades of gray. When the saturation is 1,
the colors are fully saturated; they contain no white component. As the
value varies from 0 to 1, the brightness increases.

cmap = polcmap(...) returns the colormap without applying it to
the figure.

Tips You cannot use polcmap to alter the colors of displayed patches drawn
by geoshow or mapshow. The patches must have been rendered by
displaym. However, you can color patches using polcmap when you call
geoshow or mapshow, as shown below.

Examples Draw a map of Texas and surrounding states. Color the patches with a
symbolspec constructed using polcmap:

3-888

polcmap

figure; usamap('texas')
states = shaperead('usastatelo.shp','UseGeoCoords',true);
faceColors = makesymbolspec('Polygon',...

{'INDEX', [1 numel(states)], 'FaceColor', ...
polcmap(numel(states))});

geoshow(states, 'DisplayType', 'polygon', ...
'SymbolSpec', faceColors)

Note that the colors you obtain for this example can vary from what you
see above because polcmap computes them randomly.

See Also demcmap | colormap

3-889

poly2ccw

Purpose Convert polygon contour to counterclockwise vertex ordering

Syntax [x2, y2] = poly2ccw(x1, y1)

Description [x2, y2] = poly2ccw(x1, y1) arranges the vertices in the polygonal
contour (x1, y1) in counterclockwise order, returning the result in
x2 and y2. If x1 and y1 can contain multiple contours, represented
either as NaN-separated vectors or as cell arrays, then each contour
is converted to clockwise ordering. x2 and y2 have the same format
(NaN-separated vectors or cell arrays) as x1 and y1.

Examples Convert a clockwise-ordered square to counterclockwise ordering.

x1 = [0 0 1 1 0];
y1 = [0 1 1 0 0];
ispolycw(x1, y1)

ans =
1

[x2, y2] = poly2ccw(x1, y1);
ispolycw(x2, y2)
ans =

0

See also ispolycw, poly2cw, polybool

3-890

poly2cw

Purpose Convert polygon contour to clockwise vertex ordering

Syntax [x2, y2] = poly2cw(x1, y1)

Description [x2, y2] = poly2cw(x1, y1) arranges the vertices in the polygonal
contour (x1, y1) in clockwise order, returning the result in x2 and
y2. If x1 and y1 can contain multiple contours, represented either as
NaN-separated vectors or as cell arrays, then each contour is converted
to clockwise ordering. x2 and y2 have the same format (NaN-separated
vectors or cell arrays) as x1 and y1.

Examples Convert a counterclockwise-ordered square to clockwise ordering.

x1 = [0 1 1 0 0];
y1 = [0 0 1 1 0];
ispolycw(x1, y1)

ans =
0

[x2, y2] = poly2cw(x1, y1);
ispolycw(x2, y2)

ans =
1

See also ispolycw, poly2ccw, polybool

3-891

poly2fv

Purpose Convert polygonal region to patch faces and vertices

Syntax [F,V] = poly2fv(x,y)

Description [F,V] = poly2fv(x,y) converts the polygonal region represented by
the contours (x,y) into a faces matrix, F, and a vertices matrix, V, that
can be used with the patch function to display the region. If the polygon
represented by x and y has multiple parts, either the NaN-separated
vector format or the cell array format may be used. The poly2fv
function creates triangular faces.

Most Mapping Toolbox functions adhere to the convention that
individual contours with clockwise-ordered vertices are external
contours and individual contours with counterclockwise-ordered
vertices are internal contours. Although the poly2fv function ignores
vertex order, you should follow the convention when creating contours
to ensure consistency with other functions.

Examples Display a rectangular region with two holes using a single patch object.

% External contour, rectangle.
x1 = [0 0 6 6 0];
y1 = [0 3 3 0 0];

% First hole contour, square.
x2 = [1 2 2 1 1];
y2 = [1 1 2 2 1];

% Second hole contour, triangle.
x3 = [4 5 4 4];
y3 = [1 1 2 1];

% Compute face and vertex matrices.
[f, v] = poly2fv({x1, x2, x3}, {y1, y2, y3});

% Display the patch.
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...

3-892

poly2fv

'EdgeColor', 'none');
axis off, axis equal

See the documentation for the function polybool for additional
examples illustrating poly2fv.

See also ispolycw, patch, poly2cw, poly2ccw, polybool

3-893

polybool

Purpose Set operations on polygonal regions

Syntax [x,y] = polybool(flag,x1,y1,x2,y2)

Description [x,y] = polybool(flag,x1,y1,x2,y2) performs the polygon set
operation identified by flag. A valid flag string is any one of the
following alternatives:

• Region intersection: 'intersection', 'and', '&'

• Region union: 'union', 'or', '|', '+', 'plus'

• Region subtraction: 'subtraction', 'minus', '-'

• Region exclusive or: 'exclusiveor' , 'xor'

Polygons processed via polybool are assumed to be in a Cartesian
coordinate system. The polygon inputs are NaN-delimited vectors, or cell
arrays containing individual polygonal contours. The result is output
using the same format as the input. Geographic data that encompasses
a pole cannot be used directly. Use flatearthpoly to convert polygons
that contain a pole to Cartesian coordinates.

Most Mapping Toolbox functions adhere to the convention that
individual contours with clockwise-ordered vertices are external
contours and individual contours with counterclockwise-ordered
vertices are internal contours. Although the polybool function ignores
vertex order, you should follow the convention when creating contours
to ensure consistency with other functions.

Examples Example 1

Set operations on two overlapping circular regions:

theta = linspace(0, 2*pi, 100);
x1 = cos(theta) - 0.5;
y1 = -sin(theta); % -sin(theta) to make a clockwise contour
x2 = x1 + 1;
y2 = y1;
[xa, ya] = polybool('union', x1, y1, x2, y2);

3-894

polybool

[xb, yb] = polybool('intersection', x1, y1, x2, y2);
[xc, yc] = polybool('xor', x1, y1, x2, y2);
[xd, yd] = polybool('subtraction', x1, y1, x2, y2);

subplot(2, 2, 1)
patch(xa, ya, 1, 'FaceColor', 'r')
axis equal, axis off, hold on
plot(x1, y1, x2, y2, 'Color', 'k')
title('Union')

subplot(2, 2, 2)
patch(xb, yb, 1, 'FaceColor', 'r')
axis equal, axis off, hold on
plot(x1, y1, x2, y2, 'Color', 'k')
title('Intersection')

subplot(2, 2, 3)
% The output of the exclusive-or operation consists of disjoint
% regions. It can be plotted as a single patch object using the
% face-vertex form. Use poly2fv to convert a polygonal region
% to face-vertex form.
[f, v] = poly2fv(xc, yc);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...

'EdgeColor', 'none')
axis equal, axis off, hold on
plot(x1, y1, x2, y2, 'Color', 'k')
title('Exclusive Or')

subplot(2, 2, 4)
patch(xd, yd, 1, 'FaceColor', 'r')
axis equal, axis off, hold on
plot(x1, y1, x2, y2, 'Color', 'k')
title('Subtraction')

3-895

polybool

Example 2

Set operations on regions with holes

Ax = {[1 1 6 6 1], [2 5 5 2 2], [2 5 5 2 2]};
Ay = {[1 6 6 1 1], [2 2 3 3 2], [4 4 5 5 4]};
subplot(2, 3, 1)
[f, v] = poly2fv(Ax, Ay);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...

'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Ax), plot(Ax{k}, Ay{k}, 'Color', 'k'), end
title('A')

Bx = {[0 0 7 7 0], [1 3 3 1 1], [4 6 6 4 4]};
By = {[0 7 7 0 0], [1 1 6 6 1], [1 1 6 6 1]};
subplot(2, 3, 4);
[f, v] = poly2fv(Bx, By);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...

'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Bx), plot(Bx{k}, By{k}, 'Color', 'k'), end

3-896

polybool

title('B')

subplot(2, 3, 2)
[Cx, Cy] = polybool('union', Ax, Ay, Bx, By);
[f, v] = poly2fv(Cx, Cy);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...

'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Cx), plot(Cx{k}, Cy{k}, 'Color', 'k'), end
title('A \cup B')

subplot(2, 3, 3)
[Dx, Dy] = polybool('intersection', Ax, Ay, Bx, By);
[f, v] = poly2fv(Dx, Dy);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...

'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Dx), plot(Dx{k}, Dy{k}, 'Color', 'k'), end
title('A \cap B')

subplot(2, 3, 5)
[Ex, Ey] = polybool('subtraction', Ax, Ay, Bx, By);
[f, v] = poly2fv(Ex, Ey);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...

'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Ex), plot(Ex{k}, Ey{k}, 'Color', 'k'), end
title('A - B')

subplot(2, 3, 6)
[Fx, Fy] = polybool('xor', Ax, Ay, Bx, By);
[f, v] = poly2fv(Fx, Fy);
patch('Faces', f, 'Vertices', v, 'FaceColor', 'r', ...

'EdgeColor', 'none')
axis equal, axis off, axis([0 7 0 7]), hold on
for k = 1:numel(Fx), plot(Fx{k}, Fy{k}, 'Color', 'k'), end
title('XOR(A, B)')

3-897

polybool

See Also bufferm | flatearthpoly | ispolycw | poly2cw | poly2ccw | poly2fv
| polyjoin | polysplit

3-898

polycut

Purpose Polygon branch cuts for holes

Syntax [lat2,long2] = polycut(lat,long)

Description [lat2,long2] = polycut(lat,long) connects the contour and
holes of polygons using optimal branch cuts. Polygons are input as
NaN-delimited vectors, or as cell arrays containing individual polygons
in each element with the outer face separated from the subsequent
inner faces by NaNs. Multiple polygons outputs are separated by NaNs.

See Also polybool | polysplit | polyjoin

3-899

polyjoin

Purpose Convert line or polygon parts from cell arrays to vector form

Syntax [lat,lon] = polyjoin(latcells,loncells)

Description [lat,lon] = polyjoin(latcells,loncells) converts polygons from
cell array format to column vector format. In cell array format, each
element of the cell array is a vector that defines a separate polygon.

Tips A polygon may consist of an outer contour followed by holes separated
with NaNs. In vector format, each vector may contain multiple faces
separated by NaNs. There is no structural distinction between outer
contours and holes in vector format.

Examples latcells = {[1 2 3]'; 4; [5 6 7 8 NaN 9]'};
loncells = {[9 8 7]'; 6; [5 4 3 2 NaN 1]'};
[lat,lon] = polyjoin(latcells,loncells);
[lat lon]

ans =
1 9
2 8
3 7

NaN NaN
4 6

NaN NaN
5 5
6 4
7 3
8 2

NaN NaN
9 1

See Also polybool | polycut | polysplit

3-900

polymerge

Purpose Merge line segments with matching endpoints

Syntax [latMerged, lonMerged] = polymerge(lat, lon)
[latMerged, lonMerged] = polymerge(lat, lon, tol)
[latMerged, lonMerged] = polymerge(lat, lon, tol,

outputFormat)

Description [latMerged, lonMerged] = polymerge(lat, lon) accepts a
multipart line in latitude-longitude with vertices stored in arrays lat
and lon, and merges the parts wherever a pair of end points coincide.
For this purpose, an end point can be either the first or last vertex in a
given part. When a pair of parts are merged, they are combined into
a single part and the duplicate common vertex is removed. If two first
vertices coincide or two last vertices coincide, then the vertex order of
one of the parts will be reversed. A merge is applied anywhere that the
end points of exactly two distinct parts coincide, so that an indefinite
number of parts can be chained together in a single call to polymerge.
If three or more distinct parts share a common end point, however, the
choice of which parts to merge is ambiguous and therefore none of the
corresponding parts are connected at that common point.

The inputs lat and lon can be column or row vectors with
NaN-separated parts (and identical NaN locations in each array), or
they can be cell arrays with each part in a separate cell. The form of
the output arrays, latMerged and lonMerged, matches the inputs in
this regard.

[latMerged, lonMerged] = polymerge(lat, lon, tol) combines
line segments whose endpoints are separated by less than the circular
tolerance, tol. tol has the same units as the polygon input.

[latMerged, lonMerged] = polymerge(lat, lon, tol,
outputFormat) allows you to request either the NaN-separated vector
form for the output (set outputFormat to 'vector'), or the cell array
form (set outputFormat to 'cell').

3-901

polymerge

Examples lat = [1 2 3 NaN 6 7 8 9 NaN 6 5 4 3 NaN 12 13 14 ...
NaN 9 10 11 12]';

lon = lat;
[lat2, lon2] = polymerge(lat, lon);
[lat2, lon2]

ans =

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

10 10
11 11
12 12
13 13
14 14

NaN NaN

See Also polyjoin | polysplit

3-902

polysplit

Purpose Convert line or polygon parts from vector form to cell arrays

Syntax [latcells,loncells] = polysplit(lat,lon)

Description [latcells,loncells] = polysplit(lat,lon) returns the
NaN-delimited segments of the vectors lat and lon as N-by-1 cell arrays
with one polygon segment per cell. lat and lon must be the same size
and have identically-placed NaNs. The polygon segments are column
vectors if lat and lon are column vectors, and row vectors otherwise.

Examples lat = [1 2 3 NaN 4 NaN 5 6 7 8 9]';
lon = [9 8 7 NaN 6 NaN 5 4 3 2 1]';
[latcells,loncells] = polysplit(lat,lon);
[latcells loncells]

ans =
[3x1 double] [3x1 double]
[4] [6]
[5x1 double] [5x1 double]

See Also isshapemultipart | polybool | polycut | polyjoin

3-903

polyxpoly

Purpose Intersection points for lines or polygon edges

Syntax [xi,yi] = polyxpoly(x1,y1,x2,y2)
[xi,yi,ii] = polyxpoly(...)
[xi,yi] = polyxpoly(...,'unique')

Description [xi,yi] = polyxpoly(x1,y1,x2,y2) returns the intersection points
of two polylines in a planar, Cartesian system. x1 and y1 are vectors
containing the x- and y-coordinates of the vertices in the first polyline,
and x2 and y2 contain the vertices in the second polyline. The
output variables, xi and yi, are column vectors containing the x- and
y-coordinates of each point at which a segment of the first polyline
intersects a segment of the second. In the case of overlapping, collinear
segments, the intersection is actually a line segment rather than a
point, and both endpoints are included in xi, yi.

[xi,yi,ii] = polyxpoly(...) returns a two-column array of line
segment indices corresponding to the intersection points. The k-th row
of ii indicates which polyline segments give rise to the intersection
point xi(k), yi(k). To remember how these indices work, just think
of segments and vertices as fence sections and posts. The i-th fence
section connects the i-th post to the (i+1)-th post. In general, letting
i and j denote the scalar values comprised by the k-th row of ii, the
intersection indicated by that row occurs where the i-th segment of the
first polyline intersects the j-th segment of the second polyline. But
when an intersection falls precisely on a vertex of the first polyline,
then i is the index of that vertex. Likewise with the second polyline and
the index j. In the case of an intersection at the i-th vertex of the first
line, for example, xi(k) equals x1(i) and yi(k) equals y1(i). In the
case of intersections between vertices, i and j can be interpreted as
follows: the segment connecting x1(i), y1(i) to x1(i+1), y1(i+1)
intersects the segment connecting x2(j), y2(j) to x2(j+1), y2(j+1)
at the point xi(k), yi(k).

[xi,yi] = polyxpoly(...,'unique') filters out duplicate
intersections, which may result if the input polylines are
self-intersecting.

3-904

polyxpoly

Examples Use the polyxpoly function to find the intersection points between a
rectangle and a two-part polyline.

% Define and fill a rectangular area in the plane
xlimit = [3 13];
ylimit = [2 8];
xbox = xlimit([1 1 2 2 1]);
ybox = ylimit([1 2 2 1 1]);
mapshow(xbox,ybox,'DisplayType','polygon','LineStyle','none')

% Define and display a two-part polyline
x = [0 6 4 8 8 10 14 10 14 NaN 4 4 6 9 15];
y = [4 6 10 11 7 6 10 10 6 NaN 0 3 4 3 6];
mapshow(x,y,'Marker','+')

% Intersect the polyline with the rectangle
[xi, yi] = polyxpoly(x, y, xbox, ybox);
mapshow(xi,yi,'DisplayType','point','Marker','o')

3-905

polyxpoly

% Display the intersection points; note that the point (12, 8)
% appears twice because of a self-intersection near the end of
% the first part of the polyline.
[xi yi]

ans =

3 5
5 8
8 8

12 8
12 8
13 7
4 2

13 5

3-906

polyxpoly

% You could suppress this duplicate point by using the 'unique'
% option.
[xi, yi] = polyxpoly(x, y, xbox, ybox, 'unique');
[xi yi]

ans =

3 5
5 8
8 8

12 8
13 7
4 2

13 5

Use the polyxpoly function to find the intersection points between the
state of California and a small circle.

california = shaperead('usastatehi',...
'UseGeoCoords', true,...
'Selector',{@(name) strcmpi(name,'California'), 'Name'});

usamap('california')
geoshow(california, 'FaceColor', 'none')

lat0 = 37; lon0 = -122; rad = 500;
[latc, lonc] = scircle1(lat0, lon0, km2deg(rad));
plotm(lat0, lon0, 'r*')
plotm(latc, lonc, 'r')

[loni, lati] = polyxpoly(lonc, latc, ...
california.Lon', california.Lat');

plotm(lati, loni, 'bo')

3-907

polyxpoly

See Also crossfix | gcxgc | gcxsc | navfix | rhxrh | scxsc

3-908

previewmap

Purpose View map at printed size

Description The appearance of a map onscreen can differ from the final printed
output. This results from the difference in the size and shape of the
figure window and the area the figure occupies on the printed page.
A map that appears readable on screen might be cluttered when the
printed output is smaller. Likewise, the relative position of multiple
axes can appear different when printed. This function resizes the figure
to the printed size.

Tips previewmap changes the size of the current figure to match the printed
output. If the resulting figure size exceeds the screen size, the figure
is enlarged as much as possible.

Examples Is the text small enough to avoid overlapping in a map of Europe?

figure
worldmap europe
land=shaperead('landareas.shp','UseGeoCoords',true);
geoshow([land.Lat],[land.Lon])
m=gcm;
latlim = m.maplatlimit;
lonlim = m.maplonlimit;
BoundingBox = [lonlim(1) latlim(1);lonlim(2) latlim(2)];
cities=shaperead('worldcities.shp', ...

'BoundingBox',BoundingBox,'UseGeoCoords',true);
for index=1:numel(cities)

h=textm(cities(index).Lat, cities(index).Lon, ...
cities(index).Name);

trimcart(h)
rotatetext(h)

end
orient landscape
tightmap
axis off
previewmap

3-909

previewmap

Limitations The figure cannot be made larger than the screen.

See Also pagesetupdlg | paperscale | axesscale

3-910

project

Purpose Project displayed map graphics object

Syntax project(h)
project(h,'xy')
project(h,'yx')

Description project(h) takes unprojected objects with handles h that are displayed
on map axes and projects them. For example, project takes a line
created on a map axes with the plot function and projects it as though
it had been created with the plotm function. This can be useful if
a standard MATLAB function was accidentally executed. The map
structure of the existing map axes determines the specifics of the
projection. If h is the handle of the map axes, then all the children of
h are projected. Do not attempt this if any children of h have already
been projected!

project(h,'xy') specifies that the XData of the unprojected objects
corresponds to longitudes and the YData to latitudes. This is the default
assumption.

project(h,'yx') specifies that the XData of the unprojected objects
corresponds to latitudes and the YData to longitudes.

Examples Create an axes, plot a line, then project it:

axesm('bonne','AngleUnits','radians');framem;
h = plot([-1 -.5 0 .5 1],[-1 -.5 0 .5 1]);

3-911

project

project(h)

3-912

project

The line is straight in x-y space, but when converted to a projected map
object, it bends with the projection.

See Also linem | patchm | surfacem | textm

3-913

projfwd

Purpose Forward map projection using PROJ.4 map projection library

Syntax [x,y] = projfwd(proj,lat,lon)

Description [x,y] = projfwd(proj,lat,lon) returns the x and y map coordinates
from the forward projection transformation. proj is a structure
defining the map projection. proj can be an mstruct or a GeoTIFF
info structure. lat and lon are arrays of the latitude and longitude
coordinates.

For a complete list of GeoTIFF info and map projection structures that
you can use with projinv, see the reference page for projlist.

Input
Arguments

proj - defines map projections
map projection mstruct | GeoTiff info structure

Data Types
struct

lat - Latitude values
array

Latitude values specified as a array in units of degrees.

Data Types
single | double

lon - Longitude values
array

Longitude values specified as an array in units of degrees.

Data Types
single | double

Output
Arguments

x - map x-coordinate
vector

X-coordinate of map returned as a vector of doubles.

3-914

projfwd

y - map y-coordinate
vector

Y-coordinate of map returned as a vector of doubles.

Examples Overlay the boundary of Massachusetts on an orthophoto
of Boston

Read vector data for state boundary of Massachusetts (in latitude and
longitude):

S = shaperead('usastatehi', 'UseGeoCoords', true, ...
'Selector',{@(name) strcmpi(name,'Massachusetts'), 'Name'});

Obtain the projection structure for the orthophoto and project the state
boundary vectors to it (Massachusetts State Plane coordinate system,
U.S. Survey Feet):

proj = geotiffinfo('boston.tif');
lat = [S.Lat];
lon = [S.Lon];
[x, y] = projfwd(proj, lat, lon);

Read and display the 'boston.tif' orthophoto image:

[RGB, R, bbox] = geotiffread('boston.tif');
figure
mapshow(RGB, R)
xlabel('MA Mainland State Plane easting, survey feet')
ylabel('MA Mainland State Plane northing, survey feet')

Overlay the state boundary and set map limits to show a little more
detail:

hold on
mapshow(gca, x, y,'Color','black','LineWidth',2.0)
set(gca,'XLim', [645000, 895000], ...

'YLIm', [2865000, 3040000]);

3-915

projfwd

boston.tif image copyright © GeoEye, all rights reserved.

See Also geotiffinfo | mfwdtran | minvtran | projinv | projlist

3-916

projinv

Purpose Inverse map projection using PROJ.4 map projection library

Syntax [lat,lon] = projinv(proj,x,y)

Description [lat,lon] = projinv(proj,x,y) returns the latitude and longitude
values from the inverse projection transformation. proj is a structure
defining the map projection. proj can be a map projection mstruct or a
GeoTIFF info structure. x and y are x-y map coordinate arrays. For a
complete list of GeoTIFF info and map projection structures that you
can use with projinv, see the reference page for projlist.

Input
Arguments

proj - defines map projections
map projection mstruct | GeoTiff info structure

Data Types
struct

x - X-coordinate values
vector

X-coordinate values of map specified as an array of single or doubles.

Data Types
single | double

y - Y-coordinate values
array

Y-coordinate values of map specified as an array of single or double.

Data Types
single | double

Output
Arguments

lat - Latitude values
vector

Latitude values returned as a vector of doubles.

lon - Longitude values

3-917

projinv

vector

Latitude values returned as a vector of doubles.

Examples Display Boston Orthophoto on a Mercator projection

1 Import the Boston roads from the shapefile and obtain the projection
structure from the 'boston.tif’ orthophoto:

roads = shaperead('boston_roads.shp');
proj = geotiffinfo('boston.tif');

2 Convert the road coordinates to the projection’s length unit. As
shown by the UOMLength field of the projection structure, the units
of length in the projected coordinate system is US Survey Feet.
Coordinates in the roads shapefile are in meters:

proj.UOMLength

ans =
US survey foot

x = [roads.X] * unitsratio('survey feet','meter');
y = [roads.Y] * unitsratio('survey feet','meter');

% Now convert the scaled coordinates of the roads
% to latitude and longitude.
[roadsLat, roadsLon] = projinv(proj, x, y);

3 Read the boston_ovr.jpg image and worldfile:

RGB = imread('boston_ovr.jpg');
R = worldfileread(getworldfilename('boston_ovr.jpg'));

4 Read state boundary vectors for Massachusetts from the usastatehi
shapefile using a selector to eliminate other states:

S = shaperead('usastatehi', 'UseGeoCoords', true, ...

3-918

projinv

'Selector',{@(name) strcmpi(name,'Massachusetts'), 'Name'});

5 Open a figure with a Mercator projection and display the state
boundary, image, and roads:

figure
axesm('mercator')

geoshow(S.Lat, S.Lon, 'Color','red')
geoshow(RGB, R)
geoshow(roadsLat, roadsLon, 'Color', 'green')

6 Set the map boundary to the image’s northern, western, and southern
limits, and the eastern limit of the state boandary within the image
latitude bounding box:

[lon, lat] = mapoutline(R, size(RGB(:,:,1)));
ltvals = find((S.Lat>=min(lat(:))) & (S.Lat<=max(lat(:))));
setm(gca,'maplonlimit',[min(lon(:)) max(S.Lon(ltvals))], ...

'maplatlimit',[min(lat(:)) max(lat(:))])
tightmap

3-919

projinv

boston_ovr.jpg image copyright © GeoEye, all rights reserved.

See Also geotiffinfo | mfwdtran | minvtran | projfwd | projlist

3-920

projlist

Purpose Map projections supported by projfwd and projinv

Syntax projlist(listmode)
S = projlist(listmode)

Description projlist(listmode) displays a table of projection names, IDs,
and availability. listmode is a string with value ’mapprojection',
’geotiff', ’geotiff2mstruct', or ’all'. The default value is
’mapprojection'.

S = projlist(listmode) returns a structure array containing
projection names, IDs, and availability. The output of projlist for
each listmode is described below:

• mapprojection— Lists the map projection IDs that are available for
use with projfwd and projinv. The output structure contains the
fields

- Name — Projection name

- MapProjection — Projection ID string

• geotiff — Lists the GeoTIFF projection IDs that are available for
use with projfwd and projinv. The output structure contains the
fields

- GeoTIFF — GeoTIFF projection ID string.

- Available— Logical array with values 1 or 0

• geotiff2mstruct — Lists the GeoTIFF projection IDs that are
available for use with geotiff2mstruct. The output structure
contains the fields

- GeoTIFF — GeoTIFF projection ID string

- MapProjection — Projection ID string

• all— Lists the map and GeoTIFF projection IDs that are available
for use with projfwd and projinv. The output structure contains
the fields

- GeoTIFF — GeoTIFF projection ID string

3-921

projlist

- MapProjection — Projection ID string

- info — Logical array with values 1 or 0

- mstruct — Logical array with values 1 or 0

Tips projfwd and projinv can be used to process certain forward or inverse
map projections. These functions are implemented in C using the
PROJ.4 library. projlist provides a convenient list of the projections
that can be used with projfwd or projinv. Because projfwd and
projinv accept either a map projection structure (mstruct) or a
GeoTIFF info structure, projlist provides separate lists for each case.
It can also list the projections for which a GeoTIFF info structure can be
converted to an mstruct.

Examples s=projlist

s =
1x19 struct array with fields:

Name
MapProjection

s=projlist('geotiff2mstruct')

s =
1x19 struct array with fields:

GeoTIFF
MapProjection

See Also geotiff2mstruct | projfwd | projinv | maplist | maps

3-922

putpole

Purpose Origin vector to place north pole at specified point

Syntax origin = putpole(pole)
origin = putpole(pole,units)

Description origin = putpole(pole) returns an origin vector required to
transform a coordinate system in such a way as to put the true North
Pole at a point specified by the three- (or two-) element vector pole.
This vector is of the form [latitude longitude meridian], specifying
the coordinates in the original system at which the true North Pole is
to be placed in the transformed system. The meridian is the longitude
upon which the new system is to be centered, which is the new pole
longitude if omitted. The output is a three-element vector of the
form [latitude longitude orientation], where the latitude and
longitude are the coordinates in the untransformed system of the new
origin, and the orientation is the azimuth of the true North Pole in
the transformed system.

origin = putpole(pole,units) allows the specification of the angular
units of the origin vector, where units is any valid angle units string.
The default is 'degrees'.

Tips When developing transverse or oblique projections, you need
transformed coordinate systems. One way to define these systems is
to establish the point in the original (untransformed) system that will
become the new (transformed) origin.

Examples Pull the North Pole down the 0º meridian by 30º to 60ºN. What is the
resulting origin vector?

origin = putpole([60 0])

origin =
30.0000 0 0

3-923

putpole

This makes sense: when the pole slid down 30º, the point that was 30º
north of the origin slid down to become the origin. Following is a less
obvious transformation:

origin = putpole([60 80 0]) % constrain to original central
% meridian

origin =
4.9809 0 29.6217

origin = putpole([60 80 40]) % constrain to arbitrary meridian

origin =
4.9809 40.0000 29.6217

See Also neworig | org2pol

3-924

quiver3m

Purpose Project 3-D quiver plot on map axes

Syntax h = quiver3m(lat,lon,alt,u,v,w)
h = quiver3m(lat,lon,alt,u,v,w,linespec)
h = quiver3m(lat,lon,alt,u,v,w,linespec,'filled')
h = quiver3m(lat,lon,alt,u,v,w,scale)
h = quiver3m(lat,lon,alt,u,v,w,linespec,scale)
h = quiver3m(lat,lon,alt,u,v,w,linespec,scale,'filled')

Description h = quiver3m(lat,lon,alt,u,v,w) displays velocity vectors with
components (u,v,w) at the geographic points (lat,lon) and altitude
alt on a displayed map axes. The inputs u, v, and w determine the
direction of the vectors in latitude, longitude, and altitude, respectively.
The function automatically determines the length of these vectors to
make them as long as possible without overlap. The object handles of
the displayed vectors can be returned in h.

h = quiver3m(lat,lon,alt,u,v,w,linespec) allows the control of
the line specification of the displayed vectors with a linespec string
recognized by the MATLAB line function. If symbols are indicated in
linespec, they are plotted at the start points of the vectors, i.e., the
input points (lat,lon,alt).

h = quiver3m(lat,lon,alt,u,v,w,linespec,'filled') results in
the filling in of any symbols specified by linespec.

h = quiver3m(lat,lon,alt,u,v,w,scale), h =
quiver3m(lat,lon,alt,u,v,w,linespec,scale) and h =
quiver3m(lat,lon,alt,u,v,w,linespec,scale,'filled') alter the
automatically calculated vector lengths by multiplying them by the
scalar value scale. For example, if scale is 2, the displayed vectors are
twice as long as they would be if scale were 1 (the default). When scale
is set to 0, the automatic scaling is suppressed and the length of the
vectors is determined by the inputs. In this case, the vectors are plotted
from (lat,lon,alt) to (lat+u,lon+v,alt+w).

Examples Plot 3-D quiver vectors from London (51.5ºN,0º) and New Delhi
(29ºN,77.5ºE), both at an altitude of 0. Suppress the automatic scaling.

3-925

quiver3m

Terminate both vectors at an altitude of 1; the London vector should
terminate 100º southward and 70º eastward, while the New Delhi vector
should terminate 50º northward and 10º eastward.

load coast
axesm miller; view(3)
plotm(lat,long)
lat0 = [51.5,29]; lon0 = [0 77.5]; alt = [0 0];
u = [-40 50]; v = [-70 10]; w = [1 1];
quiver3m(lat0,lon0,alt,u,v,w,'m')
tightmap

See Also quiverm | quiver3

3-926

quiverm

Purpose Project 2-D quiver plot on map axes

Syntax h = quiverm(lat,lon,u,v)
h = quiverm(lat,lon,u,v,linespec)
h = quiverm(lat,lon,u,v,linespec,'filled')
h = quiverm(lat,lon,u,v,scale)
h = quiverm(lat,lon,u,v,...linespec,scale,'filled')

Description h = quiverm(lat,lon,u,v) displays velocity vectors with components
(u,v) at the geographic points (lat,lon) on displayed map axes. All
four inputs should be in the AngleUnits of the map axes. The inputs u
and v determine the direction of the vectors in latitude and longitude,
respectively. The function automatically determines the length of these
vectors to make them as long as possible without overlap. The object
handles of the displayed vectors can be returned in h.

h = quiverm(lat,lon,u,v,linespec) allows the control of the line
specification of the displayed vectors with a linespec string recognized
by the MATLAB line function. If symbols are indicated in linespec,
they are plotted at the start points of the vectors, i.e., the input points
(lat,lon).

h = quiverm(lat,lon,u,v,linespec,'filled') results in the filling
in of any symbols specified by linespec.

h = quiverm(lat,lon,u,v,scale) and h =
quiverm(lat,lon,u,v,...linespec,scale,'filled') alter the
automatically calculated vector lengths by multiplying them by the
scalar value scale. For example, if scale is 2, the displayed vectors are
twice as long as they would be if scale were 1 (the default). When scale
is set to 0, the automatic scaling is suppressed, and the length of the
vectors is determined by the inputs. In this case, the vectors are plotted
from (lat,lon) to (lat+u,lon+v).

Examples Plot quiver vectors from Land’s End (50ºN,5.4ºW) and Majorca
(39.7ºN,2.9ºE) in a direction corresponding to +5º latitude and +3º
longitude. Use automatic scaling.

3-927

quiverm

load coast
axesm('eqaconic','MapLatLimit',[30 60],'MapLonLimit',[-10 10])
framem; plotm(lat,long)
lat0 = [50 39.7]; lon0 = [-5.4 2.9];
u = [5 5]; v = [3 3];
quiverm(lat0,lon0,u,v,'r')

See Also quiver3m | quiver

3-928

rad2km

Purpose Convert distance from radians to kilometers

Syntax km = rad2km(rad)
km = rad2km(rad,radius)
km = rad2km(rad,sphere)

Description km = rad2km(rad) converts distances from radians to kilometers as
measured along a great circle on a sphere with a radius of 6371 km, the
mean radius of the Earth.

km = rad2km(rad,radius) converts distances from radians to
kilometers as measured along a great circle on a sphere having the
specified radius. radius must be in units of kilometers.

km = rad2km(rad,sphere) converts distances from radians to
kilometers, as measured along a great circle on a sphere approximating
an object in the Solar System. sphere may be one of the following
strings: 'sun', 'moon', 'mercury', 'venus', 'earth', 'mars',
'jupiter', 'saturn', 'uranus', 'neptune', or 'pluto', and is
case-insensitive.

See Also km2rad | degtorad | radtodeg | deg2km | km2deg | km2nm | km2sm |
deg2nm | nm2rad | nm2km | nm2sm | deg2sm | sm2rad | sm2km | sm2nm

3-929

radtodeg

Purpose Convert angles from radians to degrees

Syntax angleInDegrees = radtodeg(angleInRadians)

Description angleInDegrees = radtodeg(angleInRadians) converts angle units
from radians to degrees. This is both an angle conversion function and
a distance conversion function, because arc length can be a measure of
distance in either radians or degrees (provided the radius is known).

Examples There are 180º in π radians:

anglout = radtodeg(pi)

anglout =
180

See Also degtorad | fromDegrees | fromRadians | toDegrees | toRadians

3-930

rad2nm

Purpose Convert distance from radians to nautical miles

Syntax nm = rad2nm(rad)
nm = rad2nm(rad,radius)
nm = rad2nm(rad,sphere)

Description nm = rad2nm(rad) converts distances from radians to nautical miles as
measured along a great circle on a sphere with a radius of 6371 km, the
mean radius of the Earth.

nm = rad2nm(rad,radius) converts distances from radians to nautical
miles as measured along a great circle on a sphere having the specified
radius. radius must be in units of nautical miles.

nm = rad2nm(rad,sphere) converts distances from radians to nautical
miles, as measured along a great circle on a sphere approximating an
object in the Solar System. sphere may be one of the following strings:
'sun', 'moon', 'mercury', 'venus', 'earth', 'mars', 'jupiter',
'saturn', 'uranus', 'neptune', or 'pluto', and is case-insensitive.

See Also km2rad | degtorad | radtodeg | deg2km | km2deg | km2nm | km2sm |
deg2nm | nm2rad | nm2km | nm2sm | deg2sm | sm2rad | sm2km | sm2nm

3-931

rad2sm

Purpose Convert distance from radians to statute miles

Syntax sm = rad2sm(rad)
sm = rad2sm(rad,radius)
sm = rad2sm(rad,sphere)

Description sm = rad2sm(rad) converts distances from radians to statute miles as
measured along a great circle on a sphere with a radius of 6371 km, the
mean radius of the Earth.

sm = rad2sm(rad,radius) converts distances from radians to statute
miles as measured along a great circle on a sphere having the specified
radius. radius must be in units of statute miles.

sm = rad2sm(rad,sphere) converts distances from radians to statute
miles, as measured along a great circle on a sphere approximating an
object in the Solar System. sphere may be one of the following strings:
'sun', 'moon', 'mercury', 'venus', 'earth', 'mars', 'jupiter',
'saturn', 'uranus', 'neptune', or 'pluto', and is case-insensitive.

Examples How long is a trip around the equator in statute miles?

sm = rad2sm(2*pi)

sm =
2.4874e+04

How about on Jupiter?

sm = rad2sm(2*pi,'jupiter')

sm =
2.7283e+005

See Also km2rad | degtorad | radtodeg | deg2km | km2deg | km2nm | km2sm |
deg2nm | nm2rad | nm2km | nm2sm | deg2sm | sm2rad | sm2km | sm2nm

3-932

rcurve

Purpose Ellipsoidal radii of curvature

Syntax r = rcurve(ellipsoid,lat)
r = rcurve('parallel',ellipsoid,lat)
r = rcurve('meridian',ellipsoid,lat)
r = rcurve('transverse',ellipsoid,lat)
r = rcurve(..., angleunits)

Description r = rcurve(ellipsoid,lat) and r =
rcurve('parallel',ellipsoid,lat) return the parallel radius of
curvature at the latitude lat for a reference ellipsoid defined by
ellipsoid, which can be a referenceSphere, referenceEllipsoid,
or oblateSpheroid object, or a vector of the form [semimajor_axis
eccentricity]. r is in units of length consistent with those used for
the semimajor axis. lat is in `degrees'.

r = rcurve('meridian',ellipsoid,lat) returns the meridional
radius of curvature, which is the radius of curvature in the plane of a
meridian at the latitude lat.

r = rcurve('transverse',ellipsoid,lat) returns the transverse
radius of curvature, which is the radius of a curvature in a plane
normal to the surface of the ellipsoid and normal to a meridian, at the
latitude lat.

r = rcurve(..., angleunits) specifies the units of the input lat.
angleunits can be `degrees' or `radians'.

Examples The radii of curvature of the default ellipsoid at 45º, in kilometers:

r = rcurve('transverse',referenceEllipsoid('earth','km'),...
45,'degrees')

r =
6.3888e+03

r = rcurve('meridian',referenceEllipsoid('earth','km'),...
45,'degrees')

3-933

rcurve

r =
6.3674e+03

r = rcurve('parallel',referenceEllipsoid('earth','km'),...
45,'degrees')

r =
4.5024e+03

See Also rsphere

3-934

readfields

Purpose Read fields or records from fixed-format files

Syntax struc = readfields(fname,fstruc)
struc = readfields(fname,fstruc,recordIDs)
struc = readfields(fname,fstruc,fieldIDs)
struc = readfields(fname,fstruc,recordIDs,mformat)
struc = readfields(fname,fstruc,recordIDs,mformat,fid)
struc = readfields(fname,fstruc,recordIDs,mformat,fid,

'sparse')

Description struc = readfields(fname,fstruc) reads all the records from a fixed
format file. fname is a string containing the name of the file. If it is
empty, the file is selected interactively. fstruc is a structure defining
the format of the file. The contents of fstruc are described below. The
result is returned in a structure.

struc = readfields(fname,fstruc,recordIDs) reads only the
records specified in the vector recordIDs. For example, recordIDs =
[1 2 3 4]. All the fields in the selected records are read.

struc = readfields(fname,fstruc,fieldIDs) reads only the fields
specified in the cell array fieldIDs. For example, fieldIDs = {1 2
4}. The selected fields are read from all the records. fieldIDs can be
used in place of recordIDs in all calling forms.

struc = readfields(fname,fstruc,recordIDs,mformat) opens the
file with the specified machine format. mformat must be recognized by
fopen.

struc = readfields(fname,fstruc,recordIDs,mformat,fid) reads
from a file that is already open. fid is the file identifier returned by
fopen. The records are read starting from the current location in the
file.

struc =
readfields(fname,fstruc,recordIDs,mformat,fid,'sparse')
disables error messages when the number of elements read does not
agree with the stated format of the file. This is useful for formatted files

3-935

readfields

with empty fields. Use fid = [] for files that are not already open.
This option is only compatible with reading selected records.

Background Map data is often provided as binary or ASCII files with a fixed
format. Writing your own functions to read the data into the MATLAB
workspace can be difficult and time-consuming, particularly for binary
files. This function allows you to read the data by simply specifying
the format of the file.

Examples Write a binary file and read it.

fid = fopen('testbin','wb');

for i = 1:3

fwrite(fid,['character' num2str(i)],'char');

fwrite(fid,i,'int8');

fwrite(fid,[i i],'int16');

fwrite(fid,i,'integer*4');

fwrite(fid,i,'real*8');

end

fclose(fid);

fs(1).length = 10;fs(1).type = 'char';fs(1).name = 'field 1';

fs(2).length = 1;fs(2).type = 'int8'; fs(2).name = 'field 2';

fs(3).length = 2;fs(3).type = 'int16';fs(3).name = 'field 3';

fs(4).length = 1;fs(4).type = 'integer*4';fs(4).name = 'field 4';

fs(5).length = 1;fs(5).type = 'float64'; fs(5).name = 'field 5';

s = readfields('testbin',fs);

s(1)

ans =

field1: 'character1'

field2: 1

field3: [1 1]

field4: 1

field5: 1

3-936

readfields

Limitations Formatted numbers must stay within the width specified for them.
Files must have a size that is an integer multiple of the computed
record length. This is potentially a problem for formatted files on DOS
platforms that use a carriage return/linefeed line ending everywhere
except the last record. File sizes are not checked when an open file
is provided.

Tips The format of the file is described in the input argument fstruc.
fstruc is a structure with one entry for every field in the file. fstruc
has three required fields: length, name, and type. For fields containing
binary data of the type that would be read by fread, length is the
number of elements to be read, name is a string containing the field
name under which the read data is stored in the output structure, and
type is a format string recognized by fread. Repetition modifiers such
as '40*char' are not supported. Fields with empty field names are
omitted from the output.

The following fstruc definition is for a file with a 40-character field,
a field containing two integers, and a field with a single-precision
floating-point number.

fstruc(1).length = 40;

fstruc(1).name = 'character Field'; % spaces will be suppressed

filestruc(1).type = 'char';

fstruc(2).length = 2;

fstruc(2).name = 'integer Field'; % spaces will be suppressed

fstruc(2).type = 'int16';

fstruc(3).length = 1;

fstruc(3).name = 'float Field'; % spaces will be suppressed

fstruc(3).type = 'real*4';

The type can also be a fscanf and sscanf-style format string of the form
'%nX', where n is the number of characters within which the formatted
data is found, and X is the conversion character such as 'g' or 'd'. For
formatted fields, the length entry in fstruc is the number of elements,
each of which has the width specified in the type string. Fortran-style

3-937

readfields

double-precision output such as '0.0D00' can be read using a type
string such as '%nD', where n is the number of characters per element.
This is an extension to the C-style format strings accepted by sscanf.
Users unfamiliar with C should note that '%d' is preferred over '%i'
for formatted integers. MATLAB syntax follows C in interpreting '%i'
integers with leading zeros as octal. Line-ending characters in ASCII
files must also be counted in the fstruc specification. Note that the
number of line-ending characters differs across platforms.

A field specification for a formatted field with two integers each six
characters wide would be of the form

fstruc(4).length = 2;
fstruc(4).name = 'Elevation Units';
fstruc(4).type = '%6d'

To summarize, length is the number of elements for binary numbers,
the number of characters for strings, and the number of elements for
formatted data.

You can omit fields from all output by providing an empty string for the
fstruc name field.

See Also grepfields | readmtx | textread | spcread | dlmread

3-938

readfk5

Purpose Read Fifth Fundamental Catalog of Stars

Syntax struc = readfk5(filename)
struc = readfk5(filename,struc)

Description struc = readfk5(filename) reads the FK5 file and returns the
contents in a structure. Each star is an element in the structure, with
the different data items stored in appropriately named fields.

struc = readfk5(filename,struc) appends the data in the file to the
existing structure struc.

Background The Fifth Fundamental Catalog of Stars (FK5), Parts I and II, is a
compilation of data on more than 4500 stars. The catalog contains
positions, errors in positions, proper motions, and characteristics such
as magnitudes, spectral types, parallaxes, and radial velocities. There
are also cross-references to the identities of stars in other catalogs. It
was compiled by researchers at the Astronomisches Rechen-Institut
in Heidelberg.

Tips Positions are given in terms of right ascension and declination.
“Projections and Parameters” in the Concepts section of the Mapping
Toolbox documentation shows how to convert these to latitude and
longitude for display by the toolbox.

The Fifth Fundamental Catalog of Stars (FK5), Parts I and II data and
documentation are available over the Internet by anonymous ftp.

Examples FK5 = readfk5('FK5.dat');
FK5e = readfk5('FK5_ext.dat');
whos

Name Size Bytes Class
FK5 1x1535 5042752 struct array
FK5e 1x3117 10226424 struct array

FK5e(1)

3-939

readfk5

ans =
FK5: 2003
RAh: 0
RAm: 5
RAs: 1.1940

pmRA: 0.6230
DEd: 27
DEm: 40
DEs: 29.0100

pmDE: -1.1100
RAh1950: 0
RAm1950: 2
RAs1950: 26.5900

pmRA1950: 0.6210
DEd1950: 27
DEm1950: 23
DEs1950: 47.4400

pmDE1950: -1.1100
EpRA1900: 51.7200

e_RAs: 2
e_pmRA: 9

EpDE1900: 46.8200
e_DEs: 3.4000

e_pmDE: 14
Vmag: 6.4700

n_Vmag: ''
SpType: 'G5'

plx: []
RV: 12

AGK3R: '38'
SRS: ''
HD: '225292'
DM: 'BD+26 4744'
GC: '48'

References See references [5] and [6] in the Bibliography located at the end of
this chapter.

3-940

readfk5

See Also dms2degrees | scatterm

3-941

readmtx

Purpose Read matrix stored in file

Syntax mtx = readmtx(fname,nrows,ncols,precision)
mtx =
readmtx(fname,nrows,ncols,precision,readrows,readcols)
mtx = readmtx(fname,nrows,ncols,precision,... readrows,

readcols,mformat)
mtx = readmtx(fname,nrows,ncols,precision,... readrows,

readcols,mformat,nheadbytes)
mtx = readmtx(fname,nrows,ncols,precision,... readrows,

readcols,mformat,nheadbytes,nRowHeadBytes)
mtx = readmtx(fname,nrows,ncols,precision,... readrows,

readcols,mformat,nheadbytes,nRowHeadBytes,nRowTrailBytes)
mtx = readmtx(fname,nrows,ncols,precision,... readrows,

readcols,mformat,nheadbytes,nRowHeadBytes,
... nRowTrailBytes,nFileTrailBytes)

mtx = readmtx(fname,nrows,ncols,precision,... readrows,
readcols,mformat,nheadbytes,nRowHeadBytes,
... nRowTrailBytes,nFileTrailBytes,recordlen)

Description mtx = readmtx(fname,nrows,ncols,precision) reads a matrix
stored in a file. The file contains only a matrix of numbers with the
dimensions nrows by ncols stored with the specified precision.
Recognized precision strings are described below.

mtx =
readmtx(fname,nrows,ncols,precision,readrows,readcols) reads
a subset of the matrix. readrows and readcols specify which rows and
columns are to be read. They can be vectors containing the row or
column numbers, or two-element vectors of the form [start end],
which are expanded using the colon operator to start:end. To read just
two rows or columns, without expansion by the colon operator,
provide the indices as a column matrix.

mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat) specifies the machine format used to
write the file. mformat can be any string recognized by fopen. This

3-942

readmtx

option is used to automatically swap bytes for files written on platforms
with a different byte ordering.

mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat,nheadbytes) skips the file header,
whose length is specified in bytes.

mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat,nheadbytes,nRowHeadBytes) also skips
a header that precedes every row of the matrix. The length of the
header is specified in bytes.

mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat,nheadbytes,nRowHeadBytes,nRowTrailBytes)
also skips a trailer that follows every row of the matrix. The
length of the trailer is specified in bytes.

mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat,nheadbytes,nRowHeadBytes,...
nRowTrailBytes,nFileTrailBytes) accounts for the length of data
following the matrix. The sizes of the components of the matrix are
used to compute an expected file size, which is compared to the actual
file size.

mtx = readmtx(fname,nrows,ncols,precision,...
readrows,readcols,mformat,nheadbytes,nRowHeadBytes,...
nRowTrailBytes,nFileTrailBytes,recordlen) overrides the record
length calculated from the precision and number of columns, and
instead uses the record length given in bytes. This is used for formatted
data with extra spaces or line breaks in the matrix.

Background Map data is often provided as binary or ASCII files with a fixed
format. Writing your own functions to read the data into the MATLAB
workspace can be difficult and time-consuming, particularly for binary
files. This function allows you to read the data by simply specifying
the format of the file.

3-943

readmtx

Examples Write and read a binary matrix file:

fid = fopen('binmat','w');
fwrite(fid,1:100,'int16');
fclose(fid);
mtx = readmtx('binmat',10,10,'int16')

mtx =
1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

mtx = readmtx('binmat',10,10,'int16',[2 5],3:2:9)

mtx =
13 15 17 19
23 25 27 29
33 35 37 39
43 45 47 49

Limitations Every row of the matrix must have the same number of elements.

Tips This function reads files that have a general format consisting of a
header, a matrix, and a trailer. Each row of the matrix can have
a certain number of bytes of extraneous information preceding or
following the matrix data.

Both binary and formatted data files can be read. If the file is binary,
the precision argument is a format string recognized by fread.
Repetition modifiers such as '40*char' are not supported. If the file
is formatted, precision is a fscanf and sscanf-style format string of

3-944

readmtx

the form '%nX', where n is the number of characters within which the
formatted data is found, and X is the conversion character such as 'g'
or 'd'. Fortran-style double-precision output such as '0.0D00' can be
read using a precision string such as '%nD', where n is the number
of characters per element. This is an extension to the C-style format
strings accepted by sscanf. Users unfamiliar with C should note that
'%d' is preferred over '%i' for formatted integers. MATLAB syntax
follows C in interpreting '%i' integers with leading zeros as octal.
Formatted files with line endings need to provide the number of trailing
bytes per row, which can be 1 for platforms with carriage returns or
linefeed (Macintosh, UNIX), or 2 for platforms with carriage returns
and linefeeds (DOS).

See Also readfields | textread | spcread | dlmread

3-945

reckon

Purpose Point at specified azimuth, range on sphere or ellipsoid

Syntax [latout,lonout] = reckon(lat,lon,arclen,az)
[latout,lonout] = reckon(lat,lon,arclen,az,units)
[latout,lonout] = reckon(lat,lon,arclen,az,ellipsoid)
[latout,lonout] = reckon(lat,lon,arclen,az,ellipsoid,units)
[latout,lonout] = reckon(track,...)

Description [latout,lonout] = reckon(lat,lon,arclen,az), for scalar inputs,
calculates a position (latout,lonout) at a given range, arclen, and
azimuth, az, along a great circle from a starting point defined by lat
and lon. lat and lon are in degrees. arclen must be expressed as
degrees of arc on a sphere, and equals the length of a great circle arc
connecting the point (lat, lon) to the point (latout, lonout). az,
also in degrees, is measured clockwise from north. reckon calculates
multiple positions when given four arrays of matching size. When
given a combination of scalar and array inputs, the scalar inputs are
automatically expanded to match the size of the arrays.

[latout,lonout] = reckon(lat,lon,arclen,az,units), where
units is either 'degrees' or 'radians', specifies the units of the
inputs and outputs, including arclen. The default value is 'degrees'.

[latout,lonout] = reckon(lat,lon,arclen,az,ellipsoid)
calculates positions along a geodesic on an ellipsoid, as specified by
ellipsoid. ellipsoid is a referenceSphere, referenceEllipsoid,
or oblateSpheroid object, or a vector of the form [semimajor_axis
eccentricity]. The range, arclen, must be expressed same unit of
length as the semimajor axis of the ellipsoid.

[latout,lonout] = reckon(lat,lon,arclen,az,ellipsoid,units)
calculates positions on the specified ellipsoid with lat, lon, az, latout,
and lonout in the specified angle units.

[latout,lonout] = reckon(track,...) calculates positions on great
circles (or geodesics) if track is 'gc' and along rhumb lines if track is
'rh'. The default value is 'gc'.

3-946

reckon

Examples Find the coordinates of the point 600 nautical miles northwest of
London, UK (51.5ºN,0º) in a great circle sense:

% Convert nm distance to degrees.
dist = nm2deg(600)
dist =

9.9933

% Northwest is 315 degrees.
pt1 = reckon(51.5,0,dist,315)
pt1 =

57.8999 -13.3507

Now, determine where a plane from London traveling on a constant
northwesterly course for 600 nautical miles would end up:

pt2 = reckon('rh',51.5,0,dist,315)

pt2 =
58.5663 -12.3699

How far apart are the points above (distance in great circle sense)?

separation = distance('gc',pt1,pt2)

separation =
0.8430

% Convert answer to nautical miles.
nmsep = deg2nm(separation)
nmsep =

50.6156

Over 50 nautical miles separate the two points.

See Also azimuth | distance | km2deg | dreckon | track | track1 | track2

3-947

reducem

Purpose Reduce density of points in vector data

Syntax [latout,lonout] = reducem(latin,lonin)
[latout,lonout] = reducem(latin,lonin,tol)
[latout,lonout,cerr] = reducem(...)
[latout,lonout,cerr,tol] = reducem(...)

Description [latout,lonout] = reducem(latin,lonin) reduces the number of
points in vector map data. In this case the tolerance is computed
automatically.

[latout,lonout] = reducem(latin,lonin,tol) uses the provided
tolerance. The units of the tolerance are degrees of arc on the surface
of a sphere.

[latout,lonout,cerr] = reducem(...) in addition returns a
measure of the error introduced by the simplification. The output cerr
is the difference in the arc length of the original and reduced data,
normalized by the original length.

[latout,lonout,cerr,tol] = reducem(...) also returns the
tolerance used in the reduction, which is useful when the tolerance is
computed automatically.

Examples Compare the original and reduced outlines of the District of Columbia
from the usastatehi state outline data:

dc = shaperead('usastatehi',...
'UseGeoCoords', true,...
'Selector',{@(name) ...
strcmpi(name,'district of columbia'), 'Name'});

lat = extractfield(dc, 'Lat')';
lon = extractfield(dc, 'Lon')';
[latreduced, lonreduced] = reducem(lat, lon);

lonlim = dc.BoundingBox(:,1)' + [-0.02 0.02];
latlim = dc.BoundingBox(:,2)' + [-0.02 0.02];

3-948

reducem

subplot(1,2,1)
usamap(latlim, lonlim); axis off
geoshow(lat, lon,...

'DisplayType', 'polygon', 'FaceColor', 'blue')

subplot(1,2,2)
usamap(latlim, lonlim); axis off
geoshow(latreduced, lonreduced,...

'DisplayType', 'polygon', 'FaceColor', 'yellow')

Tips Vector data is reduced using the Douglas-Peucker line simplification
algorithm. This method recursively subdivides a polygon until a run
of points can be replaced by a straight line segment, with no point in
that run deviating from the straight line by more than the tolerance.
The distances used to decide on which runs of points to eliminate are
computed in a Plate Carrée projection.

Reduced geographic data might not always be appropriate for display.
If all intermediate points in a data set are reduced, then lines appearing
straight in one projection are incorrectly displayed as straight lines in
others.

See Also interpm | resizem

3-949

referenceEllipsoid

Purpose Reference ellipsoid

Description A referenceEllipsoid is an oblateSpheroid object with three
additional properties:

• A name string (Name).

• A string (LengthUnit) indicating the units of the semimajor and
semiminor axes.

• A numeric code (Code) that matches an entry in the ellipsoid table of
the EPSG/OGP Geodetic Parameter Dataset.

Construction E = referenceEllipsoid returns a reference ellipsoid object that
represents the unit sphere.

E = referenceEllipsoid(name) returns a reference ellipsoid object
corresponding to the string, name. The values of the SemimajorAxis and
SemiminorAxis properties are in meters.

E = referenceEllipsoid(code) returns a reference ellipsoid object
corresponding to the numerical EPSG code, code. All of the nearly 60
codes in the EPSG ellipsoid table are supported. The unit of length used
for the SemimajorAxis and SemiminorAxis properties depends on the
ellipsoid selected, and is indicated in the property, E.LengthUnit.

E = referenceEllipsoid(name,lengthUnit) and E =
referenceEllipsoid(code,lengthUnit) return the ellipsoid object
with the SemimajorAxis and SemiminorAxis properties in the specified
unit of length, lengthUnit. The lengthUnit can be any length unit
string supported by validateLengthUnit.

Input Arguments

name

One of the short or long names listed in table.

DataType: String.

3-950

referenceEllipsoid

EPSG Code Short Name Long Name

— 'unitsphere' 'Unit Sphere'

7019 'grs80' 'Geodetic
Reference System
1980'

7030 'wgs84' 'World Geodetic
System 1984'

7015 'everest' 'Everest 1830'

7004 'bessel' 'Bessel 1841'

7001 'airy1830' 'Airy 1830'

7002 'airy1849' 'Airy Modified
1849'

7008 'clarke66' 'Clarke 1866'

7012 'clarke80' 'Clarke 1880'

7022 'international' 'International
1924'

7024 'krasovsky' 'Krasovsky 1940'

7043 'wgs72' 'World Geodetic
System 1972'

— 'wgs60' 'World Geodetic
System 1960'

— 'iau65' 'International
Astronomical
Union 1965'

— 'wgs66' 'World Geodetic
System 1966'

— 'iau68' 'International
Astronomical
Union 1968'

3-951

referenceEllipsoid

EPSG Code Short Name Long Name

7030 'earth' 'World Geodetic
System 1984'

— 'sun' 'Sun'

— 'moon' 'Moon'

— 'mercury' 'Mercury'

— 'venus' 'Venus'

— 'mars' 'Mars'

— 'jupiter' 'Jupiter'

— 'saturn' 'Saturn'

— 'uranus' 'Uranus'

— 'neptune' 'Neptune'

— 'pluto' 'Pluto'

code

Numerical EPSG code

A numerical code between 7000 and 8000 indicating a row in the
EPSG ellipsoid table. All of the nearly 60 codes in the EPSG
ellipsoid table are supported, in addition to the ones listed in the
above table.

lengthUnit

Unit of length used for semimajor and semiminor axes.

Properties Code

Numerical EPSG code

A numerical code between 7000 and 8000 indicating a row in the
EPSG ellipsoid table.

Name

3-952

referenceEllipsoid

Name of the reference ellipsoid

A string naming or describing the ellipsoid, for example, ’World
Geodetic System 1984’.

LengthUnit

Unit of length string for ellipsoid axes

The empty string, or any unit of length string accepted by the
validateLengthUnit function.

SemimajorAxis

Equatorial radius of spheroid, a

When set to a new value, the SemiminorAxis property scales
as needed to preserve the shape of the spheroid and the values
of shape-related properties including InverseFlattening and
Eccentricity.

The only way to change the SemimajorAxis property is to set it
directly.

DataType: Positive, finite scalar.

Default: 1

SemiminorAxis

Distance from center of spheroid to pole, b

The value is always less than or equal to SemimajorAxis
property. When set to a new value, the SemimajorAxis property
remains unchanged, but the shape of the spheroid changes, which
is reflected in changes in the values of InverseFlattening,
Eccentricity, and other shape-related properties.

DataType: Nonnegative, finite scalar.

Default: 1

InverseFlattening

3-953

referenceEllipsoid

Reciprocal of flattening

1/f = a/(a-b), where a and b are semimajor and semiminor
axes. A value of 1/f = Inf designates a perfect sphere. As 1/f
value approaches 1, the spheroid approaches a flattened disk.
When set to a new value, other shape-related properties update,
including Eccentricity. The SemimajorAxis value is unaffected
by changes to 1/f, but the value of the SemiminorAxis property
adjusts to reflect the new shape.

DataType: Positive scalar in the interval [1 Inf].

Default: Inf

Eccentricity

First eccentricity of spheroid

ecc = sqrt(a^2-b^2)/a. A value of 0 designates a perfect
sphere. When set to a new value, other shape-related properties
update, including InverseFlattening. The SemimajorAxis
value is unaffected by changes to ecc, but the value of the
SemiminorAxis property adjusts to reflect the new shape.

DataType: Nonnegative scalar less than or equal to 1.

Default: 0

Flattening

Flattening of spheroid

f = (a-b)/a, where a and b are semimajor and semiminor axes
of the spheroid.

Access: Read only

ThirdFlattening

Third flattening of spheroid

3-954

referenceEllipsoid

n = (a-b)/(a+b), where a and b are semimajor and semiminor
axes of spheroid.

Access: Read only

MeanRadius

Mean radius of spheroid, (2*a+b)/3

The MeanRadius property uses the same unit of length as the
SemimajorAxis and SemiminorAxis properties.

Access: Read only

SurfaceArea

Surface area of spheroid

The SurfaceArea is expressed in units of area consistent with the
unit of length used for the SemimajorAxis and SemiminorAxis
properties.

Access: Read only

Volume

Volume of spheroid

The Volume is expressed in units of volume consistent with the
unit of length used for the SemimajorAxis and SemiminorAxis
properties.

Access: Read only

Note When you define a spheroid in terms of semimajor and semiminor
axes (rather than semimajor axis and inverse flattening or semimajor
axis and eccentricity), a small loss of precision in the last few digits of
f, ecc, and n is possible. This is unavoidable, but does not affect the
results of practical computation.

3-955

referenceEllipsoid

Methods
ecef2geodetic Transform geocentric (ECEF) to

geodetic coordinates

ecefOffset Cartesian ECEF offset between
geodetic positions

geodetic2ecef Transform geodetic to geocentric
(ECEF) coordinates

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects

Examples Construct a GRS80 reference ellipsoid

Construct a GRS80 ellipsoid using referenceEllipsoid class.

Use the name of GRS80 ellipsoid to construct it.

e = referenceEllipsoid('Geodetic Reference System 1980')

Use EPSG code 7019 to construct the ellipsoid.

e = referenceEllipsoid(7019)

The output for both the cases is:

e =

referenceEllipsoid

Properties:
Code: 7019
Name: 'Geodetic Reference System 1980'

LengthUnit: 'meter'
SemimajorAxis: 6378137
SemiminorAxis: 6356752.31414036

InverseFlattening: 298.257222101
Eccentricity: 0.0818191910428158

3-956

referenceEllipsoid

Specify Units for GRS80 ellipsoid

Specify units while constructing a GRS80 reference ellipsoid.

You can specify a unit of length while creating the ellipsoid. The unit of
length is any string acceptable by the validateLengthUnit function.

e = referenceEllipsoid('GRS80','km')

e =

referenceEllipsoid

Properties:
Code: 7019
Name: 'Geodetic Reference System 1980'

LengthUnit: 'kilometer'
SemimajorAxis: 6378.137
SemiminorAxis: 6356.75231414036

InverseFlattening: 298.257222101
Eccentricity: 0.0818191910428158

Construct an ellipsoid from an input file

Construct an ellipsoid based on input from a file, boston.tif.

Read the boston.tif file using geotiffinfo, which will place metadata
about the ellipsoid in the field GeoTIFFCodes.Ellipsoid.

info = geotiffinfo('boston.tif');
e = referenceEllipsoid(info.GeoTIFFCodes.Ellipsoid)

e =

referenceEllipsoid

Properties:
Code: 7019
Name: 'GRS 1980'

3-957

referenceEllipsoid

LengthUnit: 'meter'
SemimajorAxis: 6378137
SemiminorAxis: 6356752.31414036

InverseFlattening: 298.257222101
Eccentricity: 0.0818191910428158

See Also oblateSpheroid | referenceSphere | validateLengthUnit |
wgs84Ellipsoid

3-958

referenceEllipsoid.geodetic2ecef

Purpose Transform geodetic to geocentric (ECEF) coordinates

Syntax [X,Y,Z] = geodetic2ecef(spheroid,lat,lon,h)
[X,Y,Z] = geodetic2ecef(___ , angleUnit)

Description [X,Y,Z] = geodetic2ecef(spheroid,lat,lon,h) returns
Earth-Centered Earth-Fixed (ECEF) spheroid-centric Cartesian
coordinates corresponding to geodetic coordinates lat, lon, h. Any of
the three numerical arguments can be scalar, even when the others are
nonscalar; but all nonscalar numeric arguments must match in size.

[X,Y,Z] = geodetic2ecef(___ , angleUnit) adds angleUnit which
specifies the units of inputs lat and lon.

Input
Arguments

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

lat - Geodetic latitudes
scalar value | vector | matrix | N-D array

Geodetic latitudes of one or more points, specified as a scalar
value, vector, matrix, or N-D array. Values must be in units
that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

lon - Longitudes
scalar value | vector | matrix | N-D array

Longitudes of one or more points, specified as a scalar value,
vector, matrix, or N-D array. Values must be in units that match
the input argument angleUnit, if supplied, and in degrees,
otherwise.

3-959

referenceEllipsoid.geodetic2ecef

Data Types
single | double

h - Ellipsoidal heights
scalar value | vector | matrix | N-D array

Ellipsoidal heights of one or more points, specified as a scalar
value, vector, matrix, or N-D array. Values must be in units that
match the LengthUnit property of the spheroid object.

Data Types
single | double

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

X - ECEF x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the spheroid-centric
ECEF system, returned as a scalar value, vector, matrix, or N-D
array. Units are determined by the LengthUnit property of the
spheroid object.

Y - ECEF y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the spheroid-centric
ECEF system, returned as a scalar value, vector, matrix, or N-D
array. Units are determined by the LengthUnit property of the
spheroid object.

Z - ECEF y-coordinates
scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the spheroid-centric ECEF
system, returned as a scalar value, vector, matrix, or N-D

3-960

referenceEllipsoid.geodetic2ecef

array. Units are determined by the LengthUnit property of the
spheroid object.

See Also referenceEllipsoid.ecef2geodetic |
refereceEllipsoid.ecefOffset |

3-961

referenceEllipsoid.ecef2geodetic

Purpose Transform geocentric (ECEF) to geodetic coordinates

Syntax [lat,lon,h] = ecef2geodetic(spheroid,X,Y,Z)
[lat,lon,h] = ecef2geodetic(___ , angleUnit)

Description [lat,lon,h] = ecef2geodetic(spheroid,X,Y,Z)returns geodetic
coordinates corresponding to coordinates X, Y, Z in an Earth-Centered
Earth-Fixed (ECEF) spheroid-centric Cartesian system. Any of the
three numerical arguments can be scalar, even when the others are
nonscalar; but all nonscalar numeric arguments must match in size.

[lat,lon,h] = ecef2geodetic(___ , angleUnit) adds angleUnit
which specifies the units of outputs lat and lon.

Input
Arguments

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

X - ECEF x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the spheroid-centric ECEF
system, specified as a scalar value, vector, matrix, or N-D array.
Values must be in units that match the LengthUnit property of
the spheroid object.

Data Types
single | double

Y - ECEF y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the spheroid-centric ECEF
system, specified as a scalar value, vector, matrix, or N-D array.
Values must be in units that match the LengthUnit property of
the spheroid object.

3-962

referenceEllipsoid.ecef2geodetic

Data Types
single | double

Z - ECEF z-coordinates
scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the spheroid-centric ECEF
system, specified as a scalar value, vector, matrix, or N-D array.
Values must be in units that match the LengthUnit property of
the spheroid object.

Data Types
single | double

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

lat - Geodetic latitudes
scalar value | vector | matrix | N-D array

Geodetic latitudes of one or more points, returned as a scalar
value, vector, matrix, or N-D array. Units are determined by the
input argument angleUnit, if supplied; values are in degrees,
otherwise. When in degrees, they lie in the closed interval [-90 90].

lon - Longitudes
scalar value | vector | matrix | N-D array

Longitudes of one or more points, returned as a scalar value,
vector, matrix, or N-D array. Units are determined by the
input argument angleUnit, if supplied; values are in degrees,
otherwise. When in degrees, they lie in the interval [-180 180].

h - Ellipsoidal heights
scalar value | vector | matrix | N-D array

3-963

referenceEllipsoid.ecef2geodetic

Ellipsoidal heights of one or more points, returned as a scalar
value, vector, matrix, or N-D array. Units are determined by the
LengthUnit property of the spheroid object

See Also referenceEllipsoid.geodetic2ecef |
referenceEllipsoid.ecefOffset |

3-964

referenceEllipsoid.ecefOffset

Purpose Cartesian ECEF offset between geodetic positions

Syntax [U,V,W] = ecefOffset(spheroid,lat1,lon1,h1,lat2,lon2,h2)
[U,V,W] = ecefOffset(___ , angleUnit)

Description [U,V,W] = ecefOffset(spheroid,lat1,lon1,h1,lat2,lon2,h2)
returns the components of the 3-D offset vector from an initial geodetic
position specified bylat1,lon1,h1 to a final position specified by
lat2,lon2,h2 with respect to an Earth-Centered Earth-Fixed (ECEF)
spheroid-centric Cartesian system. Any of the six numerical arguments
can be scalar, even when the others are nonscalar; but all nonscalar
numeric arguments must match in size.

[U,V,W] = ecefOffset(___ , angleUnit) adds angleUnit which
specifies the units of inputs lat1, lon1, lat2, and lon2.

Input
Arguments

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

lat1 - Initial geodetic latitudes
scalar value | vector | matrix | N-D array

Geodetic latitudes of one or more initial positions, specified as
a scalar value, vector, matrix, or N-D array. Values must be in
units that match the input argument angleUnit, if supplied, and
in degrees, otherwise.

Data Types
single | double

lon1 - Initial longitudes
scalar value | vector | matrix | N-D array

Longitudes of one or more initial positions, specified as a scalar
value, vector, matrix, or N-D array. Values must be in units that
match the input argument angleUnit, if supplied, and in degrees,
otherwise.

3-965

referenceEllipsoid.ecefOffset

Data Types
single | double

h1 - Initial ellipsoidal heights
scalar value | vector | matrix | N-D array

Ellipsoidal heights of one or more initial positions, specified as
a scalar value, vector, matrix, or N-D array. Values must be in
units that match the LengthUnit property of the spheroid object.

Data Types
single | double

lat2 - Final geodetic latitudes
scalar value | vector | matrix | N-D array

Geodetic latitudes of one or more final positions, specified as
a scalar value, vector, matrix, or N-D array. Values must be in
units that match the input argument angleUnit, if supplied, and
in degrees, otherwise.

Data Types
single | double

lon2 - Final longitudes
scalar value | vector | matrix | N-D array

Longitudes of one or more final positions, specified as a scalar
value, vector, matrix, or N-D array. Values must be in units that
match the input argument angleUnit, if supplied, and in degrees,
otherwise.

Data Types
single | double

h2 - Final ellipsoidal heights
scalar value | vector | matrix | N-D array

Ellipsoidal heights of one or more final positions, specified as a
scalar value, vector, matrix, or N-D array. Values must be in
units that match the LengthUnit property of the spheroid object.

3-966

referenceEllipsoid.ecefOffset

Data Types
single | double

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

U - Offset vector x-components in ECEF system
scalar value | vector | matrix | N-D array

x-components of one or more Cartesian offset vectors in the
spheroid-centric ECEF system, returned as a scalar value, vector,
matrix, or N-D array. Values equal the difference in ECEF
x-coordinates between initial and final positions. Units are
determined by the LengthUnit property of the spheroid object.

V - Offset vector y-components in ECEF system
scalar value | vector | matrix | N-D array

y-components of one or more Cartesian offset vectors in the
spheroid-centric ECEF system, returned as a scalar value, vector,
matrix, or N-D array. Values equal the difference in ECEF
y-coordinates between initial and final positions. Units are
determined by the LengthUnit property of the spheroid object.

W - Offset vector z-components in ECEF system
scalar value | vector | matrix | N-D array

z-components of one or more Cartesian offset vectors in the
spheroid-centric ECEF system, returned as a scalar value, vector,
matrix, or N-D array. Values equal the difference in ECEF
z-coordinates between initial and final positions. Units are
determined by the LengthUnit property of the spheroid object.

See Also referenceEllipsoid.geodetic2ecef |
referenceEllipsoid.ecef2geodetic |

3-967

referenceSphere

Purpose Reference sphere

Description A referenceSphere object represents a sphere with a specific name
and radius that you can use in map projections and other geodetic
operations.

Construction S = referenceSphere returns a reference sphere object representing a
unit sphere.

S = referenceSphere(name) returns a reference sphere object
corresponding to the string, name, which specifies an approximately
spherical body. The radius of the reference sphere is given in meters.

S = referenceSphere(name, lengthUnit) returns a reference sphere
with radius given in the specified unit of length, lengthUnit.

Input Arguments

name

Name of reference sphere

One of the following values: 'unit sphere', 'earth',
'sun', 'moon', 'mercury', 'venus', 'mars', 'jupiter',
'saturn', 'uranus', 'neptune', 'pluto'. Name is
case-insensitive.

DataType: String.

lengthUnit

Unit of length for radius

lengthUnit can be any length unit string supported by
validateLengthUnit.

Properties Name

Name of reference sphere

A string naming or describing the reference sphere.

3-968

referenceSphere

Default: 'Unit Sphere'.

LengthUnit

Unit of length for radius

The empty string, or any unit of length string accepted by the
validateLengthUnit function.

Default: ''.

Radius

Radius of sphere

DataType: Positive, finite scalar.

Default: 1.

SemimajorAxis

Equatorial radius of sphere a = Radius

The SemimajorAxis property is equal to Radius.

Access: Read only

SemiminorAxis

Distance from center of sphere to pole, b = Radius

Its value is equal to Radius.

Access: Read only

InverseFlattening

Reciprocal of flattening, 1/f = Inf

The InverseFlattening property provides consistency with the
oblateSpheroid class. Its value is always Inf.

Access: Read only

Eccentricity

First eccentricity of sphere, ecc = 0

3-969

referenceSphere

The Eccentricity property provides consistency with the
oblateSpheroid class. Its value is always 0.

Access: Read only

Flattening

Flattening of sphere, f = 0

The Flattening property provides consistency with the
oblateSpheroid class. Its value is always 0.

Access: Read only

ThirdFlattening

Third flattening of sphere, n = 0

The ThirdFlattening property provides consistency with the
oblateSpheroid class. Its value is always 0.

Access: Read only

MeanRadius

Mean radius of sphere

The MeanRadius property provides consistency with the
oblateSpheroid class. Its value is always equal to Radius.

Access: Read only

SurfaceArea

Surface area of sphere

The surface area of the sphere has units consistent with the
LengthUnit property. For example, if LengthUnit is 'kilometer'
then SurfaceArea is in square kilometers.

Access: Read only

Volume

Volume of sphere

3-970

referenceSphere

The volume of the sphere has units consistent with the
LengthUnit property. For example, if LengthUnit is 'kilometer'
then Volume is in cubic kilometers.

Access: Read only

Methods
ecef2geodetic Transform geocentric (ECEF) to

geodetic coordinates

ecefOffset Cartesian ECEF offset between
geodetic positions

geodetic2ecef Transform geodetic to geocentric
(ECEF) coordinates

Copy
Semantics

Value. To learn how value classes affect copy operations, see Copying
Objects.

Examples Create a Model of Earth in Kilometers

Create a model of earth in kilometers using the referenceSphere
object.

Construct a reference sphere that models the Earth as a sphere with a
radius of 6371000 meters. Then switch the unit of length to kilometers.

s = referenceSphere('Earth')
s.LengthUnit = 'kilometer'

s =

referenceSphere

Properties:
Name: 'Earth'

LengthUnit: 'meter'
Radius: 6371000

3-971

referenceSphere

s =

referenceSphere

Properties:
Name: 'Earth'

LengthUnit: 'kilometer'
Radius: 6371

Determine the surface area of the sphere in square kilometers.

s.SurfaceArea

ans =

5.1006e+08

Find the volume of the sphere in cubic kilometers.

s.Volume

ans =

1.0832e+12

See Also referenceEllipsoid | validateLengthUnit

3-972

referenceSphere.geodetic2ecef

Purpose Transform geodetic to geocentric (ECEF) coordinates

Syntax [X,Y,Z] = geodetic2ecef(spheroid,lat,lon,h)
[X,Y,Z] = geodetic2ecef(___ , angleUnit)

Description [X,Y,Z] = geodetic2ecef(spheroid,lat,lon,h) returns
Earth-Centered Earth-Fixed (ECEF) spheroid-centric Cartesian
coordinates corresponding to geodetic coordinates lat, lon, h. Any of
the three numerical arguments can be scalar, even when the others are
nonscalar; but all nonscalar numeric arguments must match in size.

[X,Y,Z] = geodetic2ecef(___ , angleUnit) adds angleUnit which
specifies the units of inputs lat and lon.

Input
Arguments

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

lat - Geodetic latitudes
scalar value | vector | matrix | N-D array

Geodetic latitudes of one or more points, specified as a scalar
value, vector, matrix, or N-D array. Values must be in units
that match the input argument angleUnit, if supplied, and in
degrees, otherwise.

Data Types
single | double

lon - Longitudes
scalar value | vector | matrix | N-D array

Longitudes of one or more points, specified as a scalar value,
vector, matrix, or N-D array. Values must be in units that match
the input argument angleUnit, if supplied, and in degrees,
otherwise.

3-973

referenceSphere.geodetic2ecef

Data Types
single | double

h - Ellipsoidal heights
scalar value | vector | matrix | N-D array

Ellipsoidal heights of one or more points, specified as a scalar
value, vector, matrix, or N-D array. Values must be in units that
match the LengthUnit property of the spheroid object.

Data Types
single | double

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

X - ECEF x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the spheroid-centric
ECEF system, returned as a scalar value, vector, matrix, or N-D
array. Units are determined by the LengthUnit property of the
spheroid object.

Y - ECEF y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the spheroid-centric
ECEF system, returned as a scalar value, vector, matrix, or N-D
array. Units are determined by the LengthUnit property of the
spheroid object.

Z - ECEF y-coordinates
scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the spheroid-centric ECEF
system, returned as a scalar value, vector, matrix, or N-D

3-974

referenceSphere.geodetic2ecef

array. Units are determined by the LengthUnit property of the
spheroid object.

See Also referenceSphere.ecef2geodetic | referenceSphere.ecefOffset |

3-975

referenceSphere.ecef2geodetic

Purpose Transform geocentric (ECEF) to geodetic coordinates

Syntax [lat,lon,h] = ecef2geodetic(spheroid,X,Y,Z)
[lat,lon,h] = ecef2geodetic(___ , angleUnit)

Description [lat,lon,h] = ecef2geodetic(spheroid,X,Y,Z)returns geodetic
coordinates corresponding to coordinates X, Y, Z in an Earth-Centered
Earth-Fixed (ECEF) spheroid-centric Cartesian system. Any of the
three numerical arguments can be scalar, even when the others are
nonscalar; but all nonscalar numeric arguments must match in size.

[lat,lon,h] = ecef2geodetic(___ , angleUnit) adds angleUnit
which specifies the units of outputs lat and lon.

Input
Arguments

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

X - ECEF x-coordinates
scalar value | vector | matrix | N-D array

x-coordinates of one or more points in the spheroid-centric ECEF
system, specified as a scalar value, vector, matrix, or N-D array.
Values must be in units that match the LengthUnit property of
the spheroid object.

Data Types
single | double

Y - ECEF y-coordinates
scalar value | vector | matrix | N-D array

y-coordinates of one or more points in the spheroid-centric ECEF
system, specified as a scalar value, vector, matrix, or N-D array.
Values must be in units that match the LengthUnit property of
the spheroid object.

3-976

referenceSphere.ecef2geodetic

Data Types
single | double

Z - ECEF z-coordinates
scalar value | vector | matrix | N-D array

z-coordinates of one or more points in the spheroid-centric ECEF
system, specified as a scalar value, vector, matrix, or N-D array.
Values must be in units that match the LengthUnit property of
the spheroid object.

Data Types
single | double

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

lat - Geodetic latitudes
scalar value | vector | matrix | N-D array

Geodetic latitudes of one or more points, returned as a scalar
value, vector, matrix, or N-D array. Units are determined by the
input argument angleUnit, if supplied; values are in degrees,
otherwise. When in degrees, they lie in the closed interval [-90 90].

lon - Longitudes
scalar value | vector | matrix | N-D array

Longitudes of one or more points, returned as a scalar value,
vector, matrix, or N-D array. Units are determined by the
input argument angleUnit, if supplied; values are in degrees,
otherwise. When in degrees, they lie in the interval [-180 180].

h - Ellipsoidal heights
scalar value | vector | matrix | N-D array

3-977

referenceSphere.ecef2geodetic

Ellipsoidal heights of one or more points, returned as a scalar
value, vector, matrix, or N-D array. Units are determined by the
LengthUnit property of the spheroid object

See Also referenceSphere.geodetic2ecef | referenceSphere.ecefOffset |

3-978

referenceSphere.ecefOffset

Purpose Cartesian ECEF offset between geodetic positions

Syntax [U,V,W] = ecefOffset(spheroid,lat1,lon1,h1,lat2,lon2,h2)
[U,V,W] = ecefOffset(___ , angleUnit)

Description [U,V,W] = ecefOffset(spheroid,lat1,lon1,h1,lat2,lon2,h2)
returns the components of the 3-D offset vector from an initial geodetic
position specified bylat1,lon1,h1 to a final position specified by
lat2,lon2,h2 with respect to an Earth-Centered Earth-Fixed (ECEF)
spheroid-centric Cartesian system. Any of the six numerical arguments
can be scalar, even when the others are nonscalar; but all nonscalar
numeric arguments must match in size.

[U,V,W] = ecefOffset(___ , angleUnit) adds angleUnit which
specifies the units of inputs lat1, lon1, lat2, and lon2.

Input
Arguments

spheroid - Reference spheroid
scalar referenceEllipsoid | oblateSpheroid | referenceSphere object

Reference spheroid, specified as a scalar referenceEllipsoid,
oblateSpheroid, or referenceSphere object.

lat1 - Initial geodetic latitudes
scalar value | vector | matrix | N-D array

Geodetic latitudes of one or more initial positions, specified as
a scalar value, vector, matrix, or N-D array. Values must be in
units that match the input argument angleUnit, if supplied, and
in degrees, otherwise.

Data Types
single | double

lon1 - Initial longitudes
scalar value | vector | matrix | N-D array

Longitudes of one or more initial positions, specified as a scalar
value, vector, matrix, or N-D array. Values must be in units that
match the input argument angleUnit, if supplied, and in degrees,
otherwise.

3-979

referenceSphere.ecefOffset

Data Types
single | double

h1 - Initial ellipsoidal heights
scalar value | vector | matrix | N-D array

Ellipsoidal heights of one or more initial positions, specified as
a scalar value, vector, matrix, or N-D array. Values must be in
units that match the LengthUnit property of the spheroid object.

Data Types
single | double

lat2 - Final geodetic latitudes
scalar value | vector | matrix | N-D array

Geodetic latitudes of one or more final positions, specified as
a scalar value, vector, matrix, or N-D array. Values must be in
units that match the input argument angleUnit, if supplied, and
in degrees, otherwise.

Data Types
single | double

lon2 - Final longitudes
scalar value | vector | matrix | N-D array

Longitudes of one or more final positions, specified as a scalar
value, vector, matrix, or N-D array. Values must be in units that
match the input argument angleUnit, if supplied, and in degrees,
otherwise.

Data Types
single | double

h2 - Final ellipsoidal heights
scalar value | vector | matrix | N-D array

Ellipsoidal heights of one or more final positions, specified as a
scalar value, vector, matrix, or N-D array. Values must be in
units that match the LengthUnit property of the spheroid object.

3-980

referenceSphere.ecefOffset

Data Types
single | double

angleUnit - Units of angles
'degrees' (default) | 'radians'

Units of angles, specified as ‘degrees’ (default), or ’radians’.

Data Types
char

Output
Arguments

U - Offset vector x-components in ECEF system
scalar value | vector | matrix | N-D array

x-components of one or more Cartesian offset vectors in the
spheroid-centric ECEF system, returned as a scalar value, vector,
matrix, or N-D array. Values equal the difference in ECEF
x-coordinates between initial and final positions. Units are
determined by the LengthUnit property of the spheroid object.

V - Offset vector y-components in ECEF system
scalar value | vector | matrix | N-D array

y-components of one or more Cartesian offset vectors in the
spheroid-centric ECEF system, returned as a scalar value, vector,
matrix, or N-D array. Values equal the difference in ECEF
y-coordinates between initial and final positions. Units are
determined by the LengthUnit property of the spheroid object.

W - Offset vector z-components in ECEF system
scalar value | vector | matrix | N-D array

z-components of one or more Cartesian offset vectors in the
spheroid-centric ECEF system, returned as a scalar value, vector,
matrix, or N-D array. Values equal the difference in ECEF
z-coordinates between initial and final positions. Units are
determined by the LengthUnit property of the spheroid object.

See Also referenceSphere.geodetic2ecef | referenceSphere.ecef2geodetic
|

3-981

refmat2vec

Purpose Convert referencing matrix to referencing vector

Syntax refvec = refmat2vec(R,s)

Description refvec = refmat2vec(R,s) converts a referencing matrix, R, to the
three-element referencing vector refvec. R is a 3-by-2 referencing
matrix defining a two-dimensional affine transformation from pixel
coordinates to spatial coordinates. s is the size of the array (data grid)
that is being referenced. refvec is a 1-by-3 referencing vector having
elements [cells/degree north-latitude west-longitude] with
latitude and longitude limits specified in degrees.

Examples % Verify the conversion of the geoid referencing vector to a
% referencing matrix.
load geoid;
R = refvec2mat(geoidlegend, size(geoid));
V = refmat2vec(R, size(geoid));

See Also makerefmat | refvec2mat

3-982

refvec2mat

Purpose Convert referencing vector to referencing matrix

Syntax R = refvec2mat(refvec,s)

Description R = refvec2mat(refvec,s) converts a referencing vector, refvec, to
the referencing matrix R. refvec is a 1-by-3 referencing vector having
elements [cells/degree north-latitude west-longitude] with
latitude and longitude limits specified in degrees. s is the size of the
array (data grid) that is being referenced. R is a 3-by-2 referencing
matrix defining a two-dimensional affine transformation from pixel
coordinates to spatial coordinates.

Examples % Convert the geoid referencing vector to a referencing matrix
load geoid;

R = refvec2mat(geoidlegend, size(geoid));

See Also makerefmat | refmat2vec

3-983

refmatToGeoRasterReference

Purpose Referencing matrix to GeoRasterReference object

Syntax R = refmatToGeoRasterReference(refmat, rasterSize)
R = refmatToGeoRasterReference(refmat,
rasterSize, func_name,

var_name, arg_pos)
R = refmatToGeoRasterReference(Rin, rasterSize, ...)

Description R = refmatToGeoRasterReference(refmat, rasterSize) constructs
a spatialref.GeoRasterReference object, R, from a referencing matrix,
refmat, and a size vector, rasterSize.

R = refmatToGeoRasterReference(refmat, rasterSize,
func_name, var_name, arg_pos) uses up to three optional arguments
to provide additional information. This information is used to construct
error messages if either the refmat or rasterSize inputs turn out
to be invalid. Thus, you can use refmatToGeoRasterReference for
both validating and converting a referencing matrix. The optional
inputs work just like their counterparts in the MATLAB function
validateattributes.

R = refmatToGeoRasterReference(Rin, rasterSize, ...), where
Rin is a spatialref.GeoRasterReference object, verifies that
Rin.RasterSize is consistent with rasterSize, then copies Rin to R.

Input
Arguments

refmat

Any valid referencing matrix subject to the two following constraints.
First, the matrix must lead to valid latitude and longitude limits when
combined with rasterSize. Second, the matrix columns and rows must
be aligned with meridians and parallels, respectively.

rasterSize

Size vector [M N ...] specifying the number of rows (M) and columns
(N) in the raster or image to be associated with the GeoRasterReference
object, R. For convenience, rasterSize may be a row vector with more

3-984

refmatToGeoRasterReference

than two elements. This flexibility allows you to specify the size in the
following way:

R = refmatToGeoRasterReference(refmat, size(RGB))

where RGB is M-by-N-by-3. However, in such cases, only the first two
elements of the size vector are actually used. The higher (non-spatial)
dimensions are ignored.

func_name

String that specifies the name used in the formatted error message to
identify the function checking the input.

var_name

String that specifies the name used in the formatted error message to
identify the referencing matrix.

arg_pos

Positive integer that indicates the position of the referencing matrix
checked in the function argument list. refmatToGeoRasterReference
includes this information in the formatted error message.

Rin

spatialref.GeoRasterReference object.

Output
Arguments

R

spatialref.GeoRasterReference object, R.

Examples Convert a referencing matrix to a spatialref.GeoRasterReference
object:

% Construct a referencing matrix for a regular grid that covers the
% entire globe with 1-degree cells.
rasterSize = [180 360];
refmat = makerefmat(...

3-985

refmatToGeoRasterReference

'RasterSize', rasterSize, 'Latlim', [-90 90], ...
'Lonlim', [0 360])

% Convert to a spatialref.GeoRasterReference object.
R = refmatToGeoRasterReference(refmat, rasterSize)

% For comparison, construct a referencing object directly.
georasterref(...

'RasterSize', rasterSize, 'Latlim', [-90 90], 'Lonlim', [0 360])

See Also georasterref | refvecToGeoRasterReference

3-986

refmatToMapRasterReference

Purpose Referencing matrix to MapRasterReference object

Syntax R = refmatToMapRasterReference(refmat, rasterSize)
R = refmatToMapRasterReference(refmat,
rasterSize, func_name,

var_name, arg_pos)
R = refmatToMapRasterReference(Rin, rasterSize, ...)

Description R = refmatToMapRasterReference(refmat, rasterSize) constructs
a spatialref.MapRasterReference object, R, from a referencing
matrix, remat, and size vector, rasterSize.

R = refmatToMapRasterReference(refmat, rasterSize,
func_name, var_name, arg_pos) uses up to three optional arguments
to provide additional information. This information is used to construct
error messages if either the refmat or rasterSize inputs turn out
to be invalid. Thus, you can use refmatToMapRasterReference for
both validating and converting a referencing matrix. The optional
inputs work just like their counterparts in the MATLAB function
validateattributes.

R = refmatToMapRasterReference(Rin, rasterSize, ...) verifies
that Rin.RasterSize is consistent with rasterSize, then copies Rin
to R.

Input
Arguments

refmat

Referencing matrix

rasterSize

Size vector [M N ...] specifying the number of rows (M) and columns
(N) in the raster or image to be associated with the MapRasterReference
object, R. For convenience, rasterSize may be a row vector with more
than two elements. This flexibility allows you to specify the size in the
following way:

R = refmatToMapRasterReference(refmat, size(RGB))

3-987

refmatToMapRasterReference

where RGB is M-by-N-by-3. However, in such cases, only the first two
elements of the size vector are actually used. The higher (non-spatial)
dimensions are ignored.

func_name

String that specifies the name used in the formatted error message to
identify the function checking the input.

var_name

String that specifies the name used in the formatted error message to
identify the referencing matrix.

arg_pos

Positive integer that indicates the position of the referencing matrix
checked in the function argument list. refmatToMapRasterReference
includes this information in the formatted error message.

R_in

spatialref.MapRasterReference object

Output
Arguments

R

spatialref.MapRasterReference object

Examples Try converting a referencing matrix manually versus using the
maprasterref function.

% Import a referencing matrix from a world file for a
% 2000-by-2000 orthoimage referenced to the Massachusetts
% State Plane Mainland coordinate system.
refmat = worldfileread('concord_ortho_e.tfw')

% Import the corresponding TIFF image and use its size to
% help convert the referencing matrix to a referencing object.
[X, cmap] = imread('concord_ortho_e.tif');

3-988

refmatToMapRasterReference

R = refmatToMapRasterReference(refmat, size(X))

% Use the mapbbox function to obtain the map limits independently
% of the referencing object.
bbox = mapbbox(refmat, size(X))
xLimWorld = bbox(:,1)'; % Transpose the first column
yLimWorld = bbox(:,2)'; % Transpose the second column

% Construct a referencing object directly, for comparison.
maprasterref('RasterSize', size(X), 'ColumnsStartFrom', 'north', ...

'XLimWorld', xLimWorld, 'YLimWorld', yLimWorld)

See Also maprasterref | refmatToGeoRasterReference

3-989

refmatToWorldFileMatrix

Purpose Convert referencing matrix to world file matrix

Syntax W = refmatToWorldFileMatrix(refmat)

Description W = refmatToWorldFileMatrix(refmat) converts the 3-by-2
referencing matrix refmat to a 2-by-3 world file matrix W.

Definitions Referencing Matrix

See makerefmat.

World File Matrix for Planar System

See spatialref.MapRasterReference.worldFileMatrix.

World File Matrix for Geographic System

See spatialref.GeoRasterReference.worldFileMatrix.

See Also worldFileMatrixToRefmat

3-990

refvecToGeoRasterReference

Purpose Referencing vector to GeoRasterReference object

Syntax R = refvecToGeoRasterReference(refvec, rasterSize)
R = refvecToGeoRasterReference(refvec,
rasterSize, func_name,

var_name, arg_pos)
R = refvecToGeoRasterReference(Rin, rasterSize, ...)

Description R = refvecToGeoRasterReference(refvec, rasterSize) constructs
a spatialref.GeoRasterReference object, R, from a referencing vector,
refvec, and a size vector, rasterSize.

R = refvecToGeoRasterReference(refvec, rasterSize,
func_name, var_name, arg_pos) uses up to three optional arguments
to provide additional information. This information is used to construct
error messages if either the refvec or rasterSize inputs turn out
to be invalid. Thus, you can use refvecToGeoRasterReference for
both validating and converting a referencing vector. The optional
inputs work just like their counterparts in the MATLAB function
validateattributes.

R = refvecToGeoRasterReference(Rin, rasterSize, ...) verifies
that Rin.RasterSize is consistent with rasterSize, then copies Rin
to R.

Input
Arguments

refvec

Any valid 1-by-3 referencing vector, as long as the cell size 1/refvec(1),
northwest corner latitude refvec(2), and northwest corner longitude
refvec(3) lead to valid latitude and longitude limits when combined
with the rasterSize vector.

rasterSize

Size vector [M N ...] specifying the number of rows (M) and columns
(N) in the raster or image to be associated with the GeoRasterReference
object, R.

3-991

refvecToGeoRasterReference

func_name

String that specifies the name used in the formatted error message to
identify the function checking the input.

var_name

String that specifies the name used in the formatted error message
to identify the referencing vector.

arg_pos

Positive integer that indicates the position of the referencing vector
checked in the function argument list. refvecToGeoRasterReference
includes this information in the formatted error message.

Rin

spatialref.GeoRasterReference object.

Output
Arguments

R

spatialref.GeoRasterReference object, R.

Examples Try converting a referencing vector manually versus using the
georasterref function.

% Construct a referencing vector for a regular 180-by-240 grid
% covering an area that includes the Korean Peninsula, with 12 cells
% per degree.
refvec = [12 45 115];

% Convert to a spatialref.GeoRasterReference object:
rasterSize = [180 240];
R = refvecToGeoRasterReference(refvec, rasterSize)

% For comparison, construct a referencing object directly:
[latlim, lonlim] = limitm(zeros(rasterSize), refvec);
georasterref('RasterSize', rasterSize, 'Latlim', latlim, ...

3-992

refvecToGeoRasterReference

'Lonlim', lonlim)

See Also georasterref | refmatToGeoRasterReference

3-993

removeExtraNanSeparators

Purpose Clean up NaN separators in polygons and lines

Syntax [xdata, ydata] = removeExtraNanSeparators(xdata,ydata)
[xdata, ydata, zdata] = removeExtraNanSeparators(xdata,ydata,

zdata)

Description [xdata, ydata] = removeExtraNanSeparators(xdata,ydata)
removes NaNs from the vectors xdata and ydata, leaving only isolated
NaN separators. If present, one or more leading NaNs are removed
entirely. If present, a single trailing NaN is preserved. NaNs are removed,
but never added, so if the input lacks a trailing NaN, so will the output.
xdata and ydata must match in size and have identical NaN locations.

[xdata, ydata, zdata] =
removeExtraNanSeparators(xdata,ydata,zdata) removes NaNs
from the vectors xdata, ydata, and zdata, leaving only isolated NaN
separators and optionally, if consistent with the input, a single
trailing NaN.

Examples xin = [NaN NaN 1:3 NaN 4:5 NaN NaN NaN 6:9 NaN NaN];
yin = xin;
[xout, yout] = removeExtraNanSeparators(xin, yin);
xout

xout =
1 2 3 NaN 4 5 NaN 6 7 8 9 NaN

xin = [NaN 1:3 NaN NaN 4:5 NaN NaN NaN 6:9]'
yin = xin;
zin = xin;
[xout, yout, zout] = removeExtraNanSeparators(xin, yin, zin);
xout

xout =
1
2
3

3-994

removeExtraNanSeparators

NaN
4
5

NaN
6
7
8
9

3-995

resizem

Purpose Resize regular data grid

Syntax Z = resizem(Z1,scale)
Z = resizem(Z1,[numrows numcols])
[Z,R] = resizem(Z1,scale,R1)
[Z,R] = resizem(Z1,[numrows numcols],R1)
[...] = resizem(..., method)

Description Z = resizem(Z1,scale) returns a regular data grid Z that is scale
times the size of the input, Z1. resizem uses interpolation to resample
to a new sample density/cell size. If scale is between 0 and 1, the size
of Z is smaller than the size of Z1. If scale is greater than 1, the size
of Z is larger. For example, if scale is 0.5, the number of rows and the
number of columns will be halved. By default, resizem uses nearest
neighbor interpolation.

Z = resizem(Z1,[numrows numcols]) resizes Z1 to have numrows
rows and numcols columns. numrows and numcols must be positive
whole numbers.

[Z,R] = resizem(Z1,scale,R1) or [Z,R] = resizem(Z1,[numrows
numcols],R1) resizes a regular data grid that is spatially referenced
by R1. R1 can be a referencing vector, a referencing matrix, or a
spatialref.GeoRasterReference object.

If R1 is a spatialref.GeoRasterReference object, its
RasterSize property must be consistent with size(Z1) and its
RasterInterpretation must be 'cells'.

If R1 is a referencing vector, it must be a 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R1 is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to/from geographic coordinates according to:

[lon lat] = [row col 1] * R1

3-996

resizem

If R1 is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel. The output R will
be the same type as R1 (referencing object, vector, or matrix). If R1 is a
referencing vector, the form [numrows numcols] is not supported and
scale must be a scalar resizing factor.

[...] = resizem(..., method) resizes a regular data grid using one
of the following three interpolation methods:

Method Description

'nearest' nearest neighbor interpolation (default)

'bilinear' bilinear interpolation

'bicubic' bicubic interpolation

If the grid size is being reduced (scale is less than 1 or [numrows
numcols] is less than the size of the input grid) and method is
'bilinear' or 'bicubic', resizem applies a low-pass filter before
interpolation, to reduce aliasing. The default filter size is 11-by-11. You
can specify a different length for the default filter using:

[...] = resizem(..., method, n)

n is an integer scalar specifying the size of the filter, which is n-by-n. If
n is 0 or method is 'nearest', resizem omits the filtering step. You can
also specify your own filter h using:

[...] = resizem(..., method, h)

h is any two-dimensional FIR filter (such as those returned by Image
Processing Toolbox functions ftrans2, fwind1, fwind2, or fsamp2). If H
is specified, filtering is applied even when method is 'nearest'.

Examples Double the size of a grid then reduce it using different methods:

Z = [1 2; 3 4]

3-997

resizem

Z =
1 2
3 4

neargrid = resizem(Z,2)

neargrid =
1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

bilingrid = resizem(Z,2,'bilinear')

bilingrid =
1.0000 1.3333 1.6667 2.0000
1.6667 2.0000 2.3333 2.6667
2.3333 2.6667 3.0000 3.3333
3.0000 3.3333 3.6667 4.0000

bicubgrid = resizem(bilingrid,[3 2],'bicubic')

bicubgrid =
0.7406 1.2994
1.6616 2.3462
1.9718 2.5306

See Also filter2

3-998

restack

Purpose Restack objects within map axes

Syntax restack(h,position)

Description restack(h,position) changes the stacking position of the object h
within the axes. h can be a handle, a vector of handles to graphics
objects, or a name string recognized by handlem. Recognized position
strings are 'top', 'bottom', 'bot', 'up', or 'down'.

Examples Restack the great lakes to lie on top of conus:

figure; axesm miller

load conus

h = geoshow(gtlakelat, gtlakelon,...

'DisplayType', 'polygon', 'FaceColor', 'cyan');

geoshow(uslat, uslon,...

'DisplayType', 'polygon', 'FaceColor', [0.6 0.3 0.8])

% The great lakes were plotted first but need to be on top

% Cast handle to great lakes object to double in call to RESTACK

restack(double(h),'top')

Tips This function is the command line equivalent of the stacking buttons
in the mobjects graphical user interface. The stacking order is the
order of the children of the axes.

See Also mobjects

3-999

rhxrh

Purpose Intersection points for pairs of rhumb lines

Syntax [newlat,newlong] = rhxrh(lat1,lon1,az1,lat2,lon2,az2)
[newlat,newlon] = rhxrh(lat1,lon1,az1,lat2,lon2,az2,units)

Description [newlat,newlong] = rhxrh(lat1,lon1,az1,lat2,lon2,az2) returns
in newlat and newlon the location of the intersection point for each pair
of rhumb lines input in rhumb line notation. For example, the first line
in the pair passes through the point (lat1,lon1) and has a constant
azimuth of az1. When the two rhumb lines are identical or do not
intersect (conditions that are not, in general, apparent by inspection),
two NaNs are returned instead and a warning is displayed. The inputs
must be column vectors.

[newlat,newlon] = rhxrh(lat1,lon1,az1,lat2,lon2,az2,units)
specifies the units used, where units is any valid units string. The
default units are 'degrees'.

For any pair of rhumb lines, there are three possible intersection
conditions: the lines are identical, they intersect once, or they do not
intersect at all (except at the poles, where all nonequatorial rhumb lines
meet—this is not considered an intersection). rhxrh does not allow
multiple rhumb line intersections, although it is possible to construct
cases in which such a condition occurs. See the following discussion
of Limitations.

Rhumb line notation consists of a point on the line and the constant
azimuth of the line.

Examples Given a starting point at (10ºN,56ºW), a plane maintains a constant
heading of 35º. Another plane starts at (0º,10ºW) and proceeds at a
constant heading of 310º (–50º). Where would their two paths cross
each other?

[newlat,newlong] = rhxrh(10,-56,35,0,-10,310)

newlat =
26.9774

3-1000

rhxrh

newlong =
-43.4088

Limitations Rhumb lines are specifically helpful in navigation because they
represent lines of constant heading, whereas great circles have,
in general, continuously changing heading. In fact, the Mercator
projection was originally designed so that rhumb lines plot as straight
lines, which facilitates both manual plotting with a straightedge and
numerical calculations using a Cartesian planar representation. When
a rhumb line proceeds off the left or right edge of this representation at
some latitude, it reappears on the other edge at the same latitude and
continues on the same slope. For rhumb lines where this occurs—for
example, one with a heading of 85º—it is easy to imagine another
rhumb line, say one with a heading of 0º, repeatedly intersecting
the first. The real-world uses of rhumb lines make this merely an
intellectual exercise, however, for in practice it is always clear which
crossing line segment is relevant. The function rhxrh returns at most
one intersection, selecting in each case that line segment containing the
input starting point for its computation.

See Also gcxgc | gcxsc | scxsc | crossfix | polyxpoly | navfix

3-1001

rootlayr

Purpose Construct cell array of workspace variables for mlayers tool

Syntax rootlayr

Description rootlayr allows the mlayers tool to be used with workspace variables.
It constructs a cell array that contains all the structure variables in
the current workspace. This cell array is returned in the variable ans,
which can then be an input to mlayers. If there is an existing variable
named ans, it is overwritten.

The recommended calling procedure is rootlayr;mlayers(ans);

Examples rootlayr creates a cell array named ans, consisting of the three
structure variables in the following workspace.

whos
Name Size Bytes Class
borders 1x1 38390 struct array
lats 2345x1 18760 double array
lons 2345x1 18760 double array
nation 1x1 70224 struct array
states 1x51 254970 struct array

rootlayr
ans

ans =
[1x1 struct] 'borders'
[1x1 struct] 'nation'
[1x51 struct] 'states'

The function mlayers(ans) can now be used to activate the mlayers
tool for the structures contained in ans.

See Also mlayers

3-1002

rotatem

Purpose Transform vector map data to new origin and orientation

Syntax [lat1,lon1] = rotatem(lat,lon,origin,'forward')
[lat1,lon1] = rotatem(lat,lon,origin,'inverse')
[lat1,lon1] = rotatem(lat,lon,origin,'forward',units)
[lat1,lon1] = rotatem(lat,lon,origin,'forward',units)

Description [lat1,lon1] = rotatem(lat,lon,origin,'forward') transforms
latitude and longitude data (lat and lon) to their new coordinates (lat1
and lon1) in a coordinate system resulting from Euler angle rotations
as specified by origin. The input origin is a three- (or two-) element
vector having the form [latitude longitude orientation]. The
latitude and longitude are the coordinates of the point in the original
system, which is the center of the output system. The orientation is the
azimuth from the new origin point to the original North Pole in the new
system. If origin has only two elements, the orientation is assumed to
be 0º. This origin vector might be the output of putpole or newpole.

[lat1,lon1] = rotatem(lat,lon,origin,'inverse') transforms
latitude and longitude data (lat and lon) in a coordinate system that
has been transformed by Euler angle rotations specified by origin to
their coordinates (lat1 and lon1) in the coordinate system from which
they were originally transformed. In a sense, this undoes the 'forward'
process. Be warned, however, that if data is rotated forward and then
inverted, the final data might not be identical to the original. This is
because of roundoff and data collapse at the original and intermediate
singularities (the poles).

[lat1,lon1] = rotatem(lat,lon,origin,'forward',units) and
[lat1,lon1] = rotatem(lat,lon,origin,'forward',units) specify
the angle units of the data, where units is any recognized angle units
string. The default is 'radians'. Note that this default is different
from that of most functions.

The rotatem function transforms vector map data to a new coordinate
system.

An analytical use of the new data can be realized in conjunction with
the newpole function. If a selected point is made the north pole of

3-1003

rotatem

the new system, then when new vector data is created with rotatem,
the distance of every data point from this new north pole is its new
colatitude (90º minus latitude). The absolute difference in the great
circle azimuths between every pair of points from their new pole is the
same as the difference in their new longitudes.

Examples What are the coordinates of Rio de Janeiro (23ºS,43ºW) in a coordinate
system in which New York (41ºN,74ºW) is made the North Pole? Use
the newpole function to get the origin vector associated with putting
New York at the pole:

nylat = 41; nylon = -74;
riolat = -23; riolon = -43;
origin = newpole(nylat,nylon);
[riolat1,riolon1] = rotatem(riolat,riolon,origin,...

'forward','degrees')

riolat1 =
19.8247

riolon1 =
-149.7375

What does this mean? For one thing, the colatitude of Rio in this new
system is its distance from New York. Compare the distance between
the original points and the new colatitude:

dist = distance(nylat,nylon,riolat,riolon)

dist =
70.1753

90-riolat1

ans =
70.1753

See Also neworig | newpole | org2pol | putpole

3-1004

rotatetext

Purpose Rotate text to projected graticule

Syntax rotatetext
rotatetext(objects)
rotatetext(objects,'inverse')

Description rotatetext rotates displayed text objects to account for the curvature
of the graticule. The objects are selected interactively from a graphical
user interface.

rotatetext(objects) rotates the selected objects. objects can be a
name string recognized by handlem or a vector of handles to displayed
text objects.

rotatetext(objects,'inverse') removes the rotation added by an
earlier use of rotatetext. If omitted, 'forward' is assumed.

Examples Add text to a map and rotate the text to the graticule.

figure
worldmap('south america')
geoshow('landareas.shp','facecolor','yellow')
cities = shaperead('worldcities.shp', 'UseGeoCoords', true);
Santiago = strcmp('Santiago',{cities(:).Name});
h=textm(cities(Santiago).Lat, cities(Santiago).Lon, ...

'Santiago');
rotatetext(h)

3-1005

rotatetext

Tips You can rotate meridian and parallel labels automatically by setting
the map axes LabelRotation property to 'on'.

See Also vfwdtran | vinvtran

3-1006

roundn

Purpose Round to multiple of 10n

Syntax roundn(x,n)

Description roundn(x,n) rounds each element of x to the nearest multiple of 10n.
The variable n must be scalar, and integer-valued. For complex x, the
imaginary and real parts are rounded independently. For n = 0, roundn
gives the same result as round. That is, roundn(x,0) == round(x).

Examples Round pi to the nearest hundredth:

roundn(pi, -2)

ans =

3.1400

Round the equatorial radius of the Earth, 6378137 meters, to the
nearest kilometer:

roundn(6378137, 3)

ans =

6378000

See Also round

3-1007

rsphere

Purpose Radii of auxiliary spheres

Syntax r = rsphere('biaxial',ellipsoid)
r = rsphere('biaxial',ellipsoid,method)
r = rsphere('triaxial',ellipsoid)
r = rsphere('triaxial',ellipsoid,method)
r = rsphere('eqavol',ellipsoid)
r = rsphere('authalic',ellipsoid)
r = rsphere('rectifying',ellipsoid)
r = rsphere('curve',ellipsoid,lat)
r = rsphere('curve',ellipsoid,lat,method)
r = rsphere('euler',lat1,lon1,lat2,lon2,ellipsoid)
r = rsphere('curve', ..., angleUnits)
r = rsphere(`euler', ..., angleUnits)

Description r = rsphere('biaxial',ellipsoid) computes the arithmetic
mean i.e., (a+b)/2 where a and b are the semimajor and semiminor
axes of the specified ellipsoid. ellipsoid is a referenceSphere,
referenceEllipsoid, or oblateSpheroid object, or a vector of the form
[semimajor_axis eccentricity].

r = rsphere('biaxial',ellipsoid,method) computes the arithmetic
mean if the string method is 'mean' and the geometric mean,
sqrt(a*b), if method is 'norm'.

r = rsphere('triaxial',ellipsoid) computes the triaxial
arithmetic mean of the semimajor axes, a, and semininor axes, b of
the ellipsoid, (2*a+b)/3.

r = rsphere('triaxial',ellipsoid,method) computes the
arithmetic mean if the string method is 'mean' and the triaxial
geometric mean, (a^2*b)^(1/3), if method is `norm'.

r = rsphere('eqavol',ellipsoid) returns the radius of a sphere
with a volume equal to that of the ellipsoid.

r = rsphere('authalic',ellipsoid) returns the radius of a sphere
with a surface area equal to that of the ellipsoid.

3-1008

rsphere

r = rsphere('rectifying',ellipsoid) returns the radius of a
sphere with meridional distances equal to those of the ellipsoid.

r = rsphere('curve',ellipsoid,lat) computes the arithmetic mean
of the transverse and meridional radii of curvature at the latitude, lat.
lat is in degrees.

r = rsphere('curve',ellipsoid,lat,method) computes an
arithmetic mean if the string ‘method’ is `mean' and a geometric mean
if ‘method’ is `norm'.

r = rsphere('euler',lat1,lon1,lat2,lon2,ellipsoid) computes
the Euler radius of curvature at the midpoint of the geodesic arc defined
by the endpoints (lat1,lon1) and (lat2,lon2). lat1, lon1,lat2,
and lon2 are in degrees.

r = rsphere('curve', ..., angleUnits) and r =
rsphere(`euler', ..., angleUnits) use the angleUnits
string to specify the units of the latitude and longitude inputs.
angleUnits can be `degrees' or `radians'.

Examples Different criteria result in different spheres:

r = rsphere('biaxial',referenceEllipsoid('earth','km'))

r =
6.3674e+03

r = rsphere('triaxial',referenceEllipsoid('earth','km'))

r =
6.3710e+03

r = rsphere('curve',referenceEllipsoid('earth','km'))

r =
6.3781e+03

See Also rcurve

3-1009

satbath

Purpose Read 2-minute terrain/bathymetry from Smith and Sandwell

Syntax [latgrat,longrat,z] = satbath
[latgrat,longrat,z] = satbath(scalefactor)
[latgrat,longrat,z] = satbath(scalefactor,latlim,lonlim)
[latgrat,longrat,z] = satbath(scalefactor,latlim,lonlim,

gsize)

Description [latgrat,longrat,z] = satbath reads the global topography file for
the entire world (topo_8.2.img), returning every 50th point. The result
is returned as a geolocated data grid. If you use a different version of the
global topography file, you need to rename it to “topo_8.2.img”. If the
file is not found on the MATLAB path, a dialog opens to request the file.

[latgrat,longrat,z] = satbath(scalefactor) returns the data
for the entire world, subsampled by the integer scalefactor. A
scalefactor of 10 returns every 10th point. The matrix at full
resolution has 6336 by 10800 points.

[latgrat,longrat,z] = satbath(scalefactor,latlim,lonlim)
returns data for the specified region. The returned data extends slightly
beyond the requested area. If omitted, the entire area covered by the
data file is returned. The limits are two-element vectors in units of
degrees, with latlim in the range [-90 90] and lonlim in the range
[-180 180].

[latgrat,longrat,z] =
satbath(scalefactor,latlim,lonlim,gsize) controls the size of
the graticule matrices. gsize is a two-element vector containing the
number of rows and columns desired. If omitted, a graticule the size
of the data grid is returned.

Background This is a global bathymetric model derived from ship soundings and
satellite altimetry by W.H.F. Smith and D.T. Sandwell. The model was
developed by iteratively adjusting gravity anomaly data from Geosat
and ERS-1 against historical track line soundings. This technique
takes advantage of the fact that gravity mirrors the large variations
in the ocean floor as small variations in the height of the ocean’s

3-1010

satbath

surface. The computational procedure uses the ship track line data to
calibrate the scaling between the observed surface undulations and the
inferred bathymetry. Land elevations are reduced-resolution versions
of GTOPO30 data.

Tips Land elevations are given in meters above mean sea level. The data is
stored in a Mercator projection grid. As a result, spatial resolution
varies with latitude. The grid spacing is 2 minutes (about 4 kilometers)
at the equator.

This data is available over the Internet, but subject to copyright. The
data file is binary, and should be transferred with no line-ending
conversion or byte swapping. This function carries out any byte
swapping that might be required. The data requires about 133 MB
uncompressed.

The data and documentation are available over the Internet via http
and anonymous ftp. Download the latest version of file topo_x.2.img,
where x is the version number, and rename it topo_8.w.img for
compatibility with the satbath function.

satbath returns a geolocated data grid rather than a regular data grid
and a referencing vector or matrix. This is because the data is in a
Mercator projection, with columns evenly spaced in longitude, but with
decreasing spacing for rows at higher latitudes. Referencing vectors and
matrices assume that the number of cells per degrees of latitude and
longitude are both constant across a data grid.

Note For details on locating map data for download over the
Internet, see the following documentation at the MathWorks Web site:
http://www.mathworks.com/help/map/finding-geospatial-data.html .

Examples Read the data for the Falklands Islands (Islas Malvinas) at full
resolution.

[latgrat,longrat,mat] = satbath(1,[-55 -50],[-65 -55]);

3-1011

http://www.mathworks.com/help/map/finding-geospatial-data.html

satbath

whos

Name Size Bytes Class

latgrat 247x301 594776 double array
longrat 247x301 594776 double array
mat 247x301 594776 double array

See Also tbase | gtopo30 | egm96geoid

3-1012

scaleruler

Purpose Add or modify graphic scale on map axes

Syntax scaleruler
scaleruler on
scaleruler off
scaleruler(property,value,...)
h = scaleruler(...)

Description scaleruler toggles the display of a graphic scale. If no graphic scale
is currently displayed in the current map axes, one is added. If any
graphic scales are currently displayed, they are removed.

scaleruler on adds a graphic scale to the current map axes. Multiple
graphic scales can be added to the same map axes.

scaleruler off removes any currently displayed graphic scales.

scaleruler(property,value,...) adds a graphic scale and sets the
properties to the values specified. You can display a list of graphic
scale properties using the command setm(h), where h is the handle
to a graphic scale object. The current values for a displayed graphic
scale object can be retrieved using getm. The properties of a displayed
graphic scale object can be modified using setm.

h = scaleruler(...) returns the hggroup handle to the graphic
scale object.

Background Cartographers often add graphic elements to the map to indicate its
scale. Perhaps the most commonly used is the graphic scale, a ruler-like
object that shows distances on the ground at the correct size for the
projection.

Examples Create a map, add a graphic scale with the default settings, and shift
it up a bit. Add a second scale showing nautical miles, and change the
tick marks and direction.

figure
usamap('Texas')

3-1013

scaleruler

geoshow('usastatelo.shp', 'FaceColor', [0.9 0.9 0])
scaleruler on
setm(handlem('scaleruler1'), ...

'XLoc',-6.2e5,'YLoc',3.1e6,...
'MajorTick',0:200:600)

scaleruler('units','nm')
setm(handlem('scaleruler2'), ...

'YLoc', 3.0e6, ...
'MajorTick', 0:100:300,...
'MinorTick', 0:25:50, ...
'TickDir', 'down', ...
'MajorTickLength', km2nm(25),...
'MinorTickLength', km2nm(12.5))

Tips You can reposition graphic scale objects by dragging them with the
mouse. You can also change their positions by modifying the XLoc and
YLoc properties using setm.

3-1014

scaleruler

Modifying the properties of the graphic scale results in the replacement
of the original object (dragging a scaleruler, however, does not replace
it). For this reason, handles to the graphic scale object will change.
Use handlem('scaleruler') to get a list of the current handles to all
graphic scale objects. Use handlem('scalerulerN'), where N is an
integer, to get the handle to a particular graphic scale. Use namem to
see the names of existing graphic scale objects. The name of a graphic
scale object is also stored in the read-only 'Children' property, which
is accessed using getm.

Use scaleruler off, clmo scaleruler, or clmo scalerulerN to
remove the scale rulers. You can also remove a graphic scale object
with delete(h), or delete(handlem(`scalerulerN')), where N is
the corresponding integer.

Object
Properties

Properties That Control Appearance

Color
ColorSpec {no default}

Color of the displayed graphic scale — Controls the color of the
graphic scale lines and text. You can specify a color using a vector
of RGB values or one of the MATLAB predefined names. By
default, the graphic scale is displayed in black ([0 0 0]).

FontAngle
{normal} | italic | oblique

Angle of the graphic scale label text— Controls the appearance of
the graphic scale text components. Use any MATLAB font angle
string.

FontName
courier | {helvetica} | symbol | times

Font family name for all graphic scale labels— Sets the font for
all displayed graphic scale labels. To display and print properly
FontName must be a font that your system supports.

3-1015

scaleruler

FontSize
scalar in units specified in FontUnits {9}

Font size— Specifies the font size to use for all displayed graphic
scale labels, in units specified by the FontUnits property. The
default point size is 9.

FontUnits
inches | centimeters | normalized | {points} | pixels

Units used to interpret the FontSize property — When set to
normalized, the toolbox interprets the value of FontSize as a
fraction of the height of the axes. For example, a normalized
FontSize of 0.16 sets the text characters to a font whose height
is one-tenth of the axes’ height. The default units, points, are
equal to 1/72 of an inch.

FontWeight
light | {normal} | demi | bold

Select bold or normal font — The character weight for all
displayed graphic scale labels.

Label
string

Label text for the graphic scale— Contains a string used to label
the graphic scale. The text is displayed centered on the scale. The
label is often used to indicate the scale of the map, for example
“1:50,000,000.”

LineWidth
scalar {0.5}

Graphic scale line width — Sets the line width of the displayed
scale. The value is a scalar representing points, which is 0.5 by
default.

3-1016

scaleruler

MajorTick
vector

Graphic scale major tick locations— Sets the major tick locations
for the graphic scale. The default values are chosen to give a
reasonably sized scale. You can specify the locations of the tick
marks by providing a vector of locations. These are usually
equally spaced values as generated by start:step:end. The
values are distances in the units of the Units property.

MajorTickLabel
Cell array of strings

Graphic scale major tick labels — Sets the text labels associated
with the major tick locations. By default, the labels are identical to
the major tick locations. You can override these by providing a cell
array of strings. There must be as many strings as tick locations.

MajorTickLength
scalar

Length of the major tick lines— Controls the length of the major
tick lines. The length is a distance in the units of the Units
property.

MinorTick
vector

Graphic scale minor tick locations— Sets the minor tick locations
for the graphic scale. The default values are chosen to give a
reasonably sized scale. You can specify the locations of the tick
marks by providing a vector of locations. These are usually
equally spaced values as generated by start:step:end. The
values are distances in the units of the Units property.

MinorTickLabel
strings

3-1017

scaleruler

Graphic scale minor tick labels — Sets the text labels associated
with the minor tick locations. By default, the label is identical to
the last minor tick location. You can override this by providing
a string label.

MinorTickLength
scalar

Length of the minor tick lines— Controls the length of the minor
tick lines. The length is a distance in the units of the Units
property.

RulerStyle
{ruler} | lines | patches

Style of the graphic scale— Selects among three different kinds of
graphic scale displays. The default ruler style looks like n axes’
x-axis. The lines style has three horizontal lines across the tick
marks. This type of graphic scale is often used on maps from the
U.S. Geological Survey. The patches style has alternating black
and white rectangles in place of lines and tick marks.

TickDir
{up} | down

Direction of the tick marks and text — Controls the direction in
which the tick marks and text labels are drawn. In the default
up direction, the tick marks and text labels are placed above
the baseline, which is placed at the location given in the XLoc
property. In the down position, the tick marks and labels are
drawn below the baseline.

TickMode
{auto} | manual

Tick locations mode — Controls whether the tick locations and
labels are computed automatically or are user-specified. Explicitly
setting the tick labels or locations results in a 'manual' tick mode.
Setting any of the tick labels or locations to an empty matrix

3-1018

scaleruler

resets the tick mode to 'auto'. Setting the tick mode to 'auto'
clears any explicitly specified tick locations and labels, which are
then replaced by default values.

XLoc
scalar

X-location of the graphic scale— Controls the horizontal location
of the graphic scale within the axes. The location is specified in
the axes Cartesian projected coordinates. Use showaxes to make
the Cartesian grid labels visible. You can also move the graphic
scale by dragging the baseline with the mouse.

YLoc
scalar

Y-location of the graphic scale— Controls the vertical location of
the graphic scale within the axes. The location is specified in the
axes Cartesian projected coordinates. Use showaxes to make the
Cartesian grid labels visible. You can also move the graphic scale
by dragging the baseline with the mouse.

Properties That Control Scaling

Azimuth
scalar

Azimuth of scale computation — The scale of a map varies,
within the projection, with geographic location and azimuth. This
property controls the azimuth along which the scaling between
geographic and projected coordinates is computed. The azimuth
is given in the current angle units of the map axes. The default
azimuth is 0.

Lat
scalar

Latitude of scale computation — The scale of a map varies,
within the projection, with geographic location and azimuth. This

3-1019

scaleruler

property controls the geographic location at which the scaling
between geographic and projected coordinates is computed. The
latitude is given in the current angle units of the map axes. The
default location is the center of the displayed map.

Long
scalar

Longitude of scale computation — The scale of a map varies,
within the projection, with geographic location and azimuth. This
property controls the geographic location at which the scaling
between geographic and projected coordinates is computed. The
longitude is given in the current angle units of the map axes. The
default location is the center of the displayed map.

Radius
Name or radius of reference sphere

Reference sphere name or radius— The radius property controls
the scaling between angular and surface distances. radius
can be one of the strings supported by km2deg, or it can be the
(numerical) radius of the desired sphere in the same units as the
Units property. The default is 'earth'.

Units
(valid distance unit strings)

Surface distance units — Defines the distance units displayed
in the graphic scale. Units can be any distance unit string
recognized by unitsratio. The distance string is also used in
the last graphic scale text label.

Other Properties

Children
(read-only)

Name string of graphic scale elements — Contains the tag string
assigned to the graphic elements that compose the graphic scale.

3-1020

scaleruler

All elements of the graphic scale have hidden handles except the
baseline. You do not normally need to access the elements directly.

See Also distance | surfdist | axesscale | paperscale | distortcalc |
mdistort

3-1021

scatterm

Purpose Project point markers with variable color and area

Syntax scatterm(lat,lon,s,c)
scatterm(lat,lon)
scatterm(lat,lon,s)
scatterm(...,m)
scatterm(...,'filled')
scatterm(ax,...)
h = scatterm(...)

Description scatterm(lat,lon,s,c) displays colored circles at the locations
specified by the vectors lat and lon (which must be the same size). The
area of each marker is determined by the values in the vector s (in
points2) and the colors of each marker are based on the values in c. s
can be a scalar, in which case all the markers are drawn the same size,
or a vector the same length as lat and lon.

When c is a vector the same length as lat and lon, the values in c
are linearly mapped to the colors in the current colormap. When c is
a length(lat)-by-3 matrix, the values in c specify the colors of the
markers as RGB values. c can also be a color string.

scatterm(lat,lon) draws the markers in the default size and color.

scatterm(lat,lon,s) draws the markers with a single color.

scatterm(...,m) uses the marker m instead of 'o'.

scatterm(...,'filled') fills the markers.

scatterm(ax,...) plots into axes ax instead of gca. ax is a handle
to a map axes.

h = scatterm(...) returns a handle to an hggroup.

Examples Plot the seamountMATLAB data as symbols with the color proportional
to the height.

load seamount
worldmap([-49 -47.5],[-150 -147.5])

3-1022

scatterm

scatterm(y,x,5,z)
scaleruler
set(gca,'Visible','off')

See Also stem3m

3-1023

scircle1

Purpose Small circles from center, range, and azimuth

Syntax [lat,lon] = scircle1(lat0,lon0,rad)
[lat,lon] = scircle1(lat0,lon0,rad,az)
[lat,lon] = scircle1(lat0,lon0,rad,az,ellipsoid)
[lat,lon] = scircle1(lat0,lon0,rad,units)
[lat,lon] = scircle1(lat0,lon0,rad,az,units)
[lat,lon] = scircle1(lat0,lon0,rad,az,ellipsoid,units)
[lat,lon] = scircle1(lat0,lon0,rad,az,ellipsoid,units,npts)
[lat,lon] = scircle1(track,...)

Description [lat,lon] = scircle1(lat0,lon0,rad) computes small circles (on
a sphere) with a center at the point lat0,lon0 and radius rad. The
inputs can be scalar or column vectors. The input radius is in degrees
of arc length on a sphere.

[lat,lon] = scircle1(lat0,lon0,rad,az) uses the input az to
define the small circle arcs computed. The arc azimuths are measured
clockwise from due north. If az is a column vector, then the arc length is
computed from due north. If az is a two-column matrix, then the small
circle arcs are computed starting at the azimuth in the first column
and ending at the azimuth in the second column. If az = [], then a
complete small circle is computed.

[lat,lon] = scircle1(lat0,lon0,rad,az,ellipsoid) computes
small circles on the ellipsoid defined by the input ellipsoid, rather
than by assuming a sphere. ellipsoid is a referenceSphere,
referenceEllipsoid, or oblateSpheroid object, or a vector of the
form [semimajor_axis eccentricity]. If the semimajor axis is
non-zero, rad is assumed to be in distance units matching the units of
the semimajor axis. However, if ellipsoid = [], or if the semimajor
axis is zero, then rad is interpreted as an angle and the small circles
are computed on a sphere as in the preceding syntax.

[lat,lon] = scircle1(lat0,lon0,rad,units),
[lat,lon] = scircle1(lat0,lon0,rad,az,units), and
[lat,lon] = scircle1(lat0,lon0,rad,az,ellipsoid,units)
are all valid calling forms, which use the input string units to define

3-1024

scircle1

the angle units of the inputs and outputs. If the units string is omitted,
'degrees' is assumed.

[lat,lon] = scircle1(lat0,lon0,rad,az,ellipsoid,units,npts)
uses the scalar input npts to determine the number of points per small
circle computed. The default value of npts is 100.

[lat,lon] = scircle1(track,...) uses the track string to define
either a great circle or rhumb line radius. If track = 'gc', then small
circles are computed. If track = 'rh', then the circles with radii of
constant rhumb line distance are computed. If the track string is
omitted, 'gc' is assumed.

mat = scircle1(...) returns a single output argument where mat =
[lat lon]. This is useful if a single small circle is computed.

Multiple circles can be defined from a single starting point by providing
scalar lat0,lon0 inputs and column vectors for rad and az if desired.

Definitions A small circle is the locus of all points an equal surface distance from a
given center. For true small circles, this distance is always calculated in
a great circle sense; however, the scircle1 function allows a locus to be
calculated using distances in a rhumb line sense as well. An example
of a small circle is all points exactly 100 miles from the Washington
Monument. Parallels on the globe are all small circles. Great circles
are a subset of small circles, specifically those with a radius of 90º or
its angular equivalent, so all meridians on the globe are small circles
as well.

Small circle notation consists of a center point and a radius in units of
angular arc length.

Examples Create and plot a small circle centered at (0º,0º) with a radius of 10º.

axesm('mercator','MapLatLimit',[-30 30],'MapLonLimit',[-30 30]);
[latc,longc] = scircle1(0,0,10);
plotm(latc,longc,'g')

3-1025

scircle1

If the desired radius is known in some nonangular distance unit, use
the radius returned by the earthRadius function as the ellipsoid input
to set the range units. (Use an empty azimuth entry to indicate a full
circle.)

[latc,longc] = scircle1(0,0,550,[],earthRadius('nm'));
plotm(latc,longc,'r')

For just an arc of the circle, enter an azimuth range.

[latc,longc] = scircle1(0,0,5,[-30 70]);
plotm(latc,longc,'m')

See Also scircle2 | scircleg | track | trackg | track1 | track2

3-1026

scircle2

Purpose Small circles from center and perimeter

Syntax [lat,lon] = scircle2(lat1,lon1,lat2,lon2)
[lat,lon] = scircle2(lat1,lon1,lat2,lon2,ellipsoid)
[lat,lon] = scircle2(lat1,lon1,lat2,lon2,units)
[lat,lon] = scircle2(lat1,lon1,lat2,lon2,ellipsoid,units)
[lat,lon] = scircle2(lat1,lon1,lat2,lon2,ellipsoid,units,

npts)
[lat,lon] = scircle2(track,...)
mat = scircle2(...)
mat = [lat lon]

Description [lat,lon] = scircle2(lat1,lon1,lat2,lon2) computes small
circles (on a sphere) with centers at the points lat1,lon1 and points on
the circles at lat2,lon2. The inputs can be scalar or column vectors.

[lat,lon] = scircle2(lat1,lon1,lat2,lon2,ellipsoid) computes
the small circle on the ellipsoid defined by the input ellipsoid,
rather than by assuming a sphere. ellipsoid is a referenceSphere,
referenceEllipsoid, or oblateSpheroid object, or a vector of the form
[semimajor_axis eccentricity]. Default is a unit sphere.

[lat,lon] = scircle2(lat1,lon1,lat2,lon2,units) and
[lat,lon] = scircle2(lat1,lon1,lat2,lon2,ellipsoid,units)
are valid calling forms, which use the input string units to define the
angle units of the inputs and outputs. If the input string units is
omitted, 'degrees' is assumed.

[lat,lon] =
scircle2(lat1,lon1,lat2,lon2,ellipsoid,units,npts) uses the
scalar input npts to determine the number of points per track
computed. The default value of npts is 100.

[lat,lon] = scircle2(track,...) uses the track string to define
either a great circle or a rhumb line radius. If track' = 'gc', then
small circles are computed. If track = 'rh', then circles with radii
of constant rhumb line distance are computed. If the track string is
omitted, 'gc' is assumed.

3-1027

scircle2

mat = scircle2(...) returns a single output argument where mat =
[lat lon]. This is useful if a single circle is computed.

Multiple circles can be defined from a single center point by providing
scalar lat1,lon1 inputs and column vectors for the points on the
circumference, lat2,lon2.

Definitions A small circle is the locus of all points an equal surface distance from a
given center. For true small circles, this distance is always calculated in
a great circle sense. However, the scircle2 function allows a locus to
be calculated using distances in a rhumb line sense as well. An example
of a small circle is all points exactly 100 miles from the Washington
Monument.

Examples Plot the locus of all points the same distance from New Delhi as
Kathmandu:

axesm('mercator','MapLatlimit',[0 40],'MapLonLimit',[60 110]);
load coast

% For reference
plotm(lat,long,'k');

% New Delhi
lat1 = 29; lon1 = 77.5;

% Kathmandu
lat2 = 27.6; lon2 = 85.5;

% Plot the cities
plotm([lat1 lat2],[lon1 lon2],'b*')
[latc,lonc] = scircle2(lat1,lon1,lat2,lon2);
plotm(latc,lonc,'b')

3-1028

scircle2

See Also scircle1 | track | track1 | track2

3-1029

scircleg

Purpose Small circle defined via mouse input

Syntax h = scircleg(ncirc)
h = scircleg(ncirc,npts)
h = scircleg(ncirc,linestyle)
h = scircleg(ncirc,PropertyName,PropertyValue,...)
[lat,lon] = scircleg(ncirc,npts,...)
h = scircleg(track,ncirc,...)

Description h = scircleg(ncirc) brings forward the current map axes and waits
for the user to make (2 * ncirc) mouse clicks. The output h is a vector
of handles for the ncirc small circles, which are then displayed.

h = scircleg(ncirc,npts) specifies the number of plotting points to
be used for each small circle. npts is 100 by default.

h = scircleg(ncirc,linestyle) specifies the line style for the
displayed small circles, where linestyle is any line style string
recognized by the standard MATLAB function line.

h = scircleg(ncirc,PropertyName,PropertyValue,...) allows
property name/property value pairs to be set, where PropertyName and
PropertyValue are recognized by the line function.

[lat,lon] = scircleg(ncirc,npts,...) returns the coordinates
of the plotted points rather than the handles of the small circles.
Successive circles are stored in separate columns of lat and lon.

h = scircleg(track,ncirc,...) specifies the logic with which ranges
are calculated. If the string track is 'gc' (the default), great circle
distance is used. If track is 'rh', rhumb line distance is used.

This function is used to define small circles for display using mouse
clicks. For each circle, two clicks are required: one to mark the center
of the circle and one to mark any point on the circle itself, thereby
defining the radius.

Background A small circle is the locus of all points an equal surface distance from a
given center. For true small circles, this distance is always calculated

3-1030

scircleg

in a great circle sense; however, the scircleg function allows a locus
to be calculated using distances in a rhumb line sense as well. You
can modify the circle after creation by shift+clicking it. The circle is
then in edit mode, during which you can change the size and position
by dragging control points, or by entering values into a control panel.
Shift+clicking again exits edit mode.

See Also scircle1 | scircle2

3-1031

scxsc

Purpose Intersection points for pairs of small circles

Syntax [newlat,newlon] = scxsc(lat1,lon1,range1,lat2,lon2,range2)
[newlat,newlon]=scxsc(lat1,lon1,range1,lat2,lon2,range2,

units)

Description [newlat,newlon] = scxsc(lat1,lon1,range1,lat2,lon2,range2)
returns in newlat and newlon the locations of the points of intersection
of two small circles in small circle notation. For example, the first
small circle in a pair would be centered on the point (lat1,lon1) with a
radius of range1 (in angle units). The inputs must be column vectors.
If the circles do not intersect, or are identical, two NaNs are returned
and a warning is displayed. If the two circles are tangent, the single
intersection point is returned twice.

[newlat,newlon]=scxsc(lat1,lon1,range1,lat2,lon2,range2,units)
specifies the angle units used for all inputs, where units is any valid
angle units string. The default units are 'degrees'.

For any pair of small circles, there are four possible intersection
conditions: the circles are identical, they do not intersect, they are
tangent to each other and hence they intersect once, or they intersect
twice.

Small circle notation consists of a center point and a radius in units of
angular arc length.

Examples Given a small circle centered at (10ºS,170ºW) with a radius of 20º (~1200
nautical miles), where does it intersect with a small circle centered at
(3ºN, 179ºE), with a radius of 15º (~900 nautical miles)?

[newlat,newlong] = scxsc(-10,-170,20,3,179,15)

newlat =
-8.8368 9.8526

newlong =
169.7578 -167.5637

3-1032

scxsc

Note that in this example, the two small circles cross the date line.

Tips Great circles are a subset of small circles—a great circle is just a small
circle with a radius of 90º. This provides two methods of notation for
defining great circles. Great circle notation consists of a point on the
circle and an azimuth at that point. Small circle notation for a great
circle consists of a center point and a radius of 90º (or its equivalent
in radians).

See Also gc2sc | gcxgc | gcxsc | rhxrh | crossfix | polyxpoly

3-1033

sdtsdemread

Purpose Read data from SDTS raster/DEM data set

Syntax [Z, R] = sdtsdemread(filename)

Description [Z, R] = sdtsdemread(filename) reads data from an SDTS DEM
data set. Z is a matrix containing the elevation values. R is a
referencing matrix (see makerefmat). NaNs are assigned to elements of Z
corresponding to null data values or fill data values in the cell module.

filename can be the name of the SDTS catalog directory file (*CATD.DDF)
or the name of any of the other files in the data set. filename can
include the directory name; otherwise filename is searched for in the
current directory and the MATLAB path. If any of the files specified in
the catalog directory are missing, sdtsdemread fails.

Tips Elevation values can be imported with sdtsdemread from DEMs that
use the SPRE Raster Profile (in use since January, 2001) as well as
from older SDTS DEM data sets. Under this profile, elevations can
be encoded either as 32-bit floating-point numbers (when their units
are “decimal meters”), or as 16-bit integers (when units are “feet” or
“meters”). The output class from sdtsdemread for both types of elevation
encoding is double.

Note For details on locating map data for download over the
Internet, see the following documentation at the MathWorks Web site:
http://www.mathworks.com/help/map/finding-geospatial-data.html .

Examples [Z, R] = sdtsdemread('9129CATD.ddf');
mapshow(Z,R,'DisplayType','contour')

See Also arcgridread | makerefmat | mapshow | sdtsinfo

3-1034

http://www.mathworks.com/help/map/finding-geospatial-data.html

sdtsinfo

Purpose Information about SDTS data set

Syntax info = sdtsinfo(filename)

Description info = sdtsinfo(filename) returns a structure whose fields contain
information about the contents of a SDTS data set.

filename is a string that specifies the name of the SDTS catalog
directory file, such as 7783CATD.DDF. The filename can also include the
directory name. If filename does not include the directory, then it must
be in the current directory or in a directory on the MATLAB path. If
sdtsinfo cannot find the SDTS catalog file, it returns an error.

If any of the other files in the data set as specified by the catalog file
is missing, a warning message is returned. Subsequent calls to read
data from the file might also fail.

Field
Descriptions

The info structure contains the following fields:

Filename String containing the name of the catalog
directory file of the SDTS transfer set

Title String containing the name of the data set

ProfileID String containing the Profile Identifier,
e.g., 'SRPE: SDTS RASTER PROFILE and
EXTENSIONS'

ProfileVersion String containing the Profile Version Identifier,
e.g., 'VER 1.1 1998 01'

MapDate String specifying the date associated with the
cartographic information contained in the data
set

DataCreationDate String specifying the creation date of the data
set

HorizontalDatum String representing the horizontal datum to
which the data is referenced

3-1035

sdtsinfo

MapRefSystem String describing the projection and reference
system used: 'GEO', 'SPCS', 'UTM', 'UPS', or ''

ZoneNumber Scalar value representing the zone number

XResolution Scalar value representing the X component of
the horizontal coordinate resolution

YResolution Scalar value representing the Y component of
the horizontal coordinate resolution

NumberOfRows Scalar value representing the number of rows
of the DEM

NumberOfCols Scalar value representing the number of
columns of the DEM

HorizontalUnits String specifying the units used for the
horizontal coordinate values

VerticalUnits String specifying the units used for the vertical
coordinate values

MinElevation Scalar value of the minimum elevation value for
the data set

MaxElevation Scalar value of the maximum elevation value
for the data set

Examples info = sdtsinfo('9129CATD.DDF');

See Also sdtsdemread | makerefmat

3-1036

sectorg

Purpose Sector of small circle defined via mouse input

Syntax sectorg

Description sectorg prompts the user to indicate by two successive mouse clicks
two points that define the center and radius of a small circle arc. By
default, the angular width of the sector is 60º. The sector is constructed
using the vector defined by the mouse clicks as the reference azimuth
(defined to run through the center of the sector).

Once a sector has been drawn, Shift+clicking on it displays four control
points (center point, arc resize, radial resize, and rotation controls), and
the associated Sector control window. You can graphically interact
with sectors as follows:

• To translate the circle, click and drag the center (o) control.

• To change the arc size, click and drag the resize control (square).

• To change the radial size of the sector, click and drag the radial
control (down triangle).

• To rotate the arc, click and drag the rotation control (x).

You can also modify a selected sector by entering the appropriate values
in the Sector control window and then pressing Enter or clicking the
Close button. Display of the control panel is toggled by Shift+clicking
the sector. If you select multiple sectors, a separate Sector control
window will appear for each one.

Tips Sector control windows are superimposed at the same location. A valid
map axes must exist prior to running this function.

See Also scircleg | trackg

3-1037

setltln

Purpose Convert data grid rows and columns to latitude-longitude

Syntax [lat, lon] = setltln(Z, R, row, col)
[lat, lon, indxPointOutsideGrid] = setltln(Z, R, row, col)
latlon = setltln(Z, R, row, col)

Description [lat, lon] = setltln(Z, R, row, col) returns the latitude and
longitudes associated with the input row and column coordinates of the
regular data grid Z. R can be a spatialref.GeoRasterReference object,
a referencing vector, or a referencing matrix.

If R is a spatialref.GeoRasterReference object, its RasterSize
property must be consistent with size(Z).

If R is a referencing vector, it must be 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to/from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel. Points falling
outside the grid are ignored in row and col. All input angles are in
degrees.

[lat, lon, indxPointOutsideGrid] = setltln(Z, R, row, col)
returns the indices of the elements of the row and col vectors that lie
outside the input grid. The outputs lat and lon always ignore these
points; the third output accounts for them.

latlon = setltln(Z, R, row, col) returns the coordinates in a
single two-column matrix of the form [latitude longitude].

3-1038

setltln

Examples Find the coordinates of row 45, column 65 of topo:

load topo
[lat,lon,indxPointOutsideGrid] = setltln(topo,topolegend,45,65)

lat =
-45.5000

lon =
64.5000

indxPointOutsideGrid = [] % Empty because the point is valid

See Also ltln2val | pix2latlon | setpostn

3-1039

setm

Purpose Set properties of map axes and graphics objects

Syntax setm(h,MapAxesPropertyName,PropertyValue,...)
setm(texthndl,'MapPosition',position)
setm(surfhndl,'Graticule',lat,lon,alt)
setm(surfhndl,'MeshGrat',npts,alt)

Description setm(h,MapAxesPropertyName,PropertyValue,...), where h is a
valid map axes handle, sets the map axes properties specified in the
input list. The map axes properties must be recognized by axesm.

setm(texthndl,'MapPosition',position) alters the position of
the projected text object specified by its handle to the [latitude
longitude] or the [latitude longitude altitude] specified by the
position vector.

setm(surfhndl,'Graticule',lat,lon,alt) alters the graticule of
the projected surface object specified by its handle. The graticule is
specified by the latitude and longitude matrices, specifying locations of
the graticule vertices. The altitude can be specified by a scalar, or by a
matrix providing a value for each vertex.

setm(surfhndl,'MeshGrat',npts,alt) alters the mesh graticule of
projected surface objects displayed using the meshm function. In this
case, the two-element vector npts specifies the graticule size in the
manner described under meshm. The altitude can be a scalar or a matrix
with a size corresponding to npts.

Examples Display a map axes and alter it:

axesm('bonne','Frame','on','Grid','on')

The standard Bonne projection has a standard parallel at 30ºN.

3-1040

setm

Setting this standard parallel to 0º results in a Sinusoidal projection:

setm(gca,'MapParallels',0)

See Also axesm | getm

3-1041

setpostn

Purpose Convert latitude-longitude to data grid rows and columns

Syntax [row, col] = setpostn(Z, R, lat, lon)
indx = setpostn(...)
[row, col, indxPointOutsideGrid] = setpostn(...)

Description [row, col] = setpostn(Z, R, lat, lon) returns the row and
column indices of the regular data grid Z for the points specified by the
vectors lat and lon. R can be a spatialref.GeoRasterReference object,
a referencing vector, or a referencing matrix.

If R is a spatialref.GeoRasterReference object, its RasterSize
property must be consistent with size(Z).

If R is a referencing vector, it must be 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to/from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel. Points falling
outside the grid are ignored in row and col. All input angles are in
degrees.

indx = setpostn(...) returns the indices of Z corresponding to the
points in lat and lon. Points falling outside the grid are ignored in
indx.

[row, col, indxPointOutsideGrid] = setpostn(...) returns the
indices of lat and lon corresponding to points outside the grid. These
points are ignored in row and col.

Examples What are the matrix coordinates in topo of Denver, Colorado, at
(39.7ºN,105ºW)?

3-1042

setpostn

load topo
[row,col] = setpostn(topo,topolegend,39.7,105)

row =
130

col =
105

See Also latlon2pix | ltln2val | setltln

3-1043

shaderel

Purpose Construct cdata and colormap for shaded relief

Syntax [cindx,cimap,clim] = shaderel(X,Y,Z,cmap)
[cindx,cimap,clim] = shaderel(X,Y,Z,cmap,[azim elev])
[cindx,cimap,clim] = shaderel(X,Y,Z,cmap,[azim elev],cmapl)
[cindx,cimap,clim] = shaderel(X,Y,Z,cmap,[azim elev],cmapl,

clim)

Description [cindx,cimap,clim] = shaderel(X,Y,Z,cmap) constructs the
colormap and color indices to allow a surface to be displayed in colored
shaded relief. The colors are proportional to the magnitude of Z, but
modified by shades of gray based on the surface normals to simulate
surface lighting. This representation allows both large and small-scale
differences to be seen. X, Y, and Z define the surface. cmap is the
colormap used to create the new shaded colormap cimap. cindx is a
matrix of color indices to cimap, based on the elevation and surface
normal of the Z matrix element. clim contains the color axis limits.

[cindx,cimap,clim] = shaderel(X,Y,Z,cmap,[azim elev]) places
the light at the specified azimuth and elevation. By default, the
direction of the light is East (90º azimuth) at an elevation of 45º.

[cindx,cimap,clim] = shaderel(X,Y,Z,cmap,[azim elev],cmapl)
chooses the number of grays to give a cimap of length cmapl. By
default, the number of grayscales is chosen to keep the shaded colormap
below 256. If the vector of azimuth and elevation is empty, the default
locations are used.

[cindx,cimap,clim] = shaderel(X,Y,Z,cmap,[azim
elev],cmapl,clim) uses the color limits to index Z into cmap.

Tips This function effectively multiplies two colormaps, one with color based
on elevation, the other with a grayscale based on the slope of the
surface, to create a new colormap. This produces an effect similar to
using a light on a surface, but with all of the visible colors actually in the
colormap. Lighting calculations are performed on the unprojected data.

3-1044

shaderel

Examples Display the peaks surface with a shaded colormap:

[X,Y,Z] = peaks(100);
cmap = hot(16);
[cindx,cimap,clim] = shaderel(X,Y,Z,cmap);
surf(X,Y,Z,cindx); colormap(cimap); caxis(clim)
shading flat

See Also caxis | colormap | light | meshlsrm | surf | surflsrm

3-1045

shapeinfo

Purpose Information about shapefile

Syntax info = shapeinfo(filename)

Description info = shapeinfo(filename) returns a structure, info, whose fields
contain information about the contents of a shapefile. filename can
be the base name or the full name of any one of the component files.
shapeinfo reads all three files as long as they exist in the same folder
and the unit of length or angle is not specified. If the main file (with
extension .SHP) is missing, shapeinfo returns an error. If either of the
other files is missing, shapeinfo returns a warning.

Tips shapeinfo cannot tell you which coordinate system the data in a
shapefile uses. Coordinates can be either planar (x, y) or geographic
(lat, lon) and have a variety of units. This information can be critical
to the proper display of shapefile vector data. For more information on
this topic, see “Mapstructs and Geostructs”.

Output
Arguments

The info structure contains the following fields:

Filename Char array containing the names of the files
that were read

ShapeType String containing the shape type

BoundingBox Numerical array of size 2-by-N that specifies
the minimum (row 1) and maximum (row 2)
values for each dimension of the spatial data in
the shapefile

Attributes Structure array of size 1-by-numAttributes that
describes the attributes of the data

NumFeatures The number of spatial features in the shapefile

The Attributes structure contains these fields:

3-1046

shapeinfo

Name String containing the attribute name as given in
the xBASE table

Type String specifying the MATLAB class of the
attribute data returned by shaperead. The
following attribute (xBASE) types are supported:
Numeric, Floating, Character, and Date.

See Also shaperead | shapewrite

How To • “Mapping Toolbox Geographic Data Structures”

3-1047

shaperead

Purpose Read vector features and attributes from shapefile

Syntax S = shaperead(filename)
S = shaperead(filename, Name,Value, ...)
[S, A] = shaperead(...)

Description S = shaperead(filename) reads in a shapefile, filename, and returns
an N-by-1 geographic data structure array in projected map coordinates
(a mapstruct). The geographic data structure combines geometric and
feature attribute information. shaperead supports the ordinary 2-D
shape types: 'Point', 'Multipoint', 'PolyLine', and 'Polygon'.

S = shaperead(filename, Name,Value, ...) returns a subset of
the shapefile contents in S, as determined by the parameters. The
geographic data structure, S, is a mapstruct unless UseGeoCoords is
true. If you do not specify any parameters, shaperead returns an entry
for every non-null feature and creates a field for every attribute.

[S, A] = shaperead(...) returns an N-by-1 geographic data
structure array, S, containing geometric information, and a parallel
N-by-1 attribute structure array, A, containing feature attribute
information.

Input
Arguments

filename

Refers to the base name or full name of one of the component files in a
shapefile. If the main file (with extension .shp) is missing, shaperead
throws an error. If either of the other files is missing, shaperead issues
a warning.

Make sure that your machine is set to the same character encoding
scheme as the data you are importing. For example, if you are trying to
import a shapefile that contains Japanese characters, configure your
machine to support the Shift-JIS encoding scheme.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding

3-1048

shaperead

value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

RecordNumbers

Integer-valued vector of class double. Use the parameter
RecordNumbers to import only features with listed record numbers.

Use the parameters RecordNumbers, BoundingBox, and Selector
to select which features to read. If you use more than one of these
parameters in the same call, you receive the intersection of the records
that match the individual specifications. For instance, if you specify
values for both RecordNumbers and BoundingBox, you import only those
features with record numbers that appear in your list and that also
have bounding boxes intersecting the specified bounding box.

BoundingBox

2-by-2 array of class double. Use the parameter BoundingBox to import
only features whose bounding boxes intersect the specified box. The
shaperead function does not trim features that partially intersect the
box.

Selector

Cell array containing a function handle and one or more attribute
names. (The function must return a logical scalar.) Use the Selector
parameter to import only features for which the function, when applied
to the corresponding attribute values, returns true.

Attributes

Cell array of attribute names. Use the parameter Attributes to include
listed attributes and set the order of attributes in the structure array.
Use {} to omit all attributes.

UseGeoCoords

3-1049

shaperead

Logical scalar that specifies returning shapefile contents in a geostruct,
if set to true. Use this parameter when you know that the x- and y-
coordinates in the shapefile actually represent longitude and latitude
data. (If you do not know whether you are working with geographic or
map coordinates, see “Mapstructs and Geostructs” in the User’s Guide.)

Default: false

Output
Arguments

S

An N-by-1 geographic data structure array containing an element for
each non-null, spatial feature in the shapefile.

A

An N-by-1 attribute structure array, A, parallel to array S.

The fields in the output structure arrays S and A depend on (1) the type
of shape contained in the file and (2) the names and types of attributes
included in the file. The shaperead function supports the following
four attribute types: numeric and floating (stored as type double in
MATLAB) and character and date (stored as char array).

Examples Read a shapefile of Concord roads and analyze the data.

% Read the entire concord_roads.shp shapefile, including
% the attributes, in concord_roads.dbf.
S = shaperead('concord_roads.shp')

Your output appears as follows:

S =

609x1 struct array with fields:
Geometry
BoundingBox
X
Y

3-1050

shaperead

STREETNAME
RT_NUMBER
CLASS
ADMIN_TYPE
LENGTH

You have a mapstruct with X and Y coordinate vectors.

% Restrict output based on bounding box and read only two
% of the feature attributes.
bbox = [2.08 9.11; 2.09 9.12] * 1e5;
S = shaperead('concord_roads','BoundingBox',bbox,...

'Attributes',{'STREETNAME','CLASS'})

Your output appears as follows:

S =

87x1 struct array with fields:
Geometry
BoundingBox
X
Y
STREETNAME
CLASS

% Select the class 4 and higher road segments that are at least 200
% meters in length. Note the use of an anonymous function in the
% selector.
S = shaperead('concord_roads.shp','Selector',...

{@(v1,v2) (v1 >= 4) && (v2 >= 200),'CLASS','LENGTH'})

Your output appears as follows:

S =

115x1 struct array with fields:
Geometry

3-1051

shaperead

BoundingBox
X
Y
STREETNAME
RT_NUMBER
CLASS
ADMIN_TYPE
LENGTH

% Determine the number of roads of each class.
N = hist([S.CLASS],1:7)

Your output appears as follows:

N =

0 0 0 7 93 15 0

% Display a histogram of the number of roads
% that fall in each category of length.
hist([S.LENGTH])

3-1052

shaperead

Read a shapefile of worldwide city names and locations in latitude
and longitude.

S = shaperead('worldcities.shp', 'UseGeoCoords', true)

Your output appears as follows:

S =
318x1 struct array with fields:

Geometry
Lon
Lat
Name

You set 'UseGeoCoords' to true, so you received a geostruct.

See Also shapeinfo | shapewrite

How To • “Mapping Toolbox Geographic Data Structures”

3-1053

shaperead

Related
Links

• http://www.mathworks.com/help/map/finding-geospatial-data.html

3-1054

http://www.mathworks.com/help/map/finding-geospatial-data.html

shapewrite

Purpose Write geographic data structure to shapefile

Syntax shapewrite(S, filename)
shapewrite(S, filename, 'DbfSpec', dbfspec)

Description shapewrite(S, filename) writes a geographic data structure to
disk in shapefile format. shapewrite creates three output files:
[basename '.shp'], [basename '.shx'], and [basename '.dbf'],
where basename is filename without its extension. If a given attribute
is integer-valued for all features, then it is written to the [basename
'.dbf'] file as an integer. If an attribute is non-integer-valued for any
feature, then it is written as a fixed point decimal value with six digits
to the right of the decimal place.

shapewrite(S, filename, 'DbfSpec', dbfspec) writes a shapefile
in which the content and layout of the DBF file is controlled by a DBF
specification, indicated here by the parameter value dbfspec.

Tips • The xBASE (.dbf) file specifications require that geostruct and
mapstruct attribute names are truncated to 11 characters when
copied as DBF field names. Consider shortening long field names
before calling shapewrite. By doing this, you make field names in
the DBF file more readable and avoid introducing duplicate names
as a result of truncation.

• Remember to set your character encoding scheme to match that of
the geographic data structure you are exporting. For instance, if
you are exporting a map that displays Japanese text, configure your
machine to support Shift-JIS character encoding.

Input
Arguments

S

A valid mapstruct or geostruct with specific restrictions on its attribute
fields:

• Each attribute field value must be either a real, finite, scalar double
or a character string.

• The type of a given attribute must be consistent across all features.

3-1055

shapewrite

filename

A character string specifying the output file name and location. If an
extension is included, it must be '.shp' or '.SHP'.

’DbfSpec’, dbfspec

A scalar MATLAB structure containing one field for each feature
attribute to be included in the output shapefile. To include an attribute
in the output, provide a field in dbfspec with a name identical to the
attribute name as given in S. Assign to that field a scalar structure with
the following four fields:

• FieldName— The field name to be used in the file

• FieldType— The field type to be used in the file ('N' or 'C')

• FieldLength— The field length in the file, in bytes

• FieldDecimalCount — For numeric fields, the number of digits to
the right of the decimal place

Call makedbfspec to construct a DBF spec. Modify the output
to remove attributes or change the FieldName, FieldLength, or
FieldDecimalCount for one or more attributes.

Examples Derive a shapefile from concord_roads.shp in which roads of CLASS
5 and greater are omitted. Note the use of the 'Selector' option in
shaperead, together with an anonymous function, to read only the main
roads from the original shapefile.

shapeinfo('concord_roads') % 609 features

ans =
Filename: [3x67 char]

ShapeType: 'PolyLine'
BoundingBox: [2x2 double]
NumFeatures: 609
Attributes: [5x1 struct]

3-1056

shapewrite

S = shaperead('concord_roads', 'Selector', ...
{@(roadclass) roadclass < 4, 'CLASS'});

shapewrite(S, 'main_concord_roads.shp')
shapeinfo('main_concord_roads') % 107 features

ans =
Filename: [3x24 char]

ShapeType: 'PolyLine'
BoundingBox: [2x2 double]
NumFeatures: 107
Attributes: [5x1 struct]

See Also makedbfspec | shapeinfo | shaperead

How To • “Mapping Toolbox Geographic Data Structures”

3-1057

showaxes

Purpose Toggle display of map coordinate axes

Syntax showaxes(action)
showaxes

Description showaxes(action) modifies the Cartesian axes based on the value of
action, as defined in the Inputs section below.

showaxes toggles between displaying the default axes ticks on the
MATLAB Cartesian axes and removing the axes ticks.

Input
Arguments

action

A string or RGB triple that specifies how to modify the Cartesian axes

Value Data
Type

Action

'on' string Displays the MATLAB Cartesian axes and
default axes ticks

'off' string Removes the axes ticks from the MATLAB
Cartesian axes

'hide' string Hides the Cartesian axes

'show' string Shows the Cartesian axes

'reset' string Sets the Cartesian axes to the default settings

'boxoff' string Removes axes ticks, color, and box from the
Cartesian axes

colorstr string Sets the Cartesian axes to the color specified
by colorstr

colorvec RGB
triple

Uses colorvec to set the Cartesian axes color

See Also axesm

3-1058

showm

Purpose Specify graphic objects to display on map axes

Syntax showm
showm(handle)
showm(object)

Description showm brings up a dialog box for selecting the objects to show (set their
Visible property to 'on').

showm(handle) shows the objects specified by a vector of handles.

showm(object) shows those objects specified by the object string,
which can be any string recognized by the handlem function.

See Also clma | clmo | handlem | hidem | namem | tagm

3-1059

sizem

Purpose Row and column dimensions needed for regular data grid

Syntax [r,c] = sizem(latlim,lonlim,scale)
rc = sizem(latlim,lonlim,scale)
[r,c,refvec] = sizem(latlim,lonlim,scale)

Description [r,c] = sizem(latlim,lonlim,scale) returns the required size for
a regular data grid lying between the latitude and longitude limits
specified by the two-element input vectors latlim and lonlim, which
are of the form [south-limit north-limit] and [west-limit and
east-limit], respectively. The scale is the desired cells-per-degree
measure of the desired data grid.

rc = sizem(latlim,lonlim,scale) returns the size of the matrix
in one two-element vector.

[r,c,refvec] = sizem(latlim,lonlim,scale) also returns the
three-element referencing vector geolocating the desired regular data
grid.

Examples How large a matrix would be required for a map of the world at a scale of
25 matrix cells per degree? (That’s 25x25=625 cells per “square” degree.)

[r,c] = sizem([90,-90],[-180,180],25)

r =
4500

c =
9000

Bear in mind for memory purposes — 9000 x 4500 = 4.05 x 107 entries!

See Also findm | limitm | nanm | onem | spzerom | zerom

3-1060

sm2deg

Purpose Convert distance from statute miles to degrees

Syntax deg = sm2deg(sm)
deg = sm2deg(sm,radius)
deg = sm2deg(sm,sphere)

Description deg = sm2deg(sm) converts distances from statute miles to degrees as
measured along a great circle on a sphere with a radius of 6371 km
(3958.748 sm), the mean radius of the Earth.

deg = sm2deg(sm,radius) converts distances from statute miles
to degrees as measured along a great circle on a sphere having the
specified radius. radius must be in units of statute miles.

deg = sm2deg(sm,sphere) converts distances from statute miles to
degrees, as measured along a great circle on a sphere approximating an
object in the Solar System. sphere may be one of the following strings:
'sun', 'moon', 'mercury', 'venus', 'earth', 'mars', 'jupiter',
'saturn', 'uranus', 'neptune', or 'pluto', and is case-insensitive.

See Also degtorad | radtodeg | deg2km | km2rad | km2nm | km2sm | deg2nm |
nm2deg | nm2km | nm2sm | deg2sm | sm2km | sm2nm

3-1061

sm2km

Purpose Convert statute miles to kilometers

Syntax km = sm2km(sm)

Description km = sm2km(sm) converts distances from statute miles to kilometers.

See Also deg2km | km2deg | km2rad | rad2km | deg2nm | nm2deg | nm2rad |
rad2nm | deg2sm | sm2deg | deg2sm | sm2rad | rad2sm

3-1062

sm2nm

Purpose Convert statute to nautical miles

Syntax nm = sm2nm(sm)

Description nm = sm2nm(sm) converts distances from statute to nautical miles.

See Also deg2km | km2deg | km2rad | rad2km | deg2nm | nm2deg | nm2rad |
rad2nm | deg2sm | sm2deg | deg2sm | sm2rad | rad2sm

3-1063

sm2rad

Purpose Convert distance from statute miles to radians

Syntax rad = sm2rad(sm)
rad = sm2rad(sm,radius)
rad = sm2rad(sm,sphere)

Description rad = sm2rad(sm) converts distances from statute miles to radians as
measured along a great circle on a sphere with a radius of 6371 km, the
mean radius of the Earth.

rad = sm2rad(sm,radius) converts distances from statue miles to
radians as measured along a great circle on a sphere having the
specified radius. radius must be in units of statute miles.

rad = sm2rad(sm,sphere) converts distances from statute miles to
radians, as measured along a great circle on a sphere approximating an
object in the Solar System. sphere may be one of the following strings:
'sun', 'moon', 'mercury', 'venus', 'earth', 'mars', 'jupiter',
'saturn', 'uranus', 'neptune', or 'pluto', and is case-insensitive.

See Also degtorad | radtodeg | rad2km | km2deg | km2nm | km2sm | rad2nm |
nm2deg | nm2km | nm2sm | rad2sm | sm2deg | sm2km | sm2nm

3-1064

smoothlong

Purpose Remove discontinuities in longitude data

Note The smoothlong function is obsolete and has been replaced by
unwrapMultipart, which requires input to be in radians. When working
in degrees, use radtodeg(unwrapMultipart(degtorad(lon))).

Syntax ang = smoothlong(angin)
ang = smoothlong(angin,angleunits)

Description ang = smoothlong(angin) removes discontinuities in longitude data.
The resulting angles can cover more than one revolution.

ang = smoothlong(angin,angleunits) uses the units defined by the
input string angleunits. If omitted, default units of 'degrees' are
assumed. Valid angleunits are:

• 'degrees' — decimal degrees

• 'radians'

See Also unwrapMultipart

3-1065

spcread

Purpose Read columns of data from ASCII text file

Syntax mat = spcread
mat = spcread(filename)
mat = spcread(cols)

Description mat = spcread reads an ASCII file of space-delimited data in two
columns and returns the data in a matrix, mat. The file is selected by
dialog box.

mat = spcread(filename) specifies the file from which to read by its
name, given as the string filename.

mat = spcread(cols) specifies the number of columns of
space-delimited data in the file with the integer cols. The default value
of cols is 2.

Tips The spcread function is similar to the standard MATLAB function
dlmread. spcread, however, is much faster at reading large data sets
of the type common for geographic purposes.

See Also nanclip

3-1066

spzerom

Purpose Construct sparse regular data grid of 0s

Syntax [Z,refvec] = spzerom(latlim,lonlim,scale)

Description [Z,refvec] = spzerom(latlim,lonlim,scale) returns a sparse
regular data grid consisting entirely of 0s and a three-element
referencing vector for the returned Z. The two-element vectors latlim
and lonlim define the latitude and longitude limits of the geographic
region. They should be of the form [south north] and [west east],
respectively. The scalar scale specifies the number of rows and
columns per degree of latitude and longitude.

Examples [Z,refvec] = spzerom([46,51],[-79,-75],1)

Z =
All zero sparse: 5-by-4

refvec =
1 51 -79

See Also limitm | nanm | onem | sizem | zerom

3-1067

stdist

Purpose Standard distance for geographic points

Syntax dist = stdist(lat,lon)
dist = stdist(lat,lon,units)
dist = stdist(lat,lon,ellipsoid)
dist = stdist(lat,lon,ellipsoid,units,method)

Description dist = stdist(lat,lon) computes the average standard distance for
geographic data. This function assumes that the data is distributed on
a sphere. In contrast, std assumes that the data is distributed on a
Cartesian plane. The result is a single value based on the great-circle
distance of the data points from their geographic mean point. When lat
and lon are vectors, a single distance is returned. When lat and lon
are matrices, a row vector of distances is given, providing the distances
for each column of lat and lon. N-dimensional arrays are not allowed.
Distances are returned in degrees of angle units.

dist = stdist(lat,lon,units) indicates the angular units of the
data. When the standard angle string units is omitted, 'degrees' is
assumed. Output measurements are in terms of these units (as arc
length distance).

dist = stdist(lat,lon,ellipsoid) specifies the shape of the
Earth to be used with ellipsoid, which can be a referenceSphere,
referenceEllipsoid, or oblateSpheroid object, or a vector of the
form [semimajor_axis eccentricity]. The default is a unit sphere.
Output measurements are in terms of the distance units of the
semimajor axis of the ellipsoid.

dist = stdist(lat,lon,ellipsoid,units,method) specifies the
method of calculating the standard distance of the data. The default,
'linear', is simply the average great circle distance of the data points
from the centroid. Using 'quadratic' results in the square root of the
average of the squared distances, and 'cubic' results in the cube root
of the average of the cubed distances.

Background The function stdm provides independent standard deviations in latitude
and longitude of data points. stdist provides a means of examining

3-1068

stdist

data scatter that does not separate these components. The result is
a standard distance, which can be interpreted as a measure of the
scatter in the great circle distance of the data points from the centroid
as returned by meanm.

The output distance can be thought of as the radius of a circle centered
on the geographic mean position, which gives a measure of the spread
of the data.

Examples Create latitude and longitude lists using the worldcities data set
and obtain standard distance deviation for group (compare with the
example for stdm):

cities = shaperead('worldcities.shp', 'UseGeoCoords', true);
Paris = strcmp('Paris',{cities(:).Name});
London = strcmp('London',{cities(:).Name});
Rome = strcmp('Rome',{cities(:).Name});
Madrid = strcmp('Madrid',{cities(:).Name});
Berlin = strcmp('Berlin',{cities(:).Name});
Athens = strcmp('Athens',{cities(:).Name});
lat = [cities(Paris).Lat cities(London).Lat...

cities(Rome).Lat cities(Madrid).Lat...
cities(Berlin).Lat cities(Athens).Lat]

lon = [cities(Paris).Lon cities(London).Lon...
cities(Rome).Lon cities(Madrid).Lon...
cities(Berlin).Lon cities(Athens).Lon]

dist = stdist(lat,lon)

lat =
48.8708 51.5188 41.9260 40.4312 52.4257 38.0164

lon =
2.4131 -0.1300 12.4951 -3.6788 13.0802 23.5183

dist =
8.1827

See Also meanm | stdm

3-1069

stdm

Purpose Standard deviation for geographic points

Syntax [latdev,londev] = stdm(lat,lon)
[latdev,londev] = stdm(lat,lon,ellipsoid)
[latdev,londev] = stdm(lat,lon,units)

Description [latdev,londev] = stdm(lat,lon) returns row vectors of the latitude
and longitude geographic standard deviations for the data points
specified by the columns of lat and lon.

[latdev,londev] = stdm(lat,lon,ellipsoid) specifies the
shape of the Earth to be used by the ellipsoid, which can be a
referenceSphere, referenceEllipsoid, or oblateSpheroid object, or
a vector of the form [semimajor_axis eccentricity]. The default
ellipsoid is a unit sphere. Output measurements are in terms of the
distance units of the ellipsoid vector.

[latdev,londev] = stdm(lat,lon,units) indicates the angular
units of the data. When the standard angle string units is omitted,
'degrees' is assumed. Output measurements are in terms of these
units (as arc length distance).

If a single output argument is used, then geodevs = [latdev
longdev]. This is particularly useful if the original lat and lon inputs
are column vectors.

Background Determining the deviations of geographic data in latitude and longitude
is more complicated than simple sum-of-squares deviations from the
data averages. For latitude deviation, a straightforward angular
standard deviation calculation is performed from the geographic
mean as calculated by meanm. For longitudes, a similar calculation is
performed based on data departure rather than on angular deviation.
See “Geographic Statistics” in the Mapping Toolbox User’s Guide.

Examples Create latitude and longitude lists using the worldcities data set
and obtain standard distance deviation for group (compare with the
example for stdist):

3-1070

stdm

cities = shaperead('worldcities.shp', 'UseGeoCoords', true);
Paris = strcmp('Paris',{cities(:).Name});
London = strcmp('London',{cities(:).Name});
Rome = strcmp('Rome',{cities(:).Name});
Madrid = strcmp('Madrid',{cities(:).Name});
Berlin = strcmp('Berlin',{cities(:).Name});
Athens = strcmp('Athens',{cities(:).Name});
lat = [cities(Paris).Lat cities(London).Lat...

cities(Rome).Lat cities(Madrid).Lat...
cities(Berlin).Lat cities(Athens).Lat]

lon = [cities(Paris).Lon cities(London).Lon...
cities(Rome).Lon cities(Madrid).Lon...
cities(Berlin).Lon cities(Athens).Lon]

[latstd,lonstd]=stdm(lat,lon)

lat =
48.8708 51.5188 41.9260 40.4312 52.4257 38.0164

lon =
2.4131 -0.1300 12.4951 -3.6788 13.0802 23.5183

latstd =
2.7640

lonstd =
68.7772

See Also departure | filterm | hista | histr | meanm | stdist

3-1071

stem3m

Purpose Project stem plot map on map axes

Syntax h = stem3m(lat,lon,z)
h = stem3m(lat,lon,z,LineType)
h = stem3m(lat,lon,z,PropertyName,PropertyValue,...)

Description h = stem3m(lat,lon,z) displays a stem plot on the current map axes.
Stems are located at the points (lat,lon) and extend from an altitude
of 0 to the values of z. The coordinate inputs should be in the same
AngleUnits as the map axes. It is important to note that the selection
of z-values will greatly affect the 3-D look of the plot. Regardless of
AngleUnits, the x and y limits of the map axes are at most -π to +π
and -π/2 to +π/2, respectively. This means that for most purposes,
appropriate z values would be on the order of 1 to 3, not 10 to 30. The
axes DataAspectRatio property can be used to adjust the appearance of
the graphic. The handles of the displayed stem lines can be returned
in h.

h = stem3m(lat,lon,z,LineType) allows the style of the stem plot’s
lines to be specified with any string LineType recognized by the
MATLAB line function.

h = stem3m(lat,lon,z,PropertyName,PropertyValue,...) allows
any property/value pair recognized by the MATLAB line function to
be specified for the stems.

A stem plot displays data as lines extending normal to the xy-plane, in
this case, on a map.

Examples load coast
axesm sinusoid; view(3)
h = framem; set(h,'zdata',zeros(size(lat)))
plotm(lat,long)
ptlat = [0 30 30 -50 -78]';
ptlon = [0 30 -70 65 -35]';
ptz = [1 1.5 2 .5 1]';
stem3m(ptlat,ptlon,ptz,'r-')

3-1072

stem3m

See Also scatterm

3-1073

str2angle

Purpose Convert strings to angles in degrees

Syntax angles = str2angle(strings)

Description angles = str2angle(strings) converts strings containing latitudes
and/or longitudes, expressed in one of four different formats of
degree-minutes-seconds, to numeric angles in units of degrees.

Format Description Example

Degree Symbol, Single/Double
Quotes

'123 30''00"W'

’d’, ’m’, ’s’ Separators '123d30m00sW'

Minus Signs as Separators '123-30-00W'

“Packed DMS” '1233000W'

Input must conform closely to the examples provided; in particular,
the seconds field must be included, even if it is not significant. Except
in Packed DMS format, the seconds field can contain a fractional
component. Sign characters are not supported; terminate each string
with 'N' for positive latitude, 'S' for negative latitude, 'E' for positive
longitude, or 'W' for negative longitude. strings is string or a cell
array of strings. For backward compatibility, strings can also be a
character matrix. If more than one angle is represented, strings can
either contain homogeneous or heterogeneous formatting (see example).
angles is a column vector of class double.

Examples strs = {'23 30''00"N', '23-30-00S', '123d30m00sE', '1233000W'}

strs =
'23 30'00"N' '23-30-00S' '123d30m00sE' '1233000W'

str2angle(strs)

ans =
23.5

3-1074

str2angle

-23.5
123.5

-123.5

See Also angl2str

3-1075

surfacem

Purpose Project and add geolocated data grid to current map axes

Syntax surfacem(lat,lon,Z)
surfacem(latlim,lonlim,Z)
surfacem(lat,lon,Z,alt)
surfacem(...,prop1,val1,prop2,val2,...)
h = surfacem(...)

Description surfacem(lat,lon,Z) constructs a surface to represent the data grid Z
in the current map axes. The surface lies flat in the horizontal plane
with its CData property set to Z. The vectors or 2-D arrays lat and lon
define the latitude-longitude graticule mesh on which Z is displayed.
For a complete description of the various forms that lat and lon can
take, see surfm.

surfacem(latlim,lonlim,Z) defines the graticule using the latitude
and longitude limits latlim and lonlim. These limits should match the
geographic extent of the data grid Z. The two-element vector latlim
has the form:

[southern_limit northern_limit]

Likewise, lonlim has the form:

[western_limit eastern_limit]

A latitude-longitude graticule of size 50-by-100 is constructed. The
surface FaceColor property is 'texturemap', except when Z is precisely
50-by-100, in which case it is 'flat'.

surfacem(lat,lon,Z,alt) sets the ZData property of the surface
to 'alt', resulting in a 3-D surface. Lat and lon must result in a
graticule mesh that matches alt in size. CData is set to Z. Facecolor is
'texturemap', unless Z matches alt in size, in which case it is 'flat'.

surfacem(...,prop1,val1,prop2,val2,...) applies additional
MATLAB graphics properties to the surface via property/value pairs.
You can specify any property accepted by the surface function, except
XData, YData, and ZData.

3-1076

surfacem

h = surfacem(...) returns a handle to the surface object.

Note Unlike meshm and surfm, surfacem always adds a surface to the
current axes, regardless of hold state.

Examples Construct a surface to represent the data grid topo.

figure('Color','white')
load topo

latlim = [-90 90];
lonlim = [0 360];
gratsize = 1 + [diff(latlim), diff(wrapTo360(lonlim))]/6;
[lat, lon] = meshgrat(latlim, lonlim, gratsize);
worldmap world
surfacem(lat, lon, topo)
demcmap(topo)

See Also geoshow | meshm | pcolorm | surfm

3-1077

surflm

Purpose 3-D shaded surface with lighting on map axes

Syntax surflm(lat,lon,Z)
surflm(latlim,lonlim,Z)
surflm(...,s)
surflm(...,s,k)
h = surflm(...)

Description surflm(lat,lon,Z) and surflm(latlim,lonlim,Z) are the same as
surfm(...) except that they highlight the surface with a light source.
The default light source (45 degrees counterclockwise from the current
view) and reflectance constants are the same as in surfl.

surflm(...,s) and surflm(...,s,k) use a light source vector, s, and
a vector of reflectance constants, k. For more information on s and
k, see the help for surfl.

h = surflm(...) returns a handle to the surface object.

Tips surflm is like surfm, except that it shades the monochrome map
surface with a light source, and the only allowed graticule is the size
of the data matrix.

Examples Project a 3-D shaded surface with lighting on the current map axes.
Note that in the following example, the graticule is the size of topo
(180 x 360) and is rendered in 3-D, so it might take a while. It is also
memory intensive:

figure('Color','white')
load topo
axesm miller
axis off; framem on; gridm on;
[lat,lon] = meshgrat(topo,topolegend);
surflm(lat,lon,topo)
colormap(gray)
coast = load('coast');
plotm(coast.lat,coast.long,max(topo(:)),...

3-1078

surflm

'LineWidth',1.5,'Color','yellow')

See Also surfm

3-1079

surflsrm

Purpose 3-D lighted shaded relief of geolocated data grid

Syntax surflsrm(lat,long,Z)
surflsrm(lat,long,Z,[azim elev])
surflsrm(lat,long,Z,[azim elev],cmap)
surflsrm(lat,long,Z,[azim elev],cmap,clim)
h = surflsrm(...)

Description surflsrm(lat,long,Z) displays the geolocated data grid, colored
according to elevation and surface slopes. The current axes must have
a valid map projection definition.

surflsrm(lat,long,Z,[azim elev]) displays the geolocated data
grid with the light coming from the specified azimuth and elevation.
Lighting is applied before the data is projected. Angles are in degrees,
with the azimuth measured clockwise from North, and elevation up
from the zero plane of the surface. By default, the direction of the light
source is east (90º azimuth) at an elevation of 45º.

surflsrm(lat,long,Z,[azim elev],cmap) displays the geolocated
data grid using the provided colormap. The number of grayscales is
chosen to keep the size of the shaded colormap below 256. By default,
the colormap is constructed from 16 colors and 16 grays. If the vector of
azimuth and elevation is empty, the default locations are used.

surflsrm(lat,long,Z,[azim elev],cmap,clim) uses the provided
color axis limits, which are, by default, automatically computed from
the data.

h = surflsrm(...) returns the handle to the surface drawn.

Tips This function effectively multiplies two colormaps, one with color based
on elevation, the other with a grayscale based on the slope of the
surface, to create a new colormap. This produces an effect similar to
using a light on a surface, but with all of the visible colors actually in the
colormap. Lighting calculations are performed on the unprojected data.

3-1080

surflsrm

Examples Create a new colormap using demcmap with white colors for the sea
and default colors for land. Use this colormap for the lighted shaded
relief map of the Middle East region:

load mapmtx
[cmap,clim] = demcmap(map1,[],[1 1 1],[]);
axesm loximuth
surflsrm(lt1,lg1,map1,[],cmap,clim)

See Also meshlsrm | meshm | pcolorm | shaderel | surfacem | surflm | surfm

3-1081

surfm

Purpose Project geolocated data grid on map axes

Syntax surfm(lat,lon,Z)
surfm(latlim,lonlim,Z)
surfm(lat,lon,Z,alt)
surfm(...,prop1,val1,prop2,val2,...)
h = surfm(...)

Description surfm(lat,lon,Z) constructs a surface to represent the data grid Z
in the current map axes. The surface lies flat in the horizontal plane
with its CData property set to Z. The 2-D arrays or vectors lat and lon
define the latitude-longitude graticule mesh on which Z is displayed.
The sizes and shapes of lat and lon affect their interpretation, and also
determine whether the default FaceColor property of the surface is
'flat' or 'texturemap'. There are three options:

• 2-D arrays (matrices) having the same size as Z. Lat and lon are
treated as geolocation arrays specifying the precise location of each
vertex. FaceColor is 'flat'.

• 2-D arrays having a different size than Z. The arrays lat and
lon define a graticule mesh that might be either larger or smaller
than Z. Lat and lon must match each other in size. FaceColor is
'texturemap'.

• Vectors having more than two elements. The elements of lat
and lon are repeated to form a graticule mesh with size equal to
numel(lat)-by-numel(lon). FaceColor is 'flat' if the graticule
mesh matches Z in size. Otherwise, FaceColor is 'texturemap'.

surfm clears the current map if the hold state is 'off'.

surfm(latlim,lonlim,Z) defines the graticule using the latitude and
longitude limits latlim and lonlim, which should match the geographic
extent of the data grid Z. Latlim is a two-element vector of the form:

[southern_limit northern_limit]

Likewise lonlim has the form:

3-1082

surfm

[western_limit eastern_limit]

A latitude-longitude graticule is constructed to match Z in size. The
surface FaceColor property is 'flat' by default.

surfm(lat,lon,Z,alt) sets the ZData property of the surface to 'alt',
resulting in a 3-D surface. lat and lon must result in a graticule mesh
that matches alt in size. CData is set to Z. The FaceColor property is
'texturemap', unless Z matches alt in size, in which case it is 'flat'.

surfm(...,prop1,val1,prop2,val2,...) applies additional
MATLAB graphics properties to the surface via property/value pairs.
You can specify any property accepted by the surface function except
XData, YData, and ZData.

h = surfm(...) returns a handle to the surface object.

Tips This function warps a data grid to a graticule mesh, which is projected
according to the map axes property MapProjection. The fineness, or
resolution, of this grid determines the quality of the projection and
the speed of plotting it. There is no hard and fast rule for sufficient
graticule resolution, but in general, cylindrical projections need very
few graticule points in the longitudinal direction, while complex
curve-generating projections require more.

Examples Construct a surface to represent the data grid topo.

figure('Color','white')
load topo
axesm miller
axis off; framem on; gridm on;
[lat,lon] = meshgrat(topo,topolegend,[90 180]);
surfm(lat,lon,topo)
demcmap(topo)

3-1083

surfm

See Also geoshow | meshgrat | meshm | pcolorm | surfacem

3-1084

symbolm

Purpose Project point markers with variable size

Syntax symbolm(lat,lon,z,'MarkerType')
symbolm(lat,lon,z,'MarkerType','PropertyName',PropertyValue,

...)
h = symbolm(...)

Description symbolm(lat,lon,z,'MarkerType') constructs a thematic map where
the symbol size of each data point (lat, lon) is proportional to it
weighting factor (z). The point corresponding to min(z) is drawn at the
default marker size, and all other points are plotted with proportionally
larger markers. The MarkerType string is a LineSpec string specifying
a marker and optionally a color.

symbolm(lat,lon,z,'MarkerType','PropertyName',PropertyValue,...)
applies the line properties to all the symbols drawn.

h = symbolm(...) returns a vector of handles to the projected symbols.
Each symbol is projected as an individual line object.

See also stem3m, plotm, plot

3-1085

tagm

Purpose Set Tag property of map graphics object

Syntax tagm(hndl,tagstr)

Description tagm(hndl,tagstr) sets the Tag property of each object designated in
the vector of handles hndl to the associated string (row) of the matrix of
strings tagstr.

This property is recognized by the namem and handlem functions.

Examples Normally, a plotted line has a name of 'line':

axesm miller
lats = [3 2 1 1 2 3]; longs = [7 8 9 7 8 9];
h=plotm(lats,longs);

untagged = namem(h)
untagged =
line

The tagm function can rename it:

tagm(h,'testpath');
tagged = namem(h)
tagged =
testpath

See Also clma | clmo | handlem | hidem | namem | showm

3-1086

tbase

Purpose Read 5-minute global terrain elevations from TerrainBase

Syntax [Z,refvec] = tbase(scalefactor)
[Z,refvec] = tbase(scalefactor,latlim,lonlim)

Description [Z,refvec] = tbase(scalefactor) reads the data for the entire
world, reducing the resolution of the data by the specified scale
factor. The result is returned as a regular data grid and an associated
three-element referencing vector.

[Z,refvec] = tbase(scalefactor,latlim,lonlim) reads the data
for the part of the world within the latitude and longitude limits. The
limits must be two-element vectors in units of degrees.

Background TerrainBase is a global model of terrain and bathymetry on a regular
5-minute grid (approximately 10 km resolution). It is a compilation of
the public domain data from almost 20 different sources, including the
DCW-DEM and ETOPO5. The data set was created by the National
Geophysical Data Center and World Data Center-A for Solid Earth
Geophysics in Boulder, Colorado.

Note For details on locating map data for download over the
Internet, see the following documentation at the MathWorks Web site:
http://www.mathworks.com/help/map/finding-geospatial-data.html

Examples Read every 10th point in the data set:

[Z,refvec] = tbase(10);
whos

Name Size Bytes Class

Z 216x432 746496 double array
refvec 1x3 24 double array

3-1087

http://www.mathworks.com/help/map/finding-geospatial-data.html

tbase

limitm(Z,refvec)

ans =
-90 90 0 360

Read data for Korea and Japan at the full resolution:

scalefactor = 1; latlim = [30 45]; lonlim = [115 145];
[Z,refvec] = tbase(scalefactor,latlim,lonlim);
whos datagrid

Name Size Bytes Class

Z 180x360 518400 double array

See Also gtopo30 | etopo | usgsdem

3-1088

textm

Purpose Project text annotation on map axes

Syntax textm(lat,lon,string)
textm(lat,lon,z,string)
textm(lat,lon,z,string,PropertyName,PropertyValue,...)
h = textm(...)

Description textm(lat,lon,string) projects the text in string onto the current
map axes at the locations specified by the lat and lon. The units of lat
and lon must match the 'angleunits' property of the map axes. If lat
and lon contain multiple elements, textm places a text object at each
location. In this case string may be a cell array of strings with the
same number of elements as lat and lon. (For backward compatibility,
string may also be a 2-D character array such that size(string,1)
matches numel(lat)).

textm(lat,lon,z,string) draws the text at the altitude(s) specified in
z, which must be the same size as lat and lon. The default altitude is 0.

textm(lat,lon,z,string,PropertyName,PropertyValue,...) sets
the text object properties. All properties supported by the MATLAB
text function are supported by textm.

h = textm(...) returns the handles to the text objects drawn.

Tips You may be working with scalar lat and lon data or vector lat and lon
data. If you are in scalar mode and you enter a cell array of strings, you
will get a text object with a multiline string. Also note that vertical
slash characters, rather than producing multiline strings, will yield a
single line string containing vertical slashes. On the other hand, if
lat and lon are nonscalar, then the size of the cell array input must
match their size exactly.

Examples The feature of textm that distinguishes it from the standard MATLAB
text function is that the text object is projected appropriately. Type
the following:

axesm sinusoid

3-1089

textm

framem('FEdgeColor','red')
textm(60,90,'hello')

figure; axesm miller
framem('FEdgeColor','red')
textm(60,90,'hello')

3-1090

textm

The string 'hello' is placed at the same geographic point, but it
appears to have moved relative to the axes because of the different
projections. If you change the projection using the setm function,
the text moves as necessary. Use text to fix text objects in the axes
independent of projection.

See Also axesm | text

3-1091

tgrline

Purpose Read TIGER/Line data

Note tgrline will be removed in a future version. More recent
TIGER/Line data sets are available in shapefile format and can be
imported using shaperead.

Syntax [CL,PR,SR,RR,H,AL,PL] = tgrline(filename)
[CL,PR,SR,RR,H,AL,PL] = tgrline(filename,year)
[CL,PR,SR,RR,H,AL,PL] = tgrline(filename,year,countyname)

Description [CL,PR,SR,RR,H,AL,PL] = tgrline(filename) reads a set of 1994
TIGER/Line files which share the same filename, but different
extensions. The results are returned in a set of Mapping Toolbox
display structures tagged with feature names and containing:

• county boundaries (CL)

• primary roads (PR)

• secondary roads (SR)

• railroads (RR)

• hydrography (H)

• area landmarks (AL)

• point landmarks (PL)

[CL,PR,SR,RR,H,AL,PL] = tgrline(filename,year) reads the
TIGER line files in the format from that year. The layout of TIGER/Line
files is updated periodically and filename extensions may change from
year to year. Valid years are 1990, 1992, 1994, 1995, 1999, 2000, 2002,
2003, and 2004.

[CL,PR,SR,RR,H,AL,PL] = tgrline(filename,year,countyname)
uses the string countyname to tag the county data.

3-1092

tgrline

Background The United States Census Bureau distributes TIGER/Line data over
the Internet and via CD-ROM or DVD.

TIGER/Line files contain vector map data used to support mapping for
the U.S. Census Bureau. TIGER is an acronym for Topographically
Integrated Geographic Encoding and Referencing. These files
contain data for political boundaries, including states, counties,
Indian reservations, and census tracts, as well as roads, railroads,
hydrography, and landmarks. In addition to the geographically
referenced information, the files also contain data to determine the
address of an object. The data covers the United States of America and
its territories or administrative units: Puerto Rico, the Virgin Islands
of the United States, American Samoa, Guam, the Commonwealth of
the Northern Marianna Islands, the Republic of Palau, the other Pacific
entities that were part of the Trust Territory of the Pacific Islands
(the Republic of the Marshall Islands and the Federated States of
Micronesia), and the Midway Islands. The most common application of
this data is to commercial CD-ROM road atlases.

TIGER/Line is a registered trademark of the United States Census
Bureau.

Tips This function reads only a subset of the data in the TIGER/Line files.
For example, the function does not return local roads, zip codes, or
census tract numbers.

Data are returned as Mapping Toolbox display structures, which you
can then update to geographic data structures. For information about
display structure format, see “Version 1 Display Structures” on page
3-177 in the reference page for displaym. The updategeostruct
function performs such conversions.

Examples Read from the data for Washington, D.C.:

[CL,PR,SR,RR,H,AL,PL] = tgrline('TGR11001',1994,'Wash,DC');

See Also shaperead | updategeostruct

3-1093

tightmap

Purpose Remove white space around map

Syntax tightmap

Description tightmap sets the axis limits to be tight around the map in the current
axes. This eliminates or reduces the white border between the map
frame and the axes box. Use axis auto to undo tightmap.

Tips The axis limits are fixed. If a change in the projection parameters
changes the size or position of the map display within the projected
coordinate system, execute tightmap again. Also note that tightmap
needs to be re-applied following any call to setm that causes projected
map objects to be re-projected.

The tightmap function performs no action on a 'globe' map axes.

Examples Display a map of Africa. Notice the white space between the map frame
and the edge of the axes box.

axesm('miller','maplatlim',[-40 40],'maplonlim',[-20 60])
framem; gridm; mlabel; plabel
load coast
plotm(lat, long)

Now use tightmap to reduce the wasted space:

tightmap

See Also panzoom | zoom | paperscale | axesscale | previewmap

3-1094

timezone

Purpose Time zone based on longitude

Syntax [zd,zltr,zone] = timezone(long)
[zd,zltr,zone] = timezone(long,units)

Description [zd,zltr,zone] = timezone(long) returns an integer zone
description, zd, an alphabetical string zone indicator, zltr, and a
string, zone, with the complete zone description and alphabetical zone
indicator corresponding to the input longitude long.

[zd,zltr,zone] = timezone(long,units) specifies the angular units
with a standard angle units string. The default value is 'degrees'.
Valid units are:

• 'degrees' — decimal degrees

• 'radians'

Examples Given that it is locally 1330 (1:30 p.m.) at a longitude of 75ºW,
determine GMT:

[zd,zltr,zone] = timezone(-75,'degrees')

zd =
5

zltr =
R
zone =
+5 R

Greenwich Mean Time (GMT) is 1330 plus five hours, or 1830 (6:30
p.m.).

Background Time is determined by the position of the Sun relative to the prime
meridian, the zero longitude line running through Greenwich, England.
When this meridian lies directly below the Sun, it is noon GMT. For
local times elsewhere, the Earth is divided into 15º longitude bands,
each centered on a central meridian. When a central meridian lies

3-1095

timezone

directly below the Sun, Local Mean Time (LMT) in that zone is noon.
The zone description is an integer that when added to LMT gives GMT.
For notational convenience, each zone is also given an alphabetical
indicator. The indicator at Greenwich is Z, so GMT is often called
ZULU time.

Note that there are actually 25 time zones, because the zone centered
on the International Date Line (180º E/W) is split into two: “+12 Y”
and “-12 M.”

Limitations National and local governments set their own time zone boundaries for
political or geographic convenience. The timezone function does not
account for statutory deviations from the meridian-based system.

3-1096

tissot

Purpose Project Tissot indicatrices on map axes

Syntax h = tissot
h = tissot(spec)
h = tissot(spec,linestyle)
h = tissot(linestyle)
h = tissot(spec,PropertyName,PropertyValue,...)
h = tissot(linestyle,PropertyName,PropertyValue,...)

Description h = tissot plots the default Tissot diagram, as described above, on the
current map axes and returns handles for the displayed indicatrices.

h = tissot(spec) allows you to specify plotting parameters of the
displayed Tissot diagram as described above.

h = tissot(spec,linestyle) and h = tissot(linestyle) specify
any linestyle string recognized by the standard MATLAB line
function to set the line style of the Tissot indicatrices.

h = tissot(spec,PropertyName,PropertyValue,...) and h =
tissot(linestyle,PropertyName,PropertyValue,...) allow the
specification of any property and value recognized by the line function.

Background Tissot indicatrices are plotting symbols that are useful for
understanding the various distortions of a given map projection. The
indicatrices are circles of identical true radius on the Earth’s surface.
When plotted on a map projection, they indicate whether the projection
has certain features. If the plotted indicatrices all enclose the same
area, the projection is equal area (for example, a Sinusoidal projection
would have this feature). If they all remain circular, then conformality
is indicated (a Mercator projection has this property). Distortions in
meridianal or parallel distance are exhibited by flattened or stretched
indicatrices. Many projections will show very even, circular indicatrices
in some regions, often near the center, and wildly distorted indicatrices
in others, such as near the edges. The Tissot diagram is therefore
very useful in analyzing the appropriateness of a projection to a given
purpose or region.

3-1097

tissot

The general layout of the Tissot diagram is defined by the specification
vector spec.

spec = [Radius]
spec = [Latint,Longint]
spec = [Latint,Longint,Radius]
spec = [Latint,Longint,Radius,Points]

Radius is the small circle radius of each indicatrix circle. If entered, it
should be in the same units as the map axes Geoid. The default radius
is 1/10th the radius of the sphere.

Latint is the latitude interval between indicatrix circle centers. If
entered it should be in the map axes AngleUnits. The default value is
one circle every 30º of latitude (that is, 0º, +/-30º, etc.).

Longint is the longitude interval between indicatrix circle centers. If
entered it should be in the map axes AngleUnits. The default value is
one circle every 30º of latitude (that is, 0º, +/-30º, etc.).

Points is the number of plotting points per circle. The default is 100
points.

Examples axesm sinusoid; framem
tissot

The Sinusoidal projection is equal area.

setm(gca,'MapProjection','Mercator')

3-1098

tissot

The Mercator projection is conformal.

See Also mdistort | distortcalc

How To • “Supported Map Projections”

3-1099

toDegrees

Purpose Convert angles to degrees

Syntax [angle1InDegrees, angle2InDegrees,
...] = toDegrees(fromUnits, angle1, angle2, ...)

Description [angle1InDegrees, angle2InDegrees, ...] =
toDegrees(fromUnits, angle1, angle2, ...) converts
angle1, angle2, ... to degrees from the specified angle units.
fromUnits can be either 'degrees' or 'radians' and may
be abbreviated. The inputs angle1, angle2, ... and their
corresponding outputs are numeric arrays of various sizes, with
size(angleNinDegrees) matching size(angleN).

See Also fromDegrees | fromRadians | radtodeg | toRadians

3-1100

toRadians

Purpose Convert angles to radians

Syntax [angle1InRadians, angle2InRadians,
...] = toRadians(fromUnits, angle1, angle2, ...)

Description [angle1InRadians, angle2InRadians, ...] =
toRadians(fromUnits, angle1, angle2, ...) converts
angle1, angle2, ... to radians from the specified angle units.
fromUnits can be either 'degrees' or 'radians' and may
be abbreviated. The inputs angle1, angle2, ... and their
corresponding outputs are numeric arrays of various sizes, with
size(angleNinRadians) matching size(angleN).

See Also degtorad | fromDegrees | fromRadians | toDegrees

3-1101

track

Purpose Track segments to connect navigational waypoints

Syntax [lattrk,lontrk] = track(waypts)
[lattrk,lontrk] = track(waypts,units)
[lattrk,lontrk] = track(lat,lon)
[lattrk,lontrk] = track(lat,lon,ellipsoid)
[lattrk,lontrk] = track(lat,lon,ellipsoid,units,npts)
[lattrk,lontrk] = track(method,lat,...)
trkpts = track(lat,lon...)

Description [lattrk,lontrk] = track(waypts) returns points in lattrk and
lontrk along a track between the waypoints provided in navigational
track format in the two-column matrix waypts. The outputs are column
vectors in which successive segments are delineated with NaNs.

[lattrk,lontrk] = track(waypts,units) specifies the units of the
inputs and outputs, where units is any valid angle unit string. The
default is 'degrees'.

[lattrk,lontrk] = track(lat,lon) allows the user to input the
waypoints in two vectors, lat and lon.

[lattrk,lontrk] = track(lat,lon,ellipsoid) specifies the shape
of the Earth using ellipsoid, which can be a referenceSphere,
referenceEllipsoid, or oblateSpheroid object, or a vector of the
form [semimajor_axis eccentricity]. The default ellipsoid is a unit
sphere

[lattrk,lontrk] = track(lat,lon,ellipsoid,units,npts)
establishes how many intermediate points are to be calculated for every
track segment. By default, npts is 30.

[lattrk,lontrk] = track(method,lat,...) establishes the logic to
be used to determine the intermediate points along the track between
waypoints. Because this is a navigationally motivated function, the
default method is 'rh', which results in rhumb line logic. Great circle
logic can be specified with 'gc'.

3-1102

track

trkpts = track(lat,lon...) compresses the output into one
two-column matrix, trkpts, in which the first column represents
latitudes and the second column, longitudes.

Examples The track function is useful for generating data in order to display
tracks. Lieutenant Sextant is the navigator of the USS Neversail. He
is charged with plotting a track to take Neversail from the Straits of
Gibraltar to Port Said, Egypt, the northern end of the Suez Canal. He
has picked appropriate waypoints and now would like to display the
track for his captain’s approval.

First, display a chart of the Mediterranean Sea:

load coast

axesm('mercator','MapLatLimit',[28 47],'MapLonLimit',[-10 37],...

'Grid','on','Frame','on','MeridianLabel','on','ParallelLabel','on')

geoshow(lat,long,'DisplayType','line','color','b')

These are the waypoints Lt. Sextant has selected:

waypoints = [36,-5; 36,-2; 38,5; 38,11; 35,13; 33,30; 31.5,32]

waypoints =

3-1103

track

36.0000 -5.0000
36.0000 -2.0000
38.0000 5.0000
38.0000 11.0000
35.0000 13.0000
33.0000 30.0000
31.5000 32.0000

Now display the track:

[lttrk,lntrk] = track('rh',waypoints,'degrees');
geoshow(lttrk,lntrk,'DisplayType','line','color','r')

With a display this clear, the captain gladly approves the plan.

See Also dreckon | gcwaypts | legs | navfix

3-1104

track1

Purpose Geographic tracks from starting point, azimuth, and range

Syntax [lat,lon] = track1(lat0,lon0,az)
[lat,lon] = track1(lat0,lon0,az,arclen)
[lat,lon] = track1(lat0,lon0,az,arclen,ellipsoid)
[lat,lon] = track1(lat0,lon0,az,angleunits)
[lat,lon] = track1(lat0,lon0,az,arclen,angleunits)
[lat,lon] =
track1(lat0,lon0,az,arclen,ellipsoid,angleunits)
[lat,lon] =
track1(lat0,lon0,az,arclen,ellipsoid,angleunits,

npts)
[lat,lon] = track1(trackstr,...)
mat = track1(...)

Description [lat,lon] = track1(lat0,lon0,az) computes complete great circle
tracks on a sphere starting at the point lat0,lon0 and proceeding along
the input azimuth, az. The inputs can be scalar or column vectors.

[lat,lon] = track1(lat0,lon0,az,arclen) uses the input arclen to
specify the arc length of the great circle track. arclen is specified in
units of degrees of arc. If arclen is a column vector, then the track
is computed from the starting point, with positive distance measured
easterly. If arclen is a two column matrix, then the track is computed
starting at the range in the first column and ending at the range in the
second column. If arclen = [], then the complete track is computed.

[lat,lon] = track1(lat0,lon0,az,arclen,ellipsoid) computes
the track along a geodesic arc on the ellipsoid defined by the input
ellipsoid, which can be a referenceSphere, referenceEllipsoid,
or oblateSpheroid object, or a vector of the form [semimajor_axis
eccentricity]. arclen must be expressed in length units that match
the units of the semimajor axis — unless ellipsoid is [] or the
semimajor axis length is zero. In these special cases, arclen is assumed
to be in degrees of arc and the tracks are computed on a sphere, as in
the preceding syntax.

3-1105

track1

[lat,lon] = track1(lat0,lon0,az,angleunits),
[lat,lon] = track1(lat0,lon0,az,arclen,angleunits), and
[lat,lon] =
track1(lat0,lon0,az,arclen,ellipsoid,angleunits) use the
string angleunits to specify the angle units of the inputs and outputs.
angleunits can equal 'degrees' or 'radians'.

[lat,lon] =
track1(lat0,lon0,az,arclen,ellipsoid,angleunits,npts)
uses the scalar input npts to specify the number of points per
track. The default value of npts is 100.

[lat,lon] = track1(trackstr,...) uses the string trackstr to
define either a great circle or rhumb line track. trackstr can equal
'gc' or 'rh'. If trackstr is 'gc', then either great circle (given
a sphere) or geodesic (given an ellipsoid) tracks are computed. If
trackstr is 'rh', then the rhumb line tracks are computed.

mat = track1(...) returns a single output argument mat such that
mat = [lat lon]. This is useful if only a single track is computed.

Multiple tracks can be defined from a single starting point by providing
scalar lat0 and lon0 and column vectors for az and arclen.

Definitions A path along the surface of the Earth connecting two points is a track.
Two types of track lines are of interest geographically, great circles and
rhumb lines. Great circles represent the shortest possible path between
two points. Rhumb lines are paths with constant angular headings.
They are not, in general, the shortest path between two points.

Full great circles bisect the Earth; the ends of the track meet to form
a complete circle. Rhumb lines with true east or west azimuths are
parallels; the ends also meet to form a complete circle. All other rhumb
lines terminate at the poles; their ends do not meet.

Examples % Set up the axes.
axesm('mercator','MapLatLimit',[-60 60],'MapLonLimit',[-60 60])
gridm on; plabel on; mlabel on;

3-1106

track1

% Plot the great circle track in green.
[lattrkgc,lontrkgc] = track1(0,0,45,[-55 55]);
plotm(lattrkgc,lontrkgc,'g')

% Plot the rhumb line track in red.
[lattrkrh,lontrkrh] = track1('rh',0,0,45,[-55 55]);
plotm(lattrkrh,lontrkrh,'r')

See Also azimuth | distance | reckon | scircle1 | scircle2 | track |
track2 | trackg

3-1107

track2

Purpose Geographic tracks from starting and ending points

Syntax [lat,lon] = track2(lat1,lon1,lat2,lon2)
[lat,lon] = track2(lat1,lon1,lat2,lon2,ellipsoid)
[lat,lon] = track2(lat1,lon1,lat2,lon2,units)
[lat,lon] = track2(lat1,lon1,lat2,lon2,ellipsoid,units)
[lat,lon] =
track2(lat1,lon1,lat2,lon2,ellipsoid,units,npts)
[lat,lon] = track2(track,...)
mat = track2(...)

Description [lat,lon] = track2(lat1,lon1,lat2,lon2) computes great circle
tracks on a sphere starting at the point lat1,lon1 and ending at
lat2,lon2. The inputs can be scalar or column vectors.

[lat,lon] = track2(lat1,lon1,lat2,lon2,ellipsoid) computes
the great circle track on the ellipsoid defined by the input ellipsoid.
ellipsoid is a referenceSphere, referenceEllipsoid, or
oblateSpheroid object, or a vector of the form [semimajor_axis
eccentricity]. If ellipsoid = [], a sphere is assumed.

[lat,lon] = track2(lat1,lon1,lat2,lon2,units) and
[lat,lon] = track2(lat1,lon1,lat2,lon2,ellipsoid,units) are
both valid calling forms, which use the input string units to define
the angle units of the inputs and outputs. If the input string units is
omitted, 'degrees' is assumed.

[lat,lon] =
track2(lat1,lon1,lat2,lon2,ellipsoid,units,npts) uses the
scalar input npts to determine the number of points per track
computed. The default value of npts is 100.

[lat,lon] = track2(track,...) uses the track string to define
either a great circle or a rhumb line track. If track = 'gc', then great
circle tracks are computed. If track = 'rh', then rhumb line tracks
are computed. If the track string is omitted, 'gc' is assumed.

mat = track2(...) returns a single output argument where mat =
[lat lon]. This is useful if a single track is computed. Multiple tracks

3-1108

track2

can be defined from a single starting point by providing scalar inputs
for lat1,lon1 and column vectors for lat2,lon2.

Definitions A path along the surface of the Earth connecting two points is a track.
Two types of track lines are of interest geographically, great circles and
rhumb lines. Great circles represent the shortest possible path between
two points. Rhumb lines are paths with constant angular headings.
They are not, in general, the shortest path between two points.

Examples % Set up the axes.
axesm('mercator','MapLatLimit',[30 50],'MapLonLimit',[-40 40])

% Calculate the great circle track.
[lattrkgc,lontrkgc] = track2(40,-35,40,35);

% Calculate the rhumb line track.
[lattrkrh,lontrkrh] = track2('rh',40,-35,40,35);

% Plot both tracks.
plotm(lattrkgc,lontrkgc,'g')
plotm(lattrkrh,lontrkrh,'r')

See Also azimuth | distance | reckon | scircle1 | scircle2 | track |
track1 | trackg

3-1109

trackg

Purpose Great circle or rhumb line defined via mouse input

Syntax h = trackg(ntrax)
h = trackg(ntrax,npts)
h = trackg(ntrax,linestyle)
h = trackg(ntrax,PropertyName,PropertyValue,...)
[lat,lon] = trackg(ntrax,npts,...)
h = trackg(track,ntrax,...)

Description h = trackg(ntrax) brings forward the current map axes and waits for
the user to make (2 x ntrax) mouse clicks. The output h is a vector of
handles for the ntrax track segments, which are then displayed.

h = trackg(ntrax,npts) specifies the number of plotting points to be
used for each track segment. npts is 100 by default.

h = trackg(ntrax,linestyle) specifies the line style for the displayed
track segments, where linestyle is any line style string recognized by
the standard MATLAB line function.

h = trackg(ntrax,PropertyName,PropertyValue,...) allows
property name/property value pairs to be set, where PropertyName and
PropertyValue are recognized by the line function.

[lat,lon] = trackg(ntrax,npts,...) returns the coordinates of the
plotted points rather than the handles of the track segments. Successive
segments are stored in separate columns of lat and lon.

h = trackg(track,ntrax,...) specifies the logic with which tracks
are calculated. If the string track is 'gc' (the default), a great circle
path is used. If track is 'rh', rhumb line logic is used.

This function is used to define great circles or rhumb lines for display
using mouse clicks. For each track, two clicks are required, one for each
endpoint of the desired track segment. You can modify the track after
creation by Shift+clicking it. The track is then in edit mode, during
which you can change the length and position by dragging control
points, or by entering values into a control panel. Shift+clicking again
exits edit mode.

3-1110

trackg

See Also track1 | track2 | scircleg

3-1111

trimcart

Purpose Trim graphic objects to map frame

Syntax trimcart(h)

Description trimcart(h) clips the graphic objects to the map frame. h can be a
handle or a vector of handles to graphics objects. h can also be any
object name recognized by handlem. trimcart clips lines, surfaces,
and text objects.

Examples figure; axesm('miller')
framem
[x, y] = humps(0:.05:1);
h = plot(x, y/25, 'r+-');
load coast
geoshow(lat, long)
trimcart(h)

Limitations trimcart does not trim patch objects.

See Also handlem | makemapped

3-1112

trimdata

Purpose Trim map data exceeding projection limits

Syntax [ymat,xmat,trimpts] = trimdata(ymat,ylim,xmat,xlim,'object')

Description [ymat,xmat,trimpts] =
trimdata(ymat,ylim,xmat,xlim,'object') identifies points in map
data that exceed projection limits. The projection limits are defined by
the lower and upper inputs. The particular object to be trimmed is
identified by the 'object' input.

Allowable object strings are

• 'surface' for trimming graticules

• 'light' for trimming lights,

• 'line' for trimming lines

• 'patch' for trimming patches

• 'text' for trimming text object location points

• 'none' to skip all trimming operations

See Also clipdata | undotrim | undoclip

3-1113

undoclip

Purpose Remove object clips introduced by clipdata

Syntax [lat,long] = undoclip(lat,long,clippts,'object')

Description [lat,long] = undoclip(lat,long,clippts,'object') removes the
object clips introduced by clipdata. This function is necessary to
properly invert projected data from the Cartesian space to the original
latitude and longitude data points.

The input variable, clippts, must be constructed by the function
clipdata.

Allowable object strings are

• 'surface' for trimming graticules

• 'light' for trimming lights

• 'line' for trimming lines

• 'patch' for trimming patches

• 'text' for trimming text object location points

• 'none' to skip all trimming operations

See Also clipdata | trimdata | undotrim

3-1114

undotrim

Purpose Remove object trims introduced by trimdata

Syntax [ymat,xmat] = undotrim(ymat,xmat,trimpts,'object')

Description [ymat,xmat] = undotrim(ymat,xmat,trimpts,'object') removes
the object trims introduced by trimdata. This function is necessary to
properly invert projected data from the Cartesian space to the original
latitude and longitude data points.

The input variable, trimpts, must be constructed by the function
trimdata.

Allowable object strings are

• 'surface' for trimming graticules

• 'light' for trimming lights

• 'line' for trimming lines

• 'patch' for trimming patches

• 'text' for trimming text object location points

• 'none' to skip all trimming operations

See Also clipdata | trimdata | undoclip

3-1115

unitsratio

Purpose Unit conversion factors

Syntax ratio = unitsratio(to,from)

Description ratio = unitsratio(to,from) returns the number of to units per one
from unit. For example, unitsratio('cm','m') returns 100 because
there are 100 centimeters per meter. The unitsratio function makes it
easy to convert from one system of units to another. Specifically, if x
is in units from and

y = unitsratio(to, from) * x

then y is in units to.

to and from can be any strings from the second column of one of the
following tables (both must come from the same table). The variables to
and from are case insensitive and can be either singular or plural.

Units of
Length

unitsratio recognizes the identifiers listed in the validateLengthUnit
function.

Units of
Angle

unitsratio recognizes the following identifiers for converting units
of angle:

Unit Name String(s)

radian 'rad', 'radian(s)'

degree 'deg', 'degree(s)'

Examples % Approximate mean earth radius in meters

radiusInMeters = 6371000

% Conversion factor

feetPerMeter = unitsratio('feet', 'meter')

% Radius in (international) feet:

radiusInFeet = feetPerMeter * radiusInMeters

3-1116

unitsratio

% The following prints a true statement for valid TO, FROM pairs:

to = 'feet';

from = 'mile';

sprintf('There are %g %s per %s.', unitsratio(to,from), to, from)

% The following prints a true statement for valid TO, FROM pairs:

to = 'degrees';

from = 'radian';

sprintf('One %s is %g %s.', from, unitsratio(to,from), to)

3-1117

unitstr

Purpose Check spatiotemporal unit strings and abbreviations

Note The unitstr function is obsolete and will be removed in a future
release. The syntax str = unitstr(str,'times') has already been
removed.

Syntax unitstr
str = unitstr(str0,'angles')
str = unitstr(str0,'distances')

Description unitstr, with no arguments, displays a list of strings and abbreviations,
recognized by certain Mapping Toolbox functions, for units of angle
and length/distance.

str = unitstr(str0,'angles') checks for valid angle unit strings or
abbreviations. If a valid string or abbreviation is found, it is converted
to a standardized, preset string. 'angles' can be abbreviated.

str = unitstr(str0,'distances') checks for valid length unit
strings or abbreviations. If a valid string or abbreviation is found,
it is converted to a standardized, preset string. 'distances' can be
abbreviated. Note that input strings 'miles' and 'mi' are converted
to 'statutemiles'; there is no way to specify international miles in
the unitstr function.

Examples This function recognizes and standardizes certain abbreviations:

str = unitstr('sm','distances')

str =
statutemiles

And any unique truncation:

str = unitstr('ra','angles')

3-1118

unitstr

str =
radians

See Also unitsratio

3-1119

unwrapMultipart

Purpose Unwrap vector of angles with NaN-delimited parts

Syntax unwrapped = unwrapMultipart(p)
unwrapped = unwrapMultipart(p,angleUnit)

Description unwrapped = unwrapMultipart(p) unwraps a row or column vector
of azimuths, longitudes, or phase angles. Input and output units are
both radians. If p is separated into multiple parts delimited by values
of NaN, each part is unwrapped independently. If p has only one part,
the result is equivalent to unwrap(p). The output is the same size as
the input and has NaNs in the same locations.

unwrapped = unwrapMultipart(p,angleUnit) unwraps a row
or column vector of azimuths, longitudes, or phase angles, where
angleUnit specifies the unit used for the input and output angles:
'degrees' or 'radians'.

Examples Example 1

Compare the behavior unwrapMultipart to that of unwrap. The output
of unwrapMultipart starts over again at 6.11 following the NaN, unlike
the output of unwrap. The output of unwrapMultipart is equivalent to a
concatenation (with NaN-separator) of separate calls to unwrap:

p1 = [0.17 5.67 4.89 4.10];

p2 = [6.11 1.05 2.27];

unwrap([p1 NaN p2])

ans =

0.1700 -0.6132 -1.3932 -2.1832 NaN -0.1732 1.0500 2.2700

unwrapMultipart([p1 NaN p2])

ans =

0.1700 -0.6132 -1.3932 -2.1832 NaN 6.1100 7.3332 8.5532

[unwrap(p1) NaN unwrap(p2)]

3-1120

unwrapMultipart

ans =

0.1700 -0.6132 -1.3932 -2.1832 NaN 6.1100 7.3332 8.5532

Example 2

Wrap two revolutions of a sphere to π with wrapToPi, and then unwrap
it with unWrapMultipart:

lon = wrapToPi(degtorad(0:10:720));
unwrappedlon = unwrapMultipart(lon);
figure; hold on
plot(lon,'--')
plot(unwrappedlon)
xlabel 'Point Number'
ylabel 'Longitude in radians'

3-1121

unwrapMultipart

See Also unwrap | wrapTo180 | wrapTo360 | wrapToPi | wrapTo2Pi

3-1122

updategeostruct

Purpose Convert line or patch display structure to geostruct

Syntax geostruct = updategeostruct(displaystruct)
geostruct = updategeostruct(displaystruct, str)
[geostruct,symbolspec] = updategeostruct(displaystruct, ...)
[geostruct,symbolspec] = updategeostruct(displaystruct, ...,

cmap)

Description geostruct = updategeostruct(displaystruct) accepts a Mapping
Toolbox display structure displaystruct. If displaystruct is a
vector display structure for which the 'type' field has value 'line'
or 'patch', updategeostruct restructures its elements to create a
geostruct, geostruct. If displaystruct is a already geographic data
structure, it is copied unaltered to geostruct. updategeostruct
does not update display structure arrays of type 'text', 'light',
'regular', or 'surface'.

geostruct = updategeostruct(displaystruct, str) selects only
elements whose tag field begins with the string str (and whose type
field is either 'line' or 'patch'). The selection is case insensitive.

[geostruct,symbolspec] = updategeostruct(displaystruct,
...) restructures a display structure and determines a symbolspec
based on the graphic properties specified in the otherproperty field for
each element of displaystruct and, if necessary, the jet colormap.

[geostruct,symbolspec] = updategeostruct(displaystruct,
..., cmap) specifies a colormap, cmap, to define the colors used in
symbolspec.

Tips There are two Mapping Toolbox encodings for vector features that
use MATLAB structure arrays. In both cases there is one feature per
array element, and in both cases a given array’s elements all held the
same type of feature. Version 1.3.1 and earlier of the Mapping Toolbox
software only supported Mapping Toolbox display structures. Version
2.0 introduced a data structure for vector geodata which was less rigidly
defined and more open-ended. The new structures are called geostructs
(if they contain geographic coordinate data) and mapstructs (if they

3-1123

updategeostruct

contain projected coordinate data). Over time, display structures are
being phased out of the toolbox; the updategeostruct function is
provided to help users migrate from the old display structure format to
the current geostruct/mapstruct format.

A Version 1 Mapping Toolbox display structure is a MATLAB structure
that can contain line, patch, text, regular data grid, geolocated data
grid, and light objects. The displaym function does not accept geostructs
produced by Version 2 of the Mapping Toolbox software.

Display structures for lines and patches and Line and Polygon
geostructs have the following things in common:

• A field that specifies the type of feature geometry:

- A type field a display structure (value: 'line' or 'patch')

- A Geometry field for a geostruct (value: ’Line’ or 'Polygon')

• A latitude field:

- lat for a display structure

- Lat for a geostruct

• A longitude field:

- long for a display structure

- Lon for a geostruct
In terms of their differences,

• A geostruct has a BoundingBox field; there is no display structure
counterpart for this

• A geostruct typically has one or more “attribute” fields, whose values
must be either scalar doubles or strings, with arbitrary field names.
The presence or absence of a given attribute field—and its value—is
dependent on the specific data set that the geostruct represents.

• A (line or patch) display structure has the following fields:

- A tag field that names an individual feature or object

- An altitude coordinate array that extends coordinates to 3-D

3-1124

updategeostruct

- An otherproperty field in which MATLAB graphics can be
specified explicitly, on a per-feature basis

Object properties used in the display are taken from the otherproperty
field of the structure. If a line or patch object’s otherproperty field
is empty, displaym uses default colors. A patch is assigned an index
into the current colormap based on the structure’s tag field. Lines are
assigned colors from the current color order according to their tags.

The newer geostruct representation has significant advantages:

• It can represent a much wider range of attributes (display structures
essentially can represent only a feature name).

• The geostruct representation (in combination with geoshow and
makesymbolspec) keeps graphics display properties separate from
the intrinsic properties of the geographic features themselves.

For example, a road-class attribute can be used to display major
highways with a distinctive color and greater line width than secondary
roads. The same geographic data structure can be displayed in many
different ways, without altering any of its contents, and shapefile
data imported from external sources need not be altered to control its
graphic display.

For information about the display structure format, see “Version 1
Display Structures” on page 3-177 in the reference page for displaym.
For a discussion of the characteristics of geographic data structures,
see “Mapping Toolbox Geographic Data Structures” in the Mapping
Toolbox User’s Guide.

Examples Update and display the Great Lakes display structure to a geostruct:

load greatlakes
cmap = cool(3*numel(greatlakes));
[gtlakes, spec] = updategeostruct(greatlakes, cmap);
lat = extractfield(gtlakes,'Lat');
lon = extractfield(gtlakes,'Lon');
lonlim = [min(lon) max(lon)];
latlim = [min(lat) max(lat)];
figure

3-1125

updategeostruct

usamap(latlim, lonlim);
geoshow(gtlakes, 'SymbolSpec', spec)

See Also displaym | geoshow | makesymbolspec | mapshow | mapview |
shaperead

3-1126

usamap

Purpose Construct map axes for United States of America

Syntax usamap state
usamap(state)
usamap 'conus'
usamap('conus')
usamap
usamap(latlim, lonlim)
usamap(Z, R)
h = usamap(...)
h = usamap('all')

Description usamap state or usamap(state) constructs an empty map axes with
a Lambert Conformal Conic projection and map limits covering a U.S.
state or group of states specified by input state. state may be a string
or a cell array of strings, where each string contains the name of a state
or 'District of Columbia'. Alternatively, state may be a standard
two-letter U.S. Postal Service abbreviation. The map axes is created in
the current axes and the axis limits are set tight around the map frame.

usamap 'conus' or usamap('conus') constructs an empty map axes
for the conterminous 48 states (i.e. excluding Alaska and Hawaii).

usamap with no arguments asks you to choose from a menu of state
names plus 'District of Columbia', 'conus', and 'all'.

usamap(latlim, lonlim) constructs an empty Lambert Conformal
map axes for a region of the U.S. defined by its latitude and longitude
limits in degrees. latlim and lonlim are two-element vectors of
the form [southern_limit northern_limit] and [western_limit
eastern_limit], respectively.

usamap(Z, R) derives the map limits from the extent of a regular data
grid georeferenced by R. R can be a spatialref.GeoRasterReference
object, a referencing vector, or a referencing matrix.

If R is a spatialref.GeoRasterReference object, its RasterSize
property must be consistent with size(Z).

If R is a referencing vector, it must be a 1-by-3 with elements:

3-1127

usamap

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to/from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel.

h = usamap(...) returns the handle of the map axes.

h = usamap('all') constructs three empty axes, inset within a
single figure, for the conterminous states, Alaska, and Hawaii, with a
spherical Earth model and other projection parameters suggested by
the U.S. Geological Survey. The maps in the three axes are shown at
approximately the same scale. The handles for the three map axes
are returned in h. h(1) is for the conterminous states, h(2) is for
Alaska, and h(3) is for Hawaii. usamap('allequal')is the same as
usamap('all'); usage of 'allequal' will be removed in a future
release.

All axes created with usamap are initialized with a spherical Earth
model having a radius of 6,371,000 meters.

Tips In some cases, usamap uses tightmap to adjust the axis limits tight
around the map. If you change the projection, or just want more white
space around the map frame, use tightmap again or axis auto.

axes(h(n)), where n = 1, 2, or 3, makes the desired axes current.

set(h,'Visible','on') makes the axes visible.

set(h,'ButtonDownFcn','selectmoveresize') allows interactive
repositioning of the axes. set(h,'ButtonDownFcn','uimaptbx')
restores the Mapping Toolbox interfaces.

axesscale(h(1)) resizes the axes containing Alaska and Hawaii to the
same scale as the conterminous states.

3-1128

usamap

Examples Example 1

Make a map of Alabama only:

usamap('Alabama')

alabamahi = shaperead('usastatehi', 'UseGeoCoords', true,...

'Selector',{@(name) strcmpi(name,'Alabama'), 'Name'});

geoshow(alabamahi, 'FaceColor', [0.3 1.0, 0.675])

textm(alabamahi.LabelLat, alabamahi.LabelLon, alabamahi.Name,...

'HorizontalAlignment', 'center')

Example 2

Map a region extending from California to Montana:

figure; ax = usamap({'CA','MT'});

3-1129

usamap

set(ax, 'Visible', 'off')

latlim = getm(ax, 'MapLatLimit');

lonlim = getm(ax, 'MapLonLimit');

states = shaperead('usastatehi',...

'UseGeoCoords', true, 'BoundingBox', [lonlim', latlim']);

geoshow(ax, states, 'FaceColor', [0.5 0.5 1])

lat = [states.LabelLat];

lon = [states.LabelLon];

tf = ingeoquad(lat, lon, latlim, lonlim);

textm(lat(tf), lon(tf), {states(tf).Name}, ...

'HorizontalAlignment', 'center')

3-1130

usamap

Example 3

Map the Conterminous United States with a different fill color for
each state:

figure; ax = usamap('conus');
states = shaperead('usastatelo', 'UseGeoCoords', true,...

'Selector',...
{@(name) ~any(strcmp(name,{'Alaska','Hawaii'})), 'Name'});

faceColors = makesymbolspec('Polygon',...
{'INDEX', [1 numel(states)], 'FaceColor', ...
polcmap(numel(states))}); %NOTE - colors are random

geoshow(ax, states, 'DisplayType', 'polygon', ...
'SymbolSpec', faceColors)

framem off; gridm off; mlabel off; plabel off

Example 4

Map of the USA with separate axes for Alaska and Hawaii:

figure; ax = usamap('all');
set(ax, 'Visible', 'off')

3-1131

usamap

states = shaperead('usastatelo', 'UseGeoCoords', true);
names = {states.Name};
indexHawaii = strcmp('Hawaii',names);
indexAlaska = strcmp('Alaska',names);
indexConus = 1:numel(states);
indexConus(indexHawaii|indexAlaska) = [];
stateColor = [0.5 1 0.5];
geoshow(ax(1), states(indexConus), 'FaceColor', stateColor)
geoshow(ax(2), states(indexAlaska), 'FaceColor', stateColor)
geoshow(ax(3), states(indexHawaii), 'FaceColor', stateColor)
for k = 1:3

setm(ax(k), 'Frame', 'off', 'Grid', 'off',...
'ParallelLabel', 'off', 'MeridianLabel', 'off')

end

See also axesm, axesscale, geoshow, paperscale, selectmoveresize,
tightmap, worldmap

3-1132

usgs24kdem

Purpose Read USGS 7.5-minute (30-m or 10-m) Digital Elevation Models

Syntax [lat,lon,Z] = usgs24kdem
[lat,lon,Z] = usgs24kdem(filename)
[lat,lon,Z] = usgs24kdem(filename,samplefactor)
[lat,lon,Z] =
usgs24kdem(filename,samplefactor,latlim,lonlim)
[lat,lon,Z] = ...usgs24kdem(filename,samplefactor,latlim,

lonlim,gsize)
[lat, lon, Z, header, profile] = usgs24kdem(...)

Description [lat,lon,Z] = usgs24kdem reads a USGS 1:24,000 digital elevation
map (DEM) file in standard format. The file is selected interactively.
The entire file is read and subsampled by a factor of 5. A geolocated
data grid is returned with a latitude array, lat, longitude array, lon,
and elevation array, Z. Horizontal units are in degrees, vertical units
may vary. The 1:24,000 series of DEMs are stored as a grid of elevations
spaced either at 10 or 30 meters apart. The number of points in a file
will vary with the geographic location.

[lat,lon,Z] = usgs24kdem(filename) reads the USGS DEM
specified by filename and returns the result as a geolocated data grid.

[lat,lon,Z] = usgs24kdem(filename,samplefactor) reads a subset
of the DEM data from filename. samplefactor is a scalar integer,
which when equal to 1 reads the data at its full resolution. When
samplefactor is an integer n greater than one, every nth point is read.
If samplefactor is omitted or empty, it defaults to 5.

[lat,lon,Z] =
usgs24kdem(filename,samplefactor,latlim,lonlim) reads a subset
of the elevation data from filename. The limits of the desired data are
specified as two-element vectors of latitude, latlim, and longitude,
lonlim, in degrees. The elements of latlim and lonlim must be in
ascending order. The data may extend somewhat outside the
requested area. If limits are omitted, data for the entire area
covered by the DEM file is returned.

3-1133

usgs24kdem

[lat,lon,Z] =
...usgs24kdem(filename,samplefactor,latlim,lonlim,gsize)
specifies the graticule size in gsize. gsize is a two-element vector
specifying the number of rows and columns in the latitude and
longitude coordinated grid. If omitted, a graticule the same size as the
geolocated data grid is returned. Use empty matrices for latlim and
lonlim to specify the coordinated grid size without specifying the
geographic limits.

[lat, lon, Z, header, profile] = usgs24kdem(...) also returns
the contents of the header and raw profiles of the DEM file. The header
structure contains descriptions of the data from the file header. The
profile structure is the raw profile data from which the geolocated
data grid is constructed.

Background The U.S. Geological Survey has created a series of digital elevation
models based on their paper 1:24,000 scale maps. The grid spacing
for these elevations models is either 10 or 30 meters on a Universal
Transverse Mercator grid. Each file covers a 7.5 minute quadrangle.
The map and data series are available for much of the conterminous
United States, Hawaii, and Puerto Rico. The data has been released
in a number of formats. This function reads the data in the “standard”
file format.

Examples Use the archived San Francisco South 24K DEM file
sanfranciscos.dem.gz, which is provided in the Mapping Toolbox
mapdata folder.

1 Gunzip the file to a temporary folder:

filenames = gunzip('sanfranciscos.dem.gz', tempdir);
demFilename = filenames{1};

2 Read every other point of the 1:24,000 DEM file.

[lat, lon,Z,header,profile] = usgs24kdem(demFilename,2);

3 Delete the temporary gunzipped file.

3-1134

usgs24kdem

delete(demFilename);

4 As no negative elevations exist, move all points at sea level to -1
to color them blue:

Z(Z==0) = -1;

5 Compute the latitude and longitude limits for the DEM:

latlim = [min(lat(:)) max(lat(:))]

latlim =
37.6249 37.7504

lonlim = [min(lon(:)) max(lon(:))]

lonlim =
-122.5008 -122.3740

6 Display the DEM values:

figure
usamap(latlim, lonlim)
geoshow(lat, lon, Z, 'DisplayType','surface')
demcmap(Z)
daspectm('m',1)

3-1135

usgs24kdem

7 Examine the metadata in the header:

header

header =

Quadranglename: 'SAN FRANCISCO SOUTH, CA

BIG BASIN DEM'

TextualInfo: 'WMC CTOG'

Filler: ''

ProcessCode: ''

Filler2: ''

SectionalIndicator: ''

MCoriginCode: ''

DEMlevelCode: 2

ElevationPatternCode: 'regular'

PlanimetricReferenceSystemCode: 'UTM'

Zone: 10

ProjectionParameters: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

HorizontalUnits: 'meters'

ElevationUnits: 'feet'

3-1136

usgs24kdem

NsidesToBoundingBox: 4

BoundingBox: [1x8 double]

MinMaxElevations: [0 1314]

RotationAngle: 0

AccuracyCode: 'accuracy information in record C'

XYZresolutions: [30 30 1]

NrowsCols: [1 371]

MaxPcontourInt: NaN

SourceMaxCintUnits: NaN

SmallestPrimary: NaN

SourceMinCintUnits: NaN

DataSourceDate: NaN

DataInspRevDate: NaN

InspRevFlag: ''

DataValidationFlag: NaN

SuspectVoidFlag: NaN

VerticalDatum: NaN

HorizontalDatum: NaN

DataEdition: NaN

PercentVoid: NaN

Tips This function reads USGS DEM files stored in the UTM projection.
The function unprojects the grid back to latitude and longitude. Use
usgsdem for data stored in geographic grids.

The number of points in a file varies with the geographic location.
Unlike the USGS DEM products, which use an equal-angle grid, the
UTM projection grid DEMs cannot simply be concatenated to cover
larger areas. There can be data gaps between DEMs.

You can obtain the data files from the U.S. Geological
Survey and from commercial vendors . Other agencies
have made some local area data available online. See
http://www.mathworks.com/help/map/finding-geospatial-data.html
. The DEM files are ASCII files, and can be transferred as text.
Line-ending conversion is not necessarily required.

See Also demdataui | dted | gtopo30 | tbase | etopo | usgsdem | usgsdems

3-1137

http://www.mathworks.com/help/map/finding-geospatial-data.html
http://www.mathworks.com/help/map/finding-geospatial-data.html

usgsdem

Purpose Read USGS 1-degree (3-arc-second) Digital Elevation Model

Syntax [Z,refvec] = usgsdem(filename,scalefactor)
[Z,refvec] = usgsdem(filename,scalefactor,latlim,lonlim)

Description [Z,refvec] = usgsdem(filename,scalefactor) reads the specified
file and returns the data in a regular data grid along with referencing
vector refvec, a 1-by-3 vector having elements [cells/degree
north-latitude west-longitude] with latitude and longitude
limits specified in degrees. The data can be read at full resolution
(scalefactor = 1), or can be downsampled by the scalefactor. A
scalefactor of 3 returns every third point, giving 1/3 of the full
resolution.

[Z,refvec] = usgsdem(filename,scalefactor,latlim,lonlim)
reads data within the latitude and longitude limits. These limits are
two-element vectors with the minimum and maximum values specified
in units of degrees.

Background The U.S. Geological Survey has made available a set of digital elevation
maps of 1-degree quadrangles covering the contiguous United States,
Hawaii, and limited portions of Alaska. The data is on a regular grid
with a spacing of 30 arc-seconds (or about 100-meter resolution).
1-degree DEMs are also referred to as 3-arc-second or 1:250,000 scale
DEM data.

The data is derived from the U.S. Defense Mapping Agency’s DTED-1
digital elevation model, which itself was derived from cartographic and
photographic sources. The cartographic sources were maps from the
7.5-minute through 1-degree series (1:24,000 scale through 1:250,000
scale).

Tips The grid for the digital elevation maps is based on the 1984 World
Geodetic System (WGS84). Older DEMs were based on WGS72.
Elevations are in meters relative to National Geodetic Vertical Datum
of 1929 (NGVD 29) in the continental U.S. and local mean sea level
in Hawaii.

3-1138

usgsdem

The absolute horizontal accuracy of the DEMs is 130 meters, while the
absolute vertical accuracy is ±30 meters. The relative horizontal and
vertical accuracy is not specified, but is probably much better than the
absolute accuracy.

These DEMs have a grid spacing of 3 arc-seconds in both the latitude
and longitude directions. The exception is DEM data in Alaska, where
latitudes between 50 and 70 degrees North have grid spacings of 6
arc-seconds, and latitudes greater than 70 degrees North have grid
spacings of 9 arc-seconds.

Statistical data in the files is not returned.

You can obtain the data files from the U.S. Geological Survey and from
commercial vendors. Other agencies have made some local area data
available online.

Note For details on locating map data for download over the
Internet, see the following documentation at the MathWorks Web site:
http://www.mathworks.com/help/map/finding-geospatial-data.html

Examples Read every fifth point in the file containing part of Rhode Island and
Cape Cod:

[Z,refvec] = usgsdem('providence-e',5);

Read the elevation data for Martha’s Vineyard at full resolution:

[Z,refvec] = usgsdem('providence-e',1,...
[41.2952 41.4826],[-70.8429 -70.4392]);

whos Z

Name Size Bytes Class

Z 226x485 876880 double array

See Also usgs24kdem | gtopo30 | etopo | tbase | usgsdems

3-1139

http://www.mathworks.com/help/map/finding-geospatial-data.html

usgsdems

Purpose USGS 1-degree (3-arc-sec) DEM filenames for latitude-longitude
quadrangle

Syntax [fname,qname] = usgsdems(latlim,lonlim)

Description [fname,qname] = usgsdems(latlim,lonlim) returns cell arrays of
the DEM filenames and quadrangle names covering the geographic
region. The region is specified by scalar latitude and longitude points or
two-element vectors of latitude and longitude limits in units of degrees.

Background The U.S. Geological Survey has made available a set of digital elevation
maps of 1-degree quadrangles covering the contiguous United States,
Hawaii, and limited portions of Alaska. These are referred to as
1-degree, 3-arc second or 1:250,000 scale DEMs. Because the filenames
of these 1 degree data sets are taken from the names of cities or features
in the quadrangle, determining the files needed to cover a particular
region generally requires consulting an index map or other reference.
This function takes the place of such a reference by returning the
filenames for a given geographic region.

Tips This function only returns filenames for the contiguous United States.

Examples Which files are needed to map part of New England?

usgsdems([41 44], [-72 -69])

ans =
'providence-w'
'providence-e'
'chatham-w'
'boston-w'
'boston-e'
'portland-w'
'portland-e'
'bath-w'

3-1140

usgsdems

See Also usgsdem

3-1141

utmgeoid

Purpose Select ellipsoids for given UTM zone

Syntax ellipsoid = utmgeoid,
ellipsoid = utmgeoid(zone)
[ellipsoid,ellipsoidstr] = utmgeoid(...)

Description The purpose of this function is to recommend a local ellipsoid for use
with a given UTM zone, depending on the geographic location of that
zone. Use it only if you are not using a global reference ellipsoid,
such as the World Geodetic System (WGS) 1984 ellipsoid. In many
cases, depending on your application, you should just use the output
of wgs84Ellipsoid, or one of the other options available through
referenceEllipsoid.

ellipsoid = utmgeoid, without any arguments, opens the utmzoneui
interface for selecting a UTM zone. This zone is then used to return the
recommended ellipsoid definitions for that particular zone.

ellipsoid = utmgeoid(zone) uses the input zone to return the
recommended ellipsoid definitions.

[ellipsoid,ellipsoidstr] = utmgeoid(...) returns the short
name(s) for the reference ellipsoid(s), as used by referenceEllipsoid,
in a char array with one name in each row.

Background The Universal Transverse Mercator (UTM) system of projections tiles
the world into quadrangles called zones. Each zone has different
projection parameters and commonly used ellipsoidal models of the
Earth. This function returns a list of ellipsoid models commonly used in
a zone.

Examples zone = utmzone(0,100) % degrees

zone =
47N

[ellipsoid,names] = utmgeoid(zone)

3-1142

utmgeoid

ellipsoid =
6377.3 0.081473
6377.4 0.081697

names =
everest
bessel

See Also referenceEllipsoid | wgs84Ellipsoid

3-1143

utmzone

Purpose Select UTM zone given latitude and longitude

Syntax zone = utmzone
zone = utmzone(lat,long)
zone = utmzone(mat),
[latlim,lonlim] = utmzone(zone),
lim = utmzone(zone)

Description zone = utmzone selects a Universal Transverse Mercator (UTM) zone
with a graphical user interface. The zone designation is returned as a
string.

zone = utmzone(lat,long) returns the UTM zone containing the
geographic coordinates. If lat and long are vectors, the zone containing
the geographic mean of the data set is returned. The geographic
coordinates must be in units of degrees.

zone = utmzone(mat), where mat is of the form [lat long].

[latlim,lonlim] = utmzone(zone), where zone is a valid UTM zone
designation, returns the geographic limits of the zone. Valid UTM zones
designations are numbers, or numbers followed by a single letter. For
example, '31' or '31N'. The returned limits are in units of degrees.

lim = utmzone(zone) returns the limits in a single vector output.

Background The Universal Transverse Mercator (UTM) system of projections tiles
the world into quadrangles called zones. This function can be used to
identify which zone is used for a geographic area and, conversely, what
geographic limits apply to a UTM zone.

Examples [latlim,lonlim] = utmzone('12F')

latlim =
-56 -48

lonlim =
-114 -108

3-1144

utmzone

utmzone(latlim,lonlim)

ans =
12F

Limitations The UTM zone system is based on a regular division of the globe, with
the exception of a few zones in northern Europe. utmzone does not
account for these deviations.

See Also utmgeoid

3-1145

validateLengthUnit

Purpose Validate and standardize length unit string

Syntax standardName = validateLengthUnit(unit, funcName, varName,
argIndex)

Description standardName = validateLengthUnit(unit, funcName, varName,
argIndex) checks that unit is a valid length unit string and converts it
to a standard unit name. The function is case-insensitive with respect
to its input. Spaces, periods, and apostrophes are ignored. Plural forms
are accepted in most cases, but the result, standardName is always
singular. The optional inputs funcName, varName, and argIndex may be
included for use in error message formatting, with behavior identical to
that provided by the validateattributes inputs of the same names.

Input
Arguments

unit

String. Any valid length unit string listed in the table.

Unit Name String(s)

meter `m', `meter(s)', `metre(s)'

centimeter `cm', `centimeter(s)',
`centimetre(s)'

millimeter `mm', `millimeter(s)',
`millimetre(s)'

micron `micron(s)'

kilometer `km', `kilometer(s)',
`kilometre(s)'

nautical mile `nm', `naut mi', `nautical
mile(s)'

foot `ft', `international ft',
`foot', `international foot',
'feet', `international feet'

inch `in', `inch', `inches'

3-1146

validateLengthUnit

Unit Name String(s)

yard `yd', `yds', `yard(s)'

mile `mi', `mile(s)',
`international mile(s)'

U.S. survey foot `sf',
`survey ft', `US survey ft',
`U.S. survey ft', `survey
foot',
`US survey foot',
`U.S. survey foot',
`survey feet', `US survey
feet',
`U.S. survey feet'

U.S. survey mile (statute
mile)

`sm', `survey mile(s)',
`statute mile(s)',
`US survey mile(s)',
`U.S. survey mile(s)'

Clarke's foot `Clarke's foot', `Clarkes
foot'

German legal metre `German legal metre',
`German legal meter'

Indian foot `Indian foot'

funcName

String that specifies the name of the function whose input you are
validating. If you specify an empty string, '', the validateLengthUnit
function ignores the funcName input.

varName

String that specifies the name of the input variable. If you specify
an empty string, '', the validateLengthUnit function ignores the
varName input.

3-1147

validateLengthUnit

argIndex

Positive integer that specifies the position of the input argument.

Output
Arguments

standardName

String that specifies the standard unit name for the input string.

Examples Validate ‘foot’

This example shows you how ‘foot’ is validated when other valid
strings for ‘foot’ are input.

validateLengthUnit('foot')
validateLengthUnit('feet')
validateLengthUnit('international feet')

ans =

foot

ans =

foot

ans =

foot

Validate ‘kilometer’

This example shows you how ‘kilometer’ is validated when other valid
strings for ‘kilometer’ are input.

validateLengthUnit('kilometer')
validateLengthUnit('km')

3-1148

validateLengthUnit

validateLengthUnit('kilometre')
validateLengthUnit('kilometers')
validateLengthUnit('kilometres')

ans =

kilometer

ans =

kilometer

ans =

kilometer

ans =

kilometer

ans =

kilometer

Create custom error messages

Create custom error messages using the validateLengthUnit function.
A non-char input to validateLengthUnit results in an error message
referencing a function name, ‘FOO’, a variable name, ‘unit’ and an
argument number, 5.

validateLengthUnit(17,'FOO','UNIT',5)

3-1149

validateLengthUnit

Error using FOO
Expected input number 5, UNIT, to be one of these types:

char

Instead its type was double.

Error in validateLengthUnit (line 85)
validateattributes(unit,{'char'},{'nonempty','row'},varargin{:})

See Also unitsratio

3-1150

vec2mtx

Purpose Convert latitude-longitude vectors to regular data grid

Syntax [Z, R] = vec2mtx(lat, lon, density)
[Z, R] = vec2mtx(lat, lon, density, latlim, lonlim)
[Z, R] = vec2mtx(lat, lon, Z1, R1)
[Z, R] = vec2mtx(..., 'filled')

Description [Z, R] = vec2mtx(lat, lon, density) creates a regular data grid Z
from vector data, placing ones in grid cells intersected by a vector and
zeroes elsewhere. R is the referencing vector for the computed grid. lat
and lon are vectors of equal length containing geographic locations in
units of degrees. density indicates the number of grid cells per unit
of latitude and longitude (a value of 10 indicates 10 cells per degree,
for example), and must be scalar-valued. Whenever there is space, a
buffer of two grid cells is included on each of the four sides of the grid.
The buffer is reduced as needed to keep the latitudinal limits within
[-90 90] and to keep the difference in longitude limits from exceeding
360 degrees.

[Z, R] = vec2mtx(lat, lon, density, latlim, lonlim) uses the
two-element vectors latlim and lonlim to define the latitude and
longitude limits of the grid.

[Z, R] = vec2mtx(lat, lon, Z1, R1) uses a pre-existing data
grid Z1, georeferenced by R1, to define the limits and density of the
output grid. R1 can be a referencing vector, a referencing matrix, or a
spatialref.GeoRasterReference object.

If R1 is a spatialref.GeoRasterReference object, its
RasterSize property must be consistent with size(Z1) and its
RasterInterpretation must be 'cells'.

If R1 is a referencing vector, it must be a 1-by-3 vector containing
elements:

[cells/degree northern_latitude_limit western_longitude_limit]

or a 3-by-2 referencing matrix that transforms raster row and column
indices to/from geographic coordinates according to:

3-1151

vec2mtx

[lon lat] = [row col 1] * R1

If R1 is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel. With this syntax,
output R is equal to R1, and may be a referencing object, vector, or
matrix.

[Z, R] = vec2mtx(..., 'filled'), where lat and lon form one or
more closed polygons (with NaN-separators), fills the area outside the
polygons with the value two instead of the value zero.

Notes Empty lat,lon vertex arrays will result in an error unless the grid
limits are explicitly provided (via latlim,lonlim or Z1,R1). In the
case of explicit limits, Z will be filled entirely with 0s if the 'filled'
parameter is omitted, and 2s if it is included.

It’s possible to apply vec2mtx to sets of polygons that tile without
overlap to cover an area, as in Example 1 below, but using 'filled'
with polygons that actually overlap may lead to confusion as to which
areas are inside and which are outside.

Examples Example 1

Convert latitude-longitude polygons to a regular data grid and display
as a map.

states = shaperead('usastatelo', 'UseGeoCoords', true);
lat = [states.Lat];
lon = [states.Lon];
[Z, R] = vec2mtx(lat, lon, 5, 'filled');
figure; worldmap(Z, R);
geoshow(Z, R, 'DisplayType', 'texturemap')
colormap(flag(3))

3-1152

vec2mtx

Example 2

Combine two separate calls to vec2mtx to create a 4-color raster map
showing interior land areas, coastlines, oceans, and world rivers.

coast = load('coast.mat');
[Z, R] = vec2mtx(coast.lat, coast.long, ...

1, [-90 90], [-90 270], 'filled');
rivers = shaperead('worldrivers.shp','UseGeoCoords',true);
A = vec2mtx([rivers.Lat], [rivers.Lon], Z, R);
Z(A == 1) = 3;
figure; worldmap(Z, R)
geoshow(Z, R, 'DisplayType', 'texturemap')
colormap([.45 .60 .30; 0 0 0; 0 0.5 1; 0 0 1])

3-1153

vec2mtx

Example 3 This example illustrates the following syntax in the case where R1 is a
spatial referencing object:

[Z, R] = vec2mtx(lat, lon, Z1, R1)

% Import US state outlines.
states = shaperead('usastatelo', 'UseGeoCoords', true);
lat = [states.Lat];
lon = [states.Lon];

% Choose geographic limits.
latlim = [15 75];
lonlim = [-190 -65];

% Specify a grid with 5 cells per degree.
density = 5;

% Compute raster size. (M and N both work out to be integers.)
M = density * diff(latlim);
N = density * diff(lonlim);

% Construct a spatialref.GeoRasterReference object.
R = georasterref('RasterSize', [M N], ...

'ColumnsStartFrom', 'north', 'Latlim', latlim, ...

3-1154

vec2mtx

'Lonlim', lonlim);

% Create a blank grid that is consistent with R in
% size -- vec2mtx requires a data grid as input.
Z = zeros(R.RasterSize);

% Overwrite Z with a new grid including state outlines
% and interiors.
Z = vec2mtx(lat, lon, Z, R, 'filled');

% Plot the georeferenced grid.
figure; worldmap(Z, R);
geoshow(Z, R, 'DisplayType', 'texturemap')
colormap(flag(3))

3-1155

vec2mtx

See Also imbedm

3-1156

vfwdtran

Purpose Direction angle in map plane from azimuth on ellipsoid

Syntax th = vfwdtran(lat,lon,az)
th = vfwdtran(mstruct,lat,lon,az)
[th,len] = vfwdtran(...)

Description th = vfwdtran(lat,lon,az) transforms the azimuth angle at specified
latitude and longitude points on the sphere into the projection space.
The map projection currently displayed is used to define the projection
space. The input angles must be in the same units as specified by the
current map projection. The inputs can be scalars or matrices of the
equal size. The angle in the projection space is defined as positive
counterclockwise from the x-axis.

th = vfwdtran(mstruct,lat,lon,az) uses the map projection defined
by the input mstruct to compute the map projection.

[th,len] = vfwdtran(...) also returns the vector length in the
projected coordinate system. A value of 1 indicates no scale distortion.

Background The direction of north is easy to define on the three-dimensional
sphere, but more difficult on a two-dimensional map. For cylindrical
projections in the normal aspect, north is always in the positive
y-direction. For conic projections, north can be to the left or right of the
y-axis. This function transforms any azimuth angle on the sphere to the
corresponding angle in the projected paper coordinates.

Examples Sample calculations:

axesm('eqdconic','maplatlim',[-10 45],'maplonlim',[-55 55])
gridm; framem; mlabel; plabel
quiverm([0 0 0],[-45 0 45],[0 0 0],[10 10 10],0)
quiverm([0 0 0],[-45 0 45],[10 10 10],[0 0 0],0)

3-1157

vfwdtran

vfwdtran([0 0 0],[-45 0 45],[0 0 0])

ans =
59.614 90 120.39

vfwdtran([0 0 0],[-45 0 45],[90 90 90])

ans =
-30.385 0.0001931 30.386

Limitations This transformation is limited to the region specified by the frame
limits in the current map definition.

Tips The geographic azimuth angle is measured clockwise from north. The
projection space angle is measured counterclockwise from the x-axis.

This function uses a finite difference technique. The geographic
coordinates are perturbed slightly in different directions and projected.
A small amount of error is introduced by numerical computation of
derivatives and the variation of map distortion parameters.

See Also vinvtran | mfwdtran | minvtran | defaultm

3-1158

viewshed

Purpose Areas visible from point on terrain elevation grid

Syntax [vis,R] = viewshed(Z,R,lat1,lon1)
viewshed(Z,R,lat1,lon1,observerAltitude)
viewshed(Z,R,lat1,lon1,observerAltitude,targetAltitude)
viewshed(Z,R,lat1,lon1,observerAltitude,targetAltitude, ...

observerAltitudeOption)
viewshed(Z,R,lat1,lon1,observerAltitude,targetAltitude, ...

observerAltidueOption,targetAltitudeOption)
viewshed(Z,R,lat1,lon1,observerAltitude,targetAltitude, ...

observerAltitudeOption,targetAltitudeOption,actualRadius)
viewshed(Z,R,lat1,lon1,observerAltitude,targetAltitude, ...

observerAltitudeOption,targetAltitudeOption, ...
actualRadius,effectiveRadius)

Description [vis,R] = viewshed(Z,R,lat1,lon1) computes areas visible from a
point on a digital elevation grid. Z is a regular data grid containing
elevations in units of meters. The observer location is provided as
scalar latitude and longitude in units of degrees. The visibility grid
vis contains 1s at the surface locations visible from the observer
location, and 0s where the line of sight is obscured by terrain. R can be
a spatialref.GeoRasterReference object, a referencing vector, or a
referencing matrix.

If R is a spatialref.GeoRasterReference object, its RasterSize
property must be consistent with size(Z).

If R is a referencing vector, it must be a 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to or from geographic coordinates according to:

[lon lat] = [row col 1] * R

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls

3-1159

viewshed

along a meridian and each row falls along a parallel. Nearest-neighbor
interpolation is used by default. NaN is returned for points outside
the grid limits or for which lat or lon contain NaN. All angles are in
units of degrees.

viewshed(Z,R,lat1,lon1,observerAltitude) places the observer at
the specified altitude in meters above the surface. This is equivalent
to putting the observer on a tower. If omitted, the observer is assumed
to be on the surface.

viewshed(Z,R,lat1,lon1,observerAltitude,targetAltitude)
checks for visibility of target points a specified distance above the
terrain. This is equivalent to putting the target points on towers that do
not obstruct the view. if omitted, the target points are assumed to be
on the surface.

viewshed(Z,R,lat1,lon1,observerAltitude,targetAltitude, ...
observerAltitudeOption) controls whether the observer is at

a relative or absolute altitude. If the observerAltitudeOption is
'AGL', then observerAltitude is in meters above ground level. If
observerAltitudeOption is 'MSL', observerAltitude is interpreted
as altitude above zero, or mean sea level. If omitted, 'AGL' is assumed.

viewshed(Z,R,lat1,lon1,observerAltitude,targetAltitude, ...
observerAltidueOption,targetAltitudeOption) controls whether

the target points are at a relative or absolute altitude. If the target
altitude option is 'AGL', the targetAltitude is in meters above
ground level. If targetAltitudeOption is 'MSL', targetAltitude is
interpreted as altitude above zero, or mean sea level. If omitted, 'AGL'
is assumed.

viewshed(Z,R,lat1,lon1,observerAltitude,targetAltitude, ...
observerAltitudeOption,targetAltitudeOption,actualRadius)

does the visibility calculation on a sphere with the specified radius. If
omitted, the radius of the earth in meters is assumed. The altitudes,
the elevations, and the radius should be in the same units. This calling
form is most useful for computations on bodies other than the Earth.

viewshed(Z,R,lat1,lon1,observerAltitude,targetAltitude, ...
observerAltitudeOption,targetAltitudeOption, ...

3-1160

viewshed

actualRadius,effectiveRadius) assumes a larger radius for
propagation of the line of sight. This can account for the curvature of
the signal path due to refraction in the atmosphere. For example, radio
propagation in the atmosphere is commonly treated as straight line
propagation on a sphere with 4/3 the radius of the Earth. In that case
the last two arguments would be R_e and 4/3*R_e, where R_e is the
radius of the earth. Use Inf for flat Earth viewshed calculations. The
altitudes, the elevations, and the radii should be in the same units.

Tips The observer should be located within the latitude-longitude limits of
the elevation grid. If the observer is located outside the grid, there is
insufficient information to calculate a viewshed. In this case viewshed
issues a warning and sets all elements of vis to zero.

Examples Compute visibility for a point on the peaks map. Add the detailed
information for the line of sight calculation between two points from
los2.

Z = 500*peaks(100);
refvec = [1000 0 0];
[lat1,lon1,lat2,lon2]=deal(-0.027,0.05,-0.093,0.042);

[visgrid,visleg] = viewshed(Z,refvec,lat1,lon1,100);
[vis,visprofile,dist,zi,lattrk,lontrk] ...

= los2(Z,refvec,lat1,lon1,lat2,lon2,100);

axesm('globe','geoid',earthRadius('meters'))
meshm(visgrid,visleg,size(Z),Z); axis tight
camposm(-10,-10,1e6); camupm(0,0)
colormap(flipud(summer(2))); brighten(0.75);
shading interp; camlight
h = lcolorbar({'obscured','visible'});
set(h,'Position',[.875 .45 .02 .1])

plot3m(lattrk([1;end]),lontrk([1; end]), ...
zi([1; end])+[100; 0],'r','linewidth',2)

plotm(lattrk(~visprofile),lontrk(~visprofile), ...

3-1161

viewshed

zi(~visprofile),'r.','markersize',10)
plotm(lattrk(visprofile),lontrk(visprofile), ...

zi(visprofile),'g.','markersize',10)

Compute the surface areas visible by radar from an aircraft 3000
meters above the Yellow Sea. Assume that radio wave propagation in
the atmosphere can be modeled as straight lines on a 4/3 radius Earth.
Display the visible areas as blue and the obscured areas as red. Drape
the visibility colors on an elevation map, and use lighting to bring
out the surface topography. The aircraft’s radar can see out a certain
radius on the surface of the ocean, but some ocean areas are shadowed
by the island of Jeju-Do. Also some mountain valleys closer than the
ocean horizon are obscured, while some mountain tops further away
are visible.

load korea
map(map<0) = -1;

3-1162

viewshed

figure
worldmap(map,refvec)
da = daspect;
pba = pbaspect;
da(3) = 7.5*pba(3)/da(3);
daspect(da);
demcmap(map)
camlight(90,5);
camlight(0,5);
lighting phong
material([0.25 0.8 0])
lat = 34.0931; lon = 125.6578;
altobs = 3000; alttarg = 0;
plotm(lat,lon,'wo')
Re = earthRadius('meters');
[vmap,vmapl] = viewshed(...

map,refvec,lat,lon,altobs,alttarg, ...
'MSL','AGL',Re,4/3*Re);

meshm(vmap,vmapl,size(map),map)
caxis auto; colormap([1 0 0; 0 0 1])
lighting phong; material metal
axis off

3-1163

viewshed

Over what area can the radar plane flying at an altitude of 3000 meters
have line-of-sight to other aircraft flying at 5000 meters? Now the area
is much larger. Some edges of the area are reduced by shadowing from
Jeju-Do and the mountains on the Korean peninsula.

[vmap,vmapl] = viewshed(map,refvec,lat,lon,3000,5000, ...
'MSL','MSL',Re,4/3*Re);

clmo surface
meshm(vmap,vmapl,size(map),map)
material metal
lighting phong

3-1164

viewshed

See Also los2

3-1165

vinvtran

Purpose Azimuth on ellipsoid from direction angle in map plane

Syntax az = vinvtran(x,y,th)
az = vinvtran(mstruct,x,y,th)
[az,len] = vinvtran(...)

Description az = vinvtran(x,y,th) transforms an angle in the projection space
at the point specified by x and y into an azimuth angle in geographic
coordinates. The map projection currently displayed is used to define
the projection space. The input angles must be in the same units as
specified by the current map projection. The inputs can be scalars or
matrices of equal size. The angle in the projection space angle th is
defined as positive counterclockwise from the x-axis.

az = vinvtran(mstruct,x,y,th) uses the map projection defined by the
input struct to compute the map projection.

[az,len] = vinvtran(...) also returns the vector length in the
geographic coordinate system. A value of 1 indicates no scale distortion
for that angle.

Background While vectors along the y-axis always point to north in a cylindrical
projection in the normal aspect, they can point east or west of north on
conics, azimuthals, and other projections. This function computes the
geographic azimuth for angles in the projected space.

Examples Sample calculations:

axesm('eqdconic','maplatlim',[-10 45],'maplonlim',[-55 55])
gridm; framem; mlabel; plabel
[x,y] = mfwdtran([0 0 0],[-45 0 45]);
quiver(x,y,[.2 .2 .2],[0 0 0],0)
quiver(x,y,[0 0 0],[.2 .2 .2],0)

3-1166

vinvtran

vinvtran(x,y,[0 0 0])

ans =
57.345 90.338 124.98

vinvtran(x,y,[90 90 90])

ans =
331.99 0 28.008

Limitations This transformation is limited to the region specified by the frame
limits in the current map definition.

Tips The geographic azimuth angle is measured clockwise from north. The
projection space angle is measured counterclockwise from the x-axis.

This function uses a finite difference technique. The geographic
coordinates are perturbed slightly in different directions and projected.
A small amount of error is introduced by numerical computation of
derivatives and the variation of map distortion parameters.

See Also vfwdtran | mfwdtran | minvtran | defaultm

3-1167

vmap0data

Purpose Read selected data from Vector Map Level 0

Syntax struct = vmap0data(library,latlim,lonlim,theme,topolevel)
struct = vmap0data(devicename,library, ...)
[struct1, struct2, ...] = vmap0data(...,{topolevel1,

topolevel2,...})

Description struct = vmap0data(library,latlim,lonlim,theme,topolevel)
reads the data for the specified theme and topology level directly from
the VMAP0 CD-ROM. There are four CDs, one for each of the libraries:
'NOAMER' (North America), 'SASAUS' (Southern Asia and Australia),
'EURNASIA' (Europe and Northern Asia), and 'SOAMAFR' (South
America and Africa). The desired theme is specified by a two-letter code
string. A list of valid codes is displayed when an invalid code, such as
'?', is entered. topolevel defines the type of data returned. It is a
string containing 'patch', 'line', 'point', or 'text'. The region of
interest can be given as a point latitude and longitude or as a region
with two-element vectors of latitude and longitude limits. The units of
latitude and longitude are degrees. The data covering the requested
region is returned, but will include data extending to the edges of the
tiles. The result is returned as a Mapping Toolbox Version 1 display
structure.

struct = vmap0data(devicename,library, ...) specifies the logical
device name of the CD-ROM for computers that do not automatically
name the mounted disk.

[struct1, struct2, ...] =
vmap0data(...,{topolevel1,topolevel2,...}) reads several topology
levels. The levels must be specified as a cell array with the entries
'patch', 'line', 'point', or 'text'. Entering {'all'} for the
topology level argument is equivalent to {'patch', 'line', 'point',
'text'}. Upon output, the data structures are returned in the output
arguments by topology level in the same order as they were requested.

Background The Vector Map (VMAP) Level 0 database represents the third edition
of the Digital Chart of the World. The second edition was a limited

3-1168

vmap0data

release item published in 1995. The product is dual named to show its
lineage to the original DCW, published in 1992, while positioning the
revised product within a broader emerging family of VMAP products.
VMAP Level 0 is a comprehensive 1:1,000,000 scale vector base map of
the world. It consists of cartographic, attribute, and textual data stored
on compact disc read-only memory (CD-ROM). The primary source for
the database is the Operational Navigation Chart (ONC) series of the
U. S. National Geospatial Intelligence Agency (NGA), formerly the
National Imagery and Mapping Agency (NIMA), and before that, the
Defense Mapping Agency (DMA). This is the largest scale unclassified
map series in existence that provides consistent, continuous global
coverage of essential base map features. The database contains more
than 1,900 MB of vector data and is organized into 10 thematic layers.
The data includes major road and rail networks, major hydrologic
drainage systems, major utility networks (cross-country pipelines and
communication lines), all major airports, elevation contours (1000
foot (ft), with 500 ft and 250 ft supplemental contours), coastlines,
international boundaries, and populated places. The database can
be accessed directly from the four optical CD-ROMs that store the
database or can be transferred to magnetic media.

Tips Data are returned as Mapping Toolbox display structures, which you
can then update to geographic data structures. For information about
display structure format, see “Version 1 Display Structures” on page
3-177 in the reference page for displaym. The updategeostruct
function performs such conversions.

Latitudes and longitudes use WGS84 as a horizontal datum. Elevations
and depths are in meters above mean sea level.

Some VMAP0 themes do not contain all topology levels. In those cases,
empty matrices are returned.

Patches are broken at the tile boundaries. Setting the EdgeColor to
'none' and plotting the lines gives the map a normal appearance.

The major differences between VMAP0 and the DCW are the
elimination of the gazette layer, addition of bathymetric data, and
updated political boundaries.

3-1169

vmap0data

Vector Map Level 0, created in the 1990s, is still probably the most
detailed global database of vector map data available to the public.
VMAP0 CD-ROMs are available from through the U.S. Geological
Survey (USGS):

USGS Information Services (Map and Book Sales)
Box 25286
Denver Federal Center
Denver, CO 80225
Telephone: (303) 202-4700
Fax: (303) 202-4693

Note For details on locating map data for download over the
Internet, see the following documentation at the MathWorks Web site:
http://www.mathworks.com/help/map/finding-geospatial-data.html .

Examples The devicename is platform dependent. On an MS-DOS based operating
system it would be something like 'd:', depending on the logical device
code assigned to the CD-ROM drive. On a UNIX operating system, the
CD-ROM might be mounted as '\cdrom', '\CDROM', '\cdrom1', or
something similar. Check your computer’s documentation for the right
devicename.

s = vmap0data(devicename,'NOAMER',41,-69,'?','patch');

??? Error using ==> vmap0data
Theme not present in library NOAMER

Valid theme identifiers are:
libref : Library Reference
tileref: Tile Reference
bnd : Boundaries
dq : Data Quality
elev : Elevation
hydro : Hydrography

3-1170

http://www.mathworks.com/help/map/finding-geospatial-data.html

vmap0data

ind : Industry
phys : Physiography
pop : Population
trans : Transportation
util : Utilities
veg : Vegetation

BNDpatch = vmap0data(devicename,'NOAMER',...
[41 44],[-72 -69],'bnd','patch')

BNDpatch =
1x169 struct array with fields:

type
otherproperty
altitude
lat
long
tag

Here are other examples:

[TRtext,TRline] = vmap0data(devicename,'SASAUS',...
[-48 -34],[164 180],'trans',{'text','line'});

[BNDpatch,BNDline,BNDpoint,BNDtext] = vmap0data(devicename,...
'EURNASIA',-48 ,164,'bnd',{'all'});

See Also vmap0read | vmap0rhead | geoshow | extractm | mlayers |
updategeostruct

3-1171

vmap0read

Purpose Read Vector Map Level 0 file

Syntax vmap0read
vmap0read(filepath,filename)
vmap0read(filepath,filename,recordIDs)
vmap0read(filepath,filename,recordIDs,field,varlen)
struc = vmap0read(...)
[struc,field] = vmap0read(...)
[struc,field,varlen] = vmap0read(...)
[struc,field,varlen,description] = vmap0read(...)
[struc,field,varlen,description,

narrativefield] = vmap0read(...)

Description vmap0read reads a VMAP0 file. The user selects the file interactively.

vmap0read(filepath,filename) reads the specified file. The
combination [filepath filename] must form a valid complete filename.

vmap0read(filepath,filename,recordIDs) reads selected records or
fields from the file. If recordIDs is a scalar or a vector of integers,
the function returns the selected records. If recordIDs is a cell
array of integers, all records of the associated fields are returned.
vmap0read(filepath,filename,recordIDs,field,varlen)

uses previously read field and variable-length record information to
skip parsing the file header (see below).

struc = vmap0read(...) returns the file contents in a structure.

[struc,field] = vmap0read(...) returns the file contents and a
structure describing the format of the file.

[struc,field,varlen] = vmap0read(...) also returns a vector
describing which fields have variable-length records.

[struc,field,varlen,description] = vmap0read(...) also returns
a string describing the contents of the file.

[struc,field,varlen,description,narrativefield] =
vmap0read(...) also returns the name of the narrative file for the
current file.

3-1172

vmap0read

Background The Vector Map Level 0 (VMAP0) uses binary files in a variety of
formats. This function determines the format of the file and returns the
contents in a structure. The field names of this structure are the same
as the field names in the VMAP0 file.

Tips This function reads all VMAP0 files except index files (files with names
ending in 'X'), thematic index files (files with names ending in 'TI'),
and spatial index files (files with names ending in 'SI').

File separators are platform dependent. The filepath input must
use appropriate file separators, which you can determine using the
MATLAB filesep function.

Examples The following examples use the UNIX directory system and file
separators for the pathname:

s = vmap0read('VMAP/VMAPLV0/NOAMER/','GRT')

s =
id: 1

data_type: 'GEO'
units: 'M'

ellipsoid_name: 'WGS 84'
ellipsoid_detail: 'A=6378137 B=6356752 Meters'
vert_datum_name: 'MEAN SEA LEVEL'
vert_datum_code: '015'

sound_datum_name: 'N/A'
sound_datum_code: 'N/A'

geo_datum_name: 'WGS 84'
geo_datum_code: 'WGE'

projection_name: 'Dec. Deg. (unproj.)'

s = vmap0read('VMAP/VMAPLV0/NOAMER/TRANS/','INT.VDT')

s =
34x1 struct array with fields:

id

3-1173

vmap0read

table
attribute
value
description

s(1)

ans =
id: 1

table: 'aerofacp.pft'
attribute: 'use'

value: 8
description: 'Military'

s = vmap0read('VMAP/VMAPLV0/NOAMER/TRANS/','AEROFACP.PFT',1)

s =
id: 1

f_code: 'GB005'
iko: 'BGTL'
nam: 'THULE AIR BASE'
na3: 'GL52085'
use: 8
zv3: 77

tile_id: 10
end_id: 1

s = vmap0read('VMAP/VMAPLV0/NOAMER/TRANS/','AEROFACP.PFT',{1,2})

s =
1x4424 struct array with fields:

id
f_code

See Also vmap0data | vmap0rhead

3-1174

vmap0rhead

Purpose Read Vector Map Level 0 file headers

Syntax vmap0rhead
vmap0rhead(filepath,filename)
vmap0rhead(filepath,filename,fid)
vmap0rhead(...),
str = vmap0rhead(...)

Description vmap0rhead allows the user to select the header file interactively.

vmap0rhead(filepath,filename) reads from the specified file.
The combination [filepath filename] must form a valid complete
filename.

vmap0rhead(filepath,filename,fid) reads from the already open file
associated with fid.

vmap0rhead(...), with no output arguments, displays the formatted
header information on the screen.

str = vmap0rhead(...) returns a string containing the VMAP0
header.

Background The Vector Map Level 0 (VMAP0) uses header strings in most files
to document the contents and format of that file. This function reads
the header string and displays a formatted version in the Command
Window, or returns it as a string.

Tips This function reads all VMAP0 files except index files (files with names
ending in 'X'), thematic index files (files with names ending in 'TI')
and spatial index files (files with names ending in 'SI').

File separators are platform dependent. The filepath input must
use appropriate file separators, which you can determine using the
MATLAB filesep function.

Examples The following example uses UNIX file separators and pathname:

s = vmap0rhead('VMAP/VMAPLV0/NOAMER/','GRT')

3-1175

vmap0rhead

s =
L;Geographic Reference Table;-;id=I,1,P,Row
Identifier,-,-,-,:data_type=T,3,N,Data
Type,-,-,-,:units=T,3,N,Units of Measure Code for
Library,-,-,-,:ellipsoid_name=T,15,N,Ellipsoid,-,-,-,:ellipsoid
_detail=T,50,N,Ellipsoid
Details,-,-,-,:vert_datum_name=T,15,N,Datum Vertical
Reference,-,-,-,:vert_datum_code=T,3,N,Vertical Datum
Code,-,-,-,:sound_datum_name=T,15,N,Sounding
Datum,-,-,-,:sound_datum_code=T,3,N,Sounding Datum
Code,-,-,-,:geo_datum_name=T,15,N,Datum Geodetic
Name,-,-,-,:geo_datum_code=T,3,N,Datum Geodetic
Code,-,-,-,:projection_name=T,20,N,Projection Name,-,-,-,:;

vmap0rhead('VMAP/VMAPLV0/NOAMER/TRANS/','AEROFACP.PFT')
L
Airport Point Feature Table
aerofacp.doc
id=I,1,P,Row Identifier,-,-,-,
f_code=T,5,N,FACC Feature Code,char.vdt,-,-,
iko=T,4,N,ICAO Designator,char.vdt,-,-,
nam=T,*,N,Name,char.vdt,-,-,
na3=T,*,N,Name,char.vdt,-,-,
use=S,1,N,Usage,int.vdt,-,-,
zv3=S,1,N,Airfield/Aerodrome Elevation (meters),int.vdt,-,-,
tile_id=S,1,N,Tile Reference ID,-,tile1_id.pti,-,
end_id=I,1,N,Entity Node Primitive ID,-,end1_id.pti,-,

See Also vmap0data | vmap0read

3-1176

WebMapServer

Purpose Web map server object

Description A WebMapServer handle object represents a Web Map Service (WMS)
and acts as a proxy to a WMS server. The WebMapServer handle
object resides physically on the client side. The object can access the
capabilities document on the WMS server and perform requests to
obtain maps. It supports multiple WMS versions and negotiates with
the server automatically to use the highest known version that the
server can support.

Construction server = WebMapServer(serverURL) constructs a WebMapServer
object from the serverURL string parameter. The serverURL string
parameter must include the protocol 'http://' or 'https://'.
WebMapServer automatically communicates to the server defined by
the serverURL using the highest known version that the server can
support. serverURL can contain additional WMS keywords.

Properties Timeout

Indicates the number of milliseconds before a server times out.

Data Type: double

Default: 0 (Indicates that the WebMapServer handle object
ignores the time-out mechanism.)

EnableCache

Indicates if the WebMapServer handle object allows caching. If
true, the WebMapServer handle object caches the WMSCapabilites
object, which is returned when you use the getCapabilities
method. The cache expires if the AccessDate property of the
cached WMSCapabilities object is not the current day.

Data Type: logical

Default: true

3-1177

WebMapServer

ServerURL

Indicates the URL of the server.

Data Type: string

RequestURL

Indicates the URL of the last request to the server. RequestURL
specifies a request for either the XML capabilities document or a
map. You can insert the RequestURL into a browser.

Data Type: string

Methods getCapabilities Get capabilities document from
server

getMap Get raster map from server

updateLayers Update layer properties

Examples Construct a WebMapServer object that communicates with one of the
Environmental Research Division’s Data Access Program (ERDDAP)
WMS servers hosted by NOAA and obtains its capabilities document.
Search for a server that provides daily, global sea surface temperature
(sst) data produced by the Jet Propulsion Laboratory’s Regional Ocean
Modeling System (JPL ROMS) group.

layers = wmsfind('coastwatch*jpl*sst', 'SearchField', 'serverurl');
serverURL = layers(1).ServerURL;
server = WebMapServer(serverURL);
capabilities = server.getCapabilities();

% Obtain and view the data from the server.
% Show the boundaries of the nations and
% the global SST data.
nations = capabilities.Layer.refine('nations');
sst = capabilities.Layer.refine('sst');
sst = sst(1);

3-1178

WebMapServer

request = WMSMapRequest([sst nations], server);
A = server.getMap(request.RequestURL);
R = request.RasterRef;
figure
worldmap(A, R)
geoshow(A, R)
title({sst.LayerTitle, sst.Details.Dimension.Default})

See Also WMSCapabilities | wmsfind | wmsinfo | WMSMapRequest | wmsread |
wmsupdate

3-1179

WebMapServer.getCapabilities

Purpose Get capabilities document from server

Syntax capabilities = server.getCapabilities()

Description capabilities = server.getCapabilities() retrieves the capabilities
document from the server as a WMSCapabilities object and updates
the RequestURL property.

Tips The getCapabilities method accesses the Internet to retrieve the
document. Periodically, the WMS server is unavailable. Retrieving the
document can take several minutes.

Examples Retrieve the capabilities document from the NASA SVS Image Server:

nasa = wmsfind('NASA SVS Image', 'SearchField', 'servertitle');
serverURL = nasa(1).ServerURL;
server = WebMapServer(serverURL);
capabilities = server.getCapabilities;

3-1180

WebMapServer.getMap

Purpose Get raster map from server

Syntax A = server.getMap(mapRequestURL)

Description A = server.getMap(mapRequestURL) dynamically renders and
retrieves a color or grayscale, geographically referenced, raster
map from the server and stores it in A. Parameters in the URL,
mapRequestURL, define the map. The getMap method also updates the
WMSMapRequest.RequestURL property mapRequestURL.

Tips getMap accesses the Internet to retrieve the map. Periodically, the WMS
server is unavailable. Retrieving the map can take several minutes.

Examples Retrieve a map of the Blue Marble global mosaic layer from the NASA
Earth Observations WMS server:

neowms = wmsfind('neowms', 'SearchField', 'serverurl');
layer = neowms.refine('bluemarbleng', ...

'MatchType', 'exact');
server = WebMapServer(layer.ServerURL);
mapRequest = WMSMapRequest(layer, server);
A = server.getMap(mapRequest.RequestURL);
R = mapRequest.RasterRef;
figure
worldmap world
geoshow(A, R)
setm(gca,'MLabelParallel',-90,'MLabelLocation',90)
title(layer.LayerTitle)

3-1181

WebMapServer.getMap

3-1182

WebMapServer.updateLayers

Purpose Update layer properties

Syntax [updatedLayer, index] = server.updateLayers(layer)

Description [updatedLayer, index] = server.updateLayers(layer) returns a
WMSLayer array with properties updated with values from the server.
The WMSLayer array Layer must contain only one unique ServerURL.
The updateLayers method removes layers no longer available on the
server. The logical array index contains true for each available layer,
such that updatedLayers has the same size as layer(index).

The updateLayers method accesses the Internet to update the
properties. Occasionally, a WMS server is unavailable, or several
minutes elapse before the properties are updated.

Examples Update the properties of a MODIS global mosaic layer obtained from
the NASA Earth Observations WMS server.

modis = wmsfind('modis');
modis = modis.refine('bluemarbleng');
modis = modis(1);

% Create a WebMapServer object.
server = WebMapServer(modis.ServerURL);

% Update the properties of the modis layer.
updatedLayer = server.updateLayers(modis);

% View the metadata of the layer.
metadata = urlread(updatedLayer.Details.MetadataURL);
disp(metadata)

% Obtain and display the map.
mapRequest = WMSMapRequest(updatedLayer, server);
A = server.getMap(mapRequest.RequestURL);
R = mapRequest.RasterRef;
figure

3-1183

WebMapServer.updateLayers

worldmap world
geoshow(A, R)
setm(gca,'MLabelParallel',-90,'MLabelLocation',90)
title('MODIS Global Mosaic')

Update the properties of layers from multiple servers. Find layers from
USGS servers with the name geology in the server URL.

usgs = wmsfind('usgs.gov*geology', 'SearchField', 'serverurl');

3-1184

WebMapServer.updateLayers

Find the layers for an individual server USGS layers, update their
properties, and append them to the updatedLayers array.

serverURLs = servers(usgs);
updatedLayers = [];
fprintf('Updating layer properties from %d servers.\n', ...

length(serverURLs));

for k=1:numel(serverURLs)
serverURL = serverURLs{k};
serverLayers = refine(usgs, serverURL, ...

'SearchField', 'serverurl', 'MatchType', 'exact');
fprintf('Updating properties from server %d:\n%s\n', ...

k, serverURL);
wms = WebMapServer(serverURL);
try

layers = updateLayers(wms, serverLayers);
% Grow using concatenation because layers can have
% any length ranging from 0 to numel(serverLayers).
updatedLayers = [updatedLayers; layers];

catch e
fprintf('Server %s is not available.\n', serverURL);
fprintf('Error message is %s\n', e.message)

end
end

3-1185

westof

Purpose Wrap longitudes to values west of specified meridian

Note The westof function is obsolete and will be removed in a future
release of the toolbox. Replace it with the following calls, which are
also more efficient:

westof(lon,meridian,'degrees') ==> meridian-mod(meridian-lon,360)

westof(lon,meridian,'radians') ==> meridian-mod(meridian-lon,2*pi)

Syntax lonWrapped = westof(lon,meridian)
lonWrapped = westof(lon,meridian,angleunits)

Description lonWrapped = westof(lon,meridian) wraps angles in lon to values
in the interval (meridian-360 meridian]. lon is a scalar longitude or
vector of longitude values. All inputs and outputs are in degrees.

lonWrapped = westof(lon,meridian,angleunits) specifies the input
and output units with the string angleunits. angleunits can be either
'degrees' or 'radians'. It may be abbreviated and is case-insensitive.
If angleunits is 'radians', the input is wrapped to the interval
(meridian-2*pi meridian].

3-1186

wgs84Ellipsoid

Purpose Reference ellipsoid for World Geodetic System 1984

Syntax E = wgs84Ellipsoid
E = wgs84Ellipsoid(lengthUnit)

Description E = wgs84Ellipsoid returns a referenceEllipsoid object
representing the World Geodetic System of 1984 (WGS 84) reference
ellipsoid. The semimajor axis and semiminor axis are expressed in
meters.

E = wgs84Ellipsoid(lengthUnit) returns a WGS 84 reference
ellipsoid object in which the semimajor axis and semiminor axis are
expressed in the specified unit, lengthUnit.

Input
Arguments

lengthUnit

Any string accepted by the validateLengthUnit function.

DataType: String.

Output
Arguments

E

referenceEllipsoid object for WGS 84.

Examples Creating a WGS 84 reference ellipsoid

Create a reference ellipsoid for WGS 84.

wgs84InMeters = wgs84Ellipsoid
wgs84InKilometers = wgs84Ellipsoid('km')

wgs84InMeters =

referenceEllipsoid

Properties:
Code: 7030
Name: 'World Geodetic System 1984'

LengthUnit: 'meter'

3-1187

wgs84Ellipsoid

SemimajorAxis: 6378137
SemiminorAxis: 6356752.31424518

InverseFlattening: 298.257223563
Eccentricity: 0.0818191908426215

wgs84InKilometers =

referenceEllipsoid

Properties:
Code: 7030
Name: 'World Geodetic System 1984'

LengthUnit: 'kilometer'
SemimajorAxis: 6378.137
SemiminorAxis: 6356.75231424518

InverseFlattening: 298.257223563
Eccentricity: 0.0818191908426215

See Also referenceEllipsoid |

3-1188

WMSCapabilities

Purpose Web Map Service capabilities object

Description A WMSCapabilities object represents a Web Map Service (WMS)
capabilities document obtained from a WMS server.

Construction capabilities = WMSCapabilites(ServerURL,
capabilitiesResponse) constructs a WMSCapabilities object
from the input string parameters. The ServerURL string, a WMS
server URL, includes the protocol 'http://' or 'https://'. The
capabilitiesResponse string contains XML elements that describe
the capabilities of the ServerURL WMS server.

Properties ServerTitle

Title of server

Data Type: string

ServerURL

URL of server

Data Type: string

ServiceName

Name of Web map service

Data Type: string

Version

WMS version specification

Data Type: string

Abstract

Information about server

Data Type: string

OnlineResource

3-1189

WMSCapabilities

Online information about server

Data Type: string (URL)

ContactInformation

Contact information for an individual or an organization,
including an email address, if provided

Data Type: structure

ContactInformation Structure Array

Field Name Data Type Field Content

Person String Name of individual

Organization String Name of organization

Email String Email address

AccessConstraints

Constraints inherent in accessing the server, such as server load
limits

Data Type: string

Fees

Types of fees associated with accessing server

Data Type: string

KeywordList

Descriptive keywords of the server

Data Type: cell array of strings

ImageFormats

Image formats supported by server

Data Type: cell array of strings

3-1190

WMSCapabilities

LayerNames

Layer names provided by server

Data Type: cell array of strings

Layer

Information about layers on WMS server. See the
WMSCapabilities.Layer reference page for more information.

Data Type: WMSLayer array

AccessDate

Date of request to server

Data Type: string

Methods disp Display properties

Examples Construct a WMSCapabilities object from the contents of a downloaded
capabilities file from the NASA SVS Image Server:

nasa = wmsfind('NASA SVS Image', 'SearchField', 'servertitle');
serverURL = nasa(1).ServerURL;
server = WebMapServer(serverURL);
capabilities = server.getCapabilities;
filename = 'capabilities.xml';
urlwrite(server.RequestURL, filename);

fid = fopen(filename, 'r');
capabilitiesResponse = fread(fid, 'uint8=>char');
fclose(fid);
capabilities = WMSCapabilities(serverURL, capabilitiesResponse);

See Also WebMapServer | wmsinfo | WMSLayer

3-1191

WMSCapabilities.disp

Purpose Display properties

Syntax capabilities.disp()

Description capabilities.disp() displays the class properties. The method
removes hyperlinks and expands string and cell array properties.

3-1192

WMSCapabilities.Layer property

Purpose Layer information

Description A WMSLayer array containing information about the layers available on
a WMS server.

Property Name Data
Type

Property Content

ServerTitle String Descriptive title of server

ServerURL String URL of server

LayerTitle String Descriptive title of layer

LayerName String Name of layer

Latlim Double
array

Southern and northern latitude
limits of layer

Lonlim Double
array

Western and eastern longitude
limits of layer

Abstract String Information about layer

CoordRefSysCodes Cell array Codes of available coordinate
reference systems

Details Structure Detailed information about layer

3-1193

wmsfind

Purpose Search local database for Web map servers and layers

Syntax layers = wmsfind(querystr)
layers = wmsfind(querystr, Name,Value, ...)

Description layers = wmsfind(querystr) searches the LayerTitle and
LayerName fields of the installed Web Map Service (WMS) Database for
partial matches with the string querystr. WMS servers, by definition,
produce maps of spatially referenced raster data. You can search
for specific types of data, known as layers, such as temperature or
elevation. The string querystr can contain the wildcard character '*'.
The array returned by wmsfind, layers, contains one element for each
layer whose name or title partially matches querystr. Each element is
a WMSLayer object.

The installed WMS Database contains a subset of the WMSLayer
properties (ServerTitle, ServerURL, LayerTitle, LayerName, Latlim,
and Lonlim). The information found in the database is static and is not
automatically updated; it was validated at the time of the software
release.

layers = wmsfind(querystr, Name,Value, ...) modifies the search
of the WMS database based on the values of the parameters. You can
abbreviate parameter names, and case does not matter.

Tips • The WMS Database does not store content for the properties
'Abstract', 'CoordRefSysCodes', and 'Details'. Therefore, you
cannot use wmsfind to search these properties. Populate these
fields by using the wmsupdate function. This function updates
these properties by downloading information from the server.
The WMSLayer.disp method does not automatically display these
unpopulated properties. Set the WMSLayer.disp 'Properties'
parameter to 'all' to view. After you have viewed the information
available from wmsupdate, if you still want to know more about the
WMS server, use the function wmsinfo with the specific server URL.

3-1194

wmsfind

Input
Arguments

querystr

Specifies the search string, such as 'temperature'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

IgnoreCase

Logical that specifies whether to ignore case when performing string
comparisons. Possible values are true or false.

Default: true

Latlim

Two-element vector of latitude specifying the latitudinal limits of the
search in the form [southern_limit northern_limit] or scalar value
representing the latitude of a single point. All angles are in units of
degrees.

If provided and not empty, a given layer appears in the results only if
its limits fully contain the specified 'Latlim' limits. Partial overlap
does not result in a match.

Lonlim

Two-element vector of longitude specifying the longitudinal limits of the
search in the form [western_limit eastern_limit] or scalar value
representing the longitude of a single point. All angles are in units
of degrees.

If provided and not empty, a given layer appears in the results only if
its limits contain the specified 'Lonlim' limits. Partial overlap does
not result in a match.

3-1195

wmsfind

MatchType

String with value 'partial' or 'exact'. For a partial string match,
specify 'partial' for the 'MatchType'. For an exact match, specify
'exact'. If 'MatchType' is 'exact' and querystr is '*', a match
occurs when the search field matches the character '*'.

Default: 'partial'

SearchFields

String or cell array of strings. Valid strings are 'layer', 'layertitle',
'layername', 'server', 'serverurl', 'servertitle', or 'any'.

The function searches the entries in the 'SearchFields' of the WMS
database for a partial match with querystr. If you specify 'layer',
then wmsfind searches both the 'layertitle' and 'layername' fields.
If you specify 'server', then wmsfind searches both the 'serverurl'
and 'servertitle' fields. The function returns layer information if
any supplied 'SearchFields' match.

Default: {'layer'}

Output
Arguments

layers

Array that contains one element for each layer whose name or title
partially matches querystr. Each element is a WMSLayer object.

Examples Find all layers that contain temperature data and return a WMSLayer
array:

layers = wmsfind('temperature');

Find all layers that contain global temperature data and return a
WMSLayer array:

layers = wmsfind('global*temperature');

3-1196

wmsfind

Find all layers that contain an exact match for 'Rivers' in the
LayerTitle field and return a WMSLayer array:

layers = wmsfind('Major Rivers', 'MatchType', 'exact', ...
'IgnoreCase', false, 'SearchFields', 'layertitle');

Find all layers that contain a partial match for 'elevation' in the
LayerName field and return a WMSLayer array:

layers = wmsfind('elevation', 'SearchField', 'layername');

Find all unique servers that contain 'BlueMarbleNG' as a layer name:

layers = wmsfind('BlueMarbleNG', ...
'SearchField', 'layername', 'MatchType', 'exact');

servers = layers.servers;

Find layers that contain elevation data for Colorado and return a
WMSLayer array:

latlim = [35,43];
lonlim = [-111,-101];
layers = wmsfind('elevation', ...

'Latlim', latlim, 'Lonlim', lonlim);

Find all layers that contain temperature data for a point in Perth,
Australia, and return a WMSLayer array:

lat = -31.9452;
lon = 115.8323;
layers = wmsfind('temperature', 'Latlim', lat, 'Lonlim', lon);

3-1197

wmsfind

Find all the layers provided by servers located at the Jet Propulsion
Laboratory (JPL). Display to the command window each server URL,
layer title, and layer name:

layers = wmsfind('jpl.nasa.gov', 'SearchField', 'serverurl');
layers.disp('Properties', {'serverURL', 'layerTitle','layerName'});

Find all unique URLs of government servers:

layers = wmsfind('*.gov*', 'SearchField', 'serverurl');
servers = layers.servers;

Perform multiple searches. Find all layers that contain temperature
in the layer name or title fields:

temperature = wmsfind('temperature', ...
'SearchField',{'layertitle', 'layername'});

Find sea surface temperature layers:

sst = temperature.refine('sea surface');

Find and display to the command window a list of global sea surface
temperature layers:

global_sst = sst.refine('global')

Perform multiple listings and searches of the entire WMS database.
Please note that finding all the layers from the WMS database may take
several seconds to execute and require a substantial amount of memory.

layers = wmsfind('*');

3-1198

wmsfind

Sort and display to the command window the unique layer titles in
the WMS database:

layerTitles = sort(unique({layers.LayerTitle}))'

Refine layers to include only layers with global coverage:

global_layers = layers.refineLimits('Latlim', [-90 90], ...
'Lonlim', [-180 180]);

Refine global_layers to contain only topography layers that have
global extent:

topography = global_layers.refine('topography');

Refine layers to contain only layers that have the terms “oil” and “gas”
in the LayerTitle:

oil_gas = layers.refine('oil*gas', 'SearchField', 'layertitle');

See Also wmsinfo | WMSLayer on page 2-6 | wmsread | wmsupdate

3-1199

wmsinfo

Purpose Information about WMS server from capabilities document

Syntax [capabilities, infoRequestURL] = wmsinfo(serverURL)
[capabilities, infoRequestURL] = wmsinfo(infoRequestURL)
[capabilities, infoRequestURL] = wmsinfo(..., Name,Value)

Description [capabilities, infoRequestURL] = wmsinfo(serverURL) accesses
the Internet to read a capabilities document from a Web Map Service
(WMS) server. A capabilities document is an XML document that
contains metadata describing the geographic content offered by the
server. The wmsinfo function returns the contents of the capabilities
document into capabilities, a WMSCapabilities object. The WMS
server URL serverURL contains the protocol 'http://' or 'https://'
and additional WMS or access keywords. You can insert the URL string
infoRequestURL, composed of the serverURL with additional WMS
parameters, into a browser or urlread to return the XML capabilities
document. The wmsinfo function requires an Internet connection.
Periodically, the WMS server is unavailable. Retrieving the map can
take several minutes.

[capabilities, infoRequestURL] = wmsinfo(infoRequestURL)
reads the capabilities document from a WMS infoRequestURL and
returns the contents into capabilities.

[capabilities, infoRequestURL] = wmsinfo(..., Name,Value)
specifies a parameter-value pair that modifies the request to the server.

Tips • To specify a proxy server to connect to the Internet, select
File>Preferences>Web and enter your proxy information. Use
this feature if you have a firewall.

• wmsinfo communicates with the server using a WebMapServer handle
object representing an implementation of a WMS specification. The
handle object acts as a proxy to a WMS server and resides physically
on the client side. The handle object accesses the server’s capabilities
document. The handle object supports multiple WMS versions and
negotiates with the server to use the highest known version that the

3-1200

wmsinfo

server can support. The handle object automatically times-out after
60 seconds if a connection is not made to the server.

Input
Arguments

serverURL

WMS server URL that contains the protocol 'http://' or 'https://'
and additional WMS or access keywords.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

You can abbreviate the parameter name, which is case-insensitive.

TimeoutInSeconds

Integer-valued, scalar double that indicates the number of seconds
to elapse before a server times out. A value of 0 causes the time-out
mechanism to be ignored.

Default: 60 seconds

Output
Arguments

capabilities

WMSCapabilities object.

infoRequestURL

URL string composed of the serverURL with additional WMS
parameters.

Examples Use wmsinfo to read a capabilities document and display the abstract of
the first layer.

% Read the capabilities document from the NASA Goddard
% Space Flight Center WMS server.

3-1201

wmsinfo

serverURL = 'http://svs.gsfc.nasa.gov/cgi-bin/wms?';
capabilities = wmsinfo(serverURL);

% Display the layer information in the command window.
capabilities.Layer

Sample output follows:

Index: 304
ServerTitle: 'NASA SVS Image Server'

ServerURL: 'http://svs.gsfc.nasa.gov/cgi-bin/wms?'
LayerTitle: '(4096x2048 Animation)'
LayerName: '3348_27724'

Latlim: [-90.0000 90.0000]
Lonlim: [-180.0000 180.0000]

Abstract: 'NASA's Aqua satellite was launched ...
CoordRefSysCodes: {'CRS:84'}

Details: [1x1 struct]

% Refine the list to include only layers with the term
% "glacier retreat" in the LayerTitle.
glaciers = capabilities.Layer.refine('glacier retreat', ...

'SearchFields', 'LayerTitle');

% Display the abstract of the first layer.
glaciers(1).Abstract

Sample output follows:

Since measurements of Jakobshavn Isbrae were
first taken....

See Also WebMapServer | WMSCapabilities | wmsfind | WMSLayer | wmsread

3-1202

WMSLayer

Purpose Web Map Service layer object

Description A WMSLayer object describes a Web Map Service (WMS) layer or layers.
Obtain a WMSLayer object by using wmsfind or wmsinfo. The function
wmsfind returns a WMSLayer array. The function wmsinfo returns a
WMSCapabilities object, which contains a WMSLayer array in its Layer
property.

Construction layers = WMSLayer(param, val, ...) constructs a WMSLayer
object from the input parameter names and values. If a parameter
name matches a property name of the WMSLayer class (ServerTitle,
ServerURL, LayerTitle, LayerName, Latlim, Lonlim, Abstract,
CoordRefSysCodes, or Details) then the values of the parameter are
copied to the property. The size of the output layers is scalar unless
all inputs are cell arrays, in which case, the size of layers matches
the size of the cell arrays.

Properties You can only set the 'Latlim' and 'Lonlim' properties, which have
public set access.

ServerTitle

Descriptive information about the server

Data Type: string

Default: ''

ServerURL

The URL of the server

Data Type: string

Default: ''

LayerTitle

3-1203

WMSLayer

Descriptive information about the layer; clarifies the meaning of
the raster values of the layer

Data Type: string

Default: ''

LayerName

The keyword the server uses to retrieve the layer

Data Type: string

Default: ''

Latlim

The southern and northern latitude limits of the layer in units of
degrees and in the range [-90, 90].

Data Type: two-element vector

Default: []

Lonlim

The western and eastern longitude limits of the layer in units of
degrees. The limits must be ascending and in the range [-180,
180] or [0 360].

Data Type: two-element vector

Default: []

Abstract

Information about the layer

Data Type: string

Default: ''

3-1204

WMSLayer

CoordRefSysCodes

String codes of available coordinate reference systems

Data Type: cell array

Default: {}

Details

Detailed information about the layer: MetadataURL, Attributes,
Scale, Dimension, Style. See the WMSLayer.Details reference
page for more information.

Data Type: structure

Methods disp Display properties

refine Refine search

refineLimits Refine search based on geographic
limits

servers Return URLs of unique servers

serverTitles Return titles of unique servers

Examples Construct a WMSLayer object from a WMS GetMap request URL:

serverURL = ['http://ims.cr.usgs.gov:80/wmsconnector/' ...
'com.esri.wms.Esrimap/USGS_EDC_LandCover_NLCD2001?'];

requestURL = [serverURL 'SERVICE=WMS&FORMAT=image/jpeg&' ...
'REQUEST=GetMap&' ...
'STYLES=&SRS=EPSG:4326&VERSION=1.1.1&', ...
'LAYERS=NLCD_2001_Land_Cover&', ...
'WIDTH=1024&HEIGHT=470&' ...
'BBOX=-128,23,-65,51&'];

% Construct the WMSLayer object by using the serverURL
% variable and the value of the WMS LAYERS parameter.

3-1205

WMSLayer

% Update the remaining information from the server.
layer = WMSLayer('ServerURL', serverURL, ...

'LayerName', 'NLCD_2001_Land_Cover');
layer = wmsupdate(layer)

% Request the layer from the server using the WMS request
% parameters found in the requestURL string. Copy the WMS
% BBOX information to the latlim and lonlim parameters.
% Copy the WMS WIDTH and HEIGHT values to the ImageWidth and
% ImageHeight parameters.
lonlim = [-128, -65];
latlim = [23, 51];
[A, R] = wmsread(layer, 'Latlim', latlim, 'Lonlim', lonlim, ...

'ImageHeight', 470 , 'ImageWidth', 1024);

% Display the rendered image.
figure
usamap(A, R)
geoshow(A, R)
title(layer.LayerTitle, 'Interpreter', 'none')

% The image can also be retrieved using the requestURL.
[A, R] = wmsread(requestURL);

3-1206

WMSLayer

See Also WebMapServer | WMSCapabilities | wmsfind | wmsinfo |
WMSMapRequest | wmsread | wmsupdate

3-1207

WMSLayer.disp

Purpose Display properties

Syntax layers.disp(..., Name,Value, ...)

Description layers.disp(..., Name,Value, ...) displays the index number
followed by the property names and property values of the layer.
Additional options are specified by one or more Name,Value pair
arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

You can abbreviate parameter names, and case does not matter.

Properties

String or cell array of strings that determines which properties
appear as output and the order in which they appear.
Permissible values are: 'servertitle', 'servername',
'layertitle', 'layername', 'latlim', 'lonlim', 'abstract',
'coordrefsyscodes', 'details', or 'all'. To list all the
properties, set 'Properties' to 'all'.

Default: 'all'

Label

A case-insensitive string with permissible values of 'on' or 'off'.
If you set 'Label' to 'on', then the property name appears
followed by its value. If you set 'Label' to 'off', then only the
property value appears in the output.

Default: 'on'

3-1208

WMSLayer.disp

Index

A case-insensitive string with permissible values of 'on' or
'off'. If you set 'Index' to 'on', then WMSLayer.disp lists the
element’s index in the output. If you set 'Index' to 'off', then
WMSLayer.disp does not list the index value in the output.

Default: 'on'

Examples Display LayerTitle and LayerName properties to the command window:

layers = wmsfind('srtm30plus');
layers(1:5).disp('Index', 'off', ...

'Properties',{'layertitle','layername'});

Sample output follows:

LayerTitle: 'SRTM30Plus World with Backdrop'
LayerName: '10:4'

Sort and display the LayerName property and index:

layers = wmsfind('elevation');
[layerNames, index] = sort({layers.LayerName});
layers = layers(index);
layers.disp('Label','off', 'Properties', 'layername');

Sample output follows:

Index: 1418
'topp:elevation_earth_300sec'

Index: 1419
'topp:elevation_europe_150sec'

3-1209

WMSLayer.disp

Index: 1420
'topp:elevation_europe_150sec'

See Also wmsfind

3-1210

WMSLayer.refine

Purpose Refine search

Syntax layers.refine(querystr, Name,Value, ...)

Description layers.refine(querystr, Name,Value, ...) searches for elements
of layers in which values of the Layer or LayerName properties match
the string querystr. Use the 'MatchType' property to control whether
the method uses partial or exact matching. The default is partial
matching.

Input
Arguments

querystr

Specifies the search string.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

You can abbreviate parameter names and case does not matter.

SearchFields

Case-insensitive string or cell array of strings. Valid strings are
'abstract', 'layer', 'layertitle', 'layername', 'server',
'serverurl', 'servertitle', or 'any'.

Default: {'layer'}

MatchType

Case-insensitive string with value 'partial' or 'exact'. If you
specify 'MatchType' as 'partial', then a match is determined
if the query string is found in the property value. If you specify
'MatchType' as 'exact', then a match is determined only if the
query string exactly matches the property value. If you specify

3-1211

WMSLayer.refine

'MatchType' as 'exact' and querystr as '*', a match is found
if the property value matches the character '*'.

Default: 'partial'

IgnoreCase

Logical. If you set 'IgnoreCase' to true, then WMSLayer.refine
ignores case when performing string comparisons.

Default: true

Tips • The WMSLayer.refine method searches the entries in the
'SearchFields' properties of layers for a partial match of the
entry with querystr. The WMSLayer.refine method returns layer
information if any supplied 'SearchFields' match. If you specify
'layer', then the method searches both the 'LayerTitle' and
'LayerName' properties. If you specify 'server', then the method
searches both the 'ServerURL' and 'ServerTitle' fields. If you
specify 'any', then the method searches the properties 'Abstract',
'LayerTitle', 'LayerName', 'ServerURL', and 'ServerTitle'.

Examples Refine a search of temperature layers to find two different sets of layers:
(1) layers containing only annual sea surface temperatures, and (2)
layers containing annual temperatures or sea surface temperatures.

temperature = wmsfind('temperature');
annual = temperature.refine('annual');
sst = temperature.refine('sea surface');
annual_and_sst = sst.refine('annual');
annual_or_sst = [sst;annual];

See Also wmsfind | WMSLayer.refineLimits

3-1212

WMSLayer.refineLimits

Purpose Refine search based on geographic limits

Syntax layers.refineLimits(Name,Value, ...)

Description layers.refineLimits(Name,Value, ...) searches for elements of
layers that match specific latitude or longitude limits. The results
include a given layer only if the quadrangle specified by the optional
'Latlim' and 'Lonlim' parameters fully contains the boundary
quadrangle, as defined by the Latlim and Lonlim properties. Partial
overlap does not result in a match.

Tips • The default value of [] for either 'Latlim' or 'Lonlim' implies
that all layers match the criteria. For example, if you specify the
following, then the results include all the layers that cover the
northern hemisphere.

layer.refineLimits('Latlim', [0 90], 'Lonlim', [])

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

You can abbreviate 'Latlim' and 'Lonlim'. Case does not matter.
All angles are in units of degrees.

Latlim

A two-element vector of latitude specifying the latitudinal limits
of the search in the form [southern_limit northern_limit] or a
scalar value representing the latitude of a single point.

Lonlim

3-1213

WMSLayer.refineLimits

A two-element vector of longitude specifying the longitudinal
limits of the search in the form [western_limit eastern_limit]
or a scalar value representing the longitude of a single point.

Examples Find layers containing global elevation data:

elevation = wmsfind('elevation');
latlim = [-90, 90];
lonlim = [-180, 180];
globalElevation = ...

elevation.refineLimits('Latlim', latlim, 'Lonlim', lonlim);

% Print out the server titles from the unique servers.
globalElevation.serverTitles'

Sample output follows:

ans =

'Global'
'NRL GIDB Portal: Missouri CARES Maps'
'NRL GIDB Portal: NOAA NGDC Maps'

See Also wmsfind

3-1214

WMSLayer.servers

Purpose Return URLs of unique servers

Syntax servers = layers.servers()

Description servers = layers.servers() returns a cell array of URLs of unique
servers.

Examples Find all unique URLs of government servers:

layers = wmsfind('*.gov*','SearchField', 'serverurl');
servers = layers.servers;
sprintf('%s\n', servers{:})

Sample output follows:

http://www.ga.gov.au/bin/getmap.pl?dataset=national
http://www.geoportaligm.gov.ec/nacional/wms?
http://www.geoportaligm.gov.ec/regional/wms?

For each server that contains a temperature layer, list the server URL
and the number of temperature layers:

temperature = wmsfind('temperature');
servers = temperature.servers;
for k=1:numel(servers)

querystr = servers{k};
layers = temperature.refine(querystr, ...

'SearchFields', 'serverurl');
fprintf('Server URL\n%s\n', layers(1).ServerURL);
fprintf('Number of layers: %d\n\n', numel(layers));

end

Sample output follows:

Server URL
http://svs.gsfc.nasa.gov/cgi-bin/wms?

3-1215

WMSLayer.servers

Number of layers: 36

See Also wmsfind | WMSLayer.refine | WMSLayer.serverTitles

3-1216

WMSLayer.serverTitles

Purpose Return titles of unique servers

Syntax serverTitles = layers.serverTitles()

Description serverTitles = layers.serverTitles() returns a cell array of titles
of unique servers.

Examples List titles of unique government servers:

layers = wmsfind('*.gov*', 'SearchField', 'serverurl');
titles = layers.serverTitles
sprintf('%s\n', titles{:})

Sample output follows:

High Resolution Nighttime Imagery (Las Vegas)

See Also wmsfind | WMSLayer.servers

3-1217

WMSLayer.Details property

Description A structure containing detailed information about a layer

Details Structure

Field Name Data
Type

Field Content

MetadataURL String URL containing metadata information
about layer.

Attributes Structure Attributes of layer.

BoundingBox Structure
array

Bounding box of layer.

Dimension Structure
array

Dimensional parameters of layer, such
as time or elevation.

ImageFormats Cell array Image formats supported by server.

ScaleLimits Structure Scale limits of layer.

Style Structure
array

Style parameters that determine layer
rendering.

Version String WMS version specification.

Attributes Structure

Field Name Data
Type

Field Content

Queryable Logical True if you can query the layer for
feature information.

Cascaded Double Number of times a Cascading Map
server has retransmitted the layer.

Opaque Logical True if the map data are mostly or
completely opaque.

3-1218

WMSLayer.Details property

Attributes Structure (Continued)

Field Name Data
Type

Field Content

NoSubsets Logical True if the map must contain the full
bounding box. false if the map can be
a subset of the full bounding box.

FixedWidth Logical True if the map has a fixed width that
the server cannot change. false if
the server can resize the map to an
arbitrary width.

FixedHeight Logical True if the map has a fixed height
that the server cannot change. false
if the server can resize the map to an
arbitrary height.

BoundingBox Structure

Field Name Data
Type

Field Content

CoordRefSysCode String Code number for coordinate
reference system.

XLim Double
array

X limit of layer in units of
coordinate reference system.

YLim Double
array

Y limit of layer in units of
coordinate reference system.

3-1219

WMSLayer.Details property

Dimension Structure

Field Name Data
Type

Field Content

Name String Name of the dimension; such as time,
elevation, or temperature.

Units String Measurement unit.

UnitSymbol String Symbol for unit.

Default String Default dimension setting. For
example, if default is 'time' and
dimension is not specified, server
returns time holding.

MultipleValues Logical True if multiple values of the
dimension may be requested.
false if only single values may be
requested.

NearestValue Logical True if nearest value of dimension is
returned in response to request for
nearby value. false if request value
must correspond exactly to declared
extent values.

Current Logical True if temporal data are kept
current (valid only for temporal
extents).

Extent String Values for dimension. Expressed in
any of the following ways:
• Single value (value)

• List of values (value1, value2,
...)

• Interval defined by bounds and
resolution (min1/max1/res1)

3-1220

WMSLayer.Details property

Dimension Structure (Continued)

Field Name Data
Type

Field Content

• List of intervals (min1/max1/res1,
min2/max2/res2, ...)

ScaleLimits Structure

Field Name Data Type Field Content

ScaleHint Double
array

Minimum and maximum
scales for which it is
appropriate to display
layer. Expressed as scale
of ground distance in
meters represented by
diagonal of central pixel
in image.

MinScaleDenominator Double Minimum scale
denominator of maps
for which a layer is
appropriate.

MaxScaleDenominator Double Maximum scale
denominator of maps
for which a layer is
appropriate.

Style Structure Array

Field Name Data Type Field Content

Title String Descriptive title of style.

Name String Name of style.

3-1221

WMSLayer.Details property

Style Structure Array (Continued)

Field Name Data Type Field Content

Abstract String Information about style.

LegendURL Structure Information about legend
graphics.

LegendURL Structure

Field Name Data Type Field Content

OnlineResource String URL of legend graphics.

Format String Format of legend graphics.

Height Double Height of legend graphics.

Width Double Width of legend graphics.

3-1222

WMSMapRequest

Purpose Web Map Service map request object

Description A WMSMapRequest object contains a request to a WMS server to obtain
a map, which represents geographic information. The WMS server
renders the map as a color or grayscale image. The object contains
properties that you can set to control the geographic extent, rendering,
or size of the requested map.

Construction mapRequest = WMSMapRequest(layer) constructs a WMSMapRequest
object. The WMSLayer array layer contains only one unique ServerURL.
The WMSMapRequest class updates the properties of layer, if necessary.

mapRequest = WMSMapRequest(layer, server) constructs a
WMSMapRequest object. layer is a WMSLayer object, and server is a
scalar WebMapServer object. The ServerURL property of layer must
match the ServerURL property of server. The server object updates
layer properties.

Properties Server

Initialized to the Server input, if supplied to the constructor;
otherwise constructed using the ServerURL of Layer.

Data Type: scalar WebMapServer object

Layer

Initialized to the layer input supplied to the constructor. The
Layer property contains one unique ServerURL. The Server
property updates the properties of Layer when the property is
set. The ServerURL property of Layer must match the ServerURL
property of Server.

Data Type: WMSLayer array

CoordRefSysCode

Specifies the coordinate reference system code. Its default
value is 'EPSG:4326'. If 'EPSG:4326' is not found in
Layer.CoordRefSysCodes, then the CoordRefSysCode

3-1223

WMSMapRequest

value is set from the first CoordRefSysCode found in
the Layer.Details.BoundingBox structure array. When
CoordRefSysCode is set to 'EPSG:4326' or 'CRS:84', the XLim
and YLim properties are set to [] and the Latlim and Lonlim
properties are set to the geographic extent defined by the Layer
array. When CoordRefSysCode is set to a value other than
'EPSG:4326' or 'CRS:84', then the XLim and YLim properties are
set from the values found in the Layer.Details.BoundingBox
structure and the Latlim and Lonlim properties are set to [].
Automatic projections are not supported. (Automatic projections
begin with the string 'AUTO'.)

Data Type: string

Default: 'EPSG:4326'

RasterRef

References the raster map to an intrinsic coordinate system.

Data Type: 3-by-2 matrix

Latlim

Contains the southern and northern latitudinal limits of the
request in units of degrees. The limits must be ascending.

Data Type: two-element vector

Default: Limits that span all latitudinal limits found in the
Layer.Latlim property

Lonlim

Contains the western and eastern longitudinal limits of the
request in units of degrees. The limits must be ascending and in
the range [-180, 180] or [0 360].

Data Type: two-element vector

3-1224

WMSMapRequest

Default: Limits that span all longitudinal limits in the
Layer.Lonlim property

XLim

Contains the western and eastern limits of the request in units
specified by the coordinate reference system. The limits must be
ascending. You can set XLim only if you set CoordRefSysCode to
a value other than EPSG:4326.

Data Type: two-element vector

Default: []

YLim

Contains the southern and northern limits of the request in units
specified by the coordinate reference system. The limits must be
ascending. You can set YLim only if you set CoordRefSysCode to
a value other than EPSG:4326.

Data Type: two-element vector

Default: []

ImageHeight

Specifies the height in pixels for the requested raster map.
The property MaximumHeight defines the maximum value
for ImageHeight. The WMSMapRequest class initializes the
ImageHeight property to either 512 or to an integer value that
best preserves the aspect ratio of the coordinate limits, without
changing the coordinate limits.

Data Type: scalar, positive integer

ImageWidth

Specifies the width in pixels for the requested raster map.
The property MaximumWidth defines the maximum value for
ImageWidth. The WMSMapRequest class initializes the ImageWidth

3-1225

WMSMapRequest

property to either 512 or to an integer value that best preserves
the aspect ratio of the coordinate limits, without changing the
coordinate limits.

Data Type: scalar, positive integer

Maximum Height

Contains the maximum height in pixels for the requested map.
Cannot be set. The value of MaximumHeight is 8192.

Data Type: double

Maximum Width

Contains the maximum width in pixels for the requested map.
Cannot be set. The value of MaximumWidth is 8192.

Data Type: double

Elevation

Gives the elevation extent of the requested map. When
you set the property, 'elevation' must be the value of the
Layer.Details.Dimension.Name field.

Data Type: string

Default: ''

Time

Specifies the time extent of the requested map. See the
WMSMapRequest.Time reference page for more information.

Data Type: string or double

Default: ''

SampleDimension

3-1226

WMSMapRequest

Contains the name of a sample dimension (other than 'time' or
'elevation') and its value. SampleDimension{1} must be the
value of the Layer.Details.Dimension.Name field.

Data Type: two-element cell array of strings

Transparent

Specifies whether the map background is transparent. When
you set Transparent to true, the server sets all pixels not
representing features or data values in that layer to a transparent
value, producing a composite map. When you set Transparent
to false, the server sets all non-data pixels to the value of the
background color.

Data Type: logical scalar

Default: false

BackgroundColor

Specifies the color of the background (non-data) pixels of the
map. The values range from 0 to 255. The default value,
[255,255,255], specifies the background color as white. You can
set BackgroundColor using non-uint8 numeric values, but they
are cast and stored as uint8.

Data Type: three-element vector of uint8 values

StyleName

Specifies the style to use when rendering the image.
The StyleName must be a valid entry in the
Layer.Details.Style.Name field. (The cell array of
strings contains the same number of elements as does Layer.)

Data Type: string or cell array of strings

Default: {}

ImageFormat

3-1227

WMSMapRequest

Specifies the desired image format used to render the map
as an image. If set, the format must match an entry in the
Layer.Details.ImageFormats cell array and an entry in the
ImageRenderFormats property. If not set, the format defaults to a
value in the ImageRenderFormats property.

Data Type: string

ImageRenderFormats

Contains the preferred image rendering formats when
Transparent is set to false. The first entry is the most preferred
image format. If the preferred format is not stored in the Layer
property, then the next format from the list is selected, until a
format is found. The ImageRenderFormats array is not used if the
ImageFormat property is set. The ImageRenderFormats property
cannot be set.

Data Type: cell array

ImageTransparentFormats

Contains the preferred image rendering formats when
Transparent is set to true. When Transparent is set to
true, the ImageFormat property is set to the first entry in the
ImageTransparentFormats list, if it is stored in the Layer
property. Otherwise, the list is searched for the next element,
until a match is found. If a transparent image format is not
found in the list, or if the ImageFormat property is set to
a non-default value, then ImageFormat is unchanged. The
ImageTransparentFormats property cannot be set.

Data Type: cell array

ServerURL

Contains the server URL for the WMS GetMap request. In
general, ServerURL matches the ServerURL of the Layer.
However, some WMS servers, such as the Microsoft TerraServer,
require a different URL for GetMap requests than for WMS
GetCapabilities requests.

3-1228

WMSMapRequest

Data Type: string

Default: Layer(1).ServerURL

RequestURL

Contains the URL for the WMS GetMap request. It is composed of
the ServerURL with additional WMS parameter/value pairs. This
property cannot be set.

Data Type: string

Methods boundImageSize Bound size of raster map

Examples Read a global, half-degree resolution sea surface temperature map
for the month of November 2009. The map, from the AMSR-E sensor
on NASA’s Aqua satellite, uses data provided by NASA’s Earth
Observations (NEO) WMS server.

sst = wmsfind('AMSRE_SST_M');
server = WebMapServer(sst.ServerURL);
mapRequest = WMSMapRequest(sst, server);
timeRequest = '2009-11-01';
mapRequest.Time = timeRequest;
samplesPerInterval = .5;
mapRequest.ImageHeight = ...

round(abs(diff(sst.Latlim))/samplesPerInterval);
mapRequest.ImageWidth = ...

round(abs(diff(sst.Lonlim))/samplesPerInterval);
mapRequest.ImageFormat = 'image/png';
sstImage = server.getMap(mapRequest.RequestURL);

The legend for the layer can be obtained via the OnlineResource
URL field in the LegendURL structure. The legend shows that the
temperature ranges from -2 to 35 degrees Celsius. The WMSMapRequest
object updates the layer information from the server.

3-1229

WMSMapRequest

[legend, cmap] = imread...
(mapRequest.Layer.Details.Style(1).LegendURL.OnlineResource);

if isempty(cmap)
legendImg = legend;

else
legendImg = ind2rgb(legend, cmap);

end

Display the temperature map and legend.

figure('Color','white')
worldmap world
setm(gca, 'MlabelParallel', -90, 'MlabelLocation', 90)
geoshow(sstImage, mapRequest.RasterRef);
title({mapRequest.Layer.LayerTitle, timeRequest}, ...

'Interpreter', 'none', 'FontWeight', 'bold')

figurePosition = get(gcf, 'position');
centerWidth = figurePosition(3)/2;
left = centerWidth - size(legendImg,2)/2;
bottom = 30;
width = size(legendImg,2);
height = size(legendImg,1);
axes('Units', 'pixels', 'Position', [left bottom width height])
image(legendImg)
axis off

3-1230

WMSMapRequest

Additional abstract information for this layer can be obtained from the
MetadataURL field.

filename = [tempname '.xml'];
urlwrite(mapRequest.Layer.Details.MetadataURL, filename);
xml = xmlread(filename);
delete(filename);
xml.getElementsByTagName('abstract').item(0).getTextContent

The output appears as shown.

ans =

3-1231

WMSMapRequest

<p>Sea surface temperature is the temperature of the top
millimeter of the ocean's surface. Sea surface temperatures
influence weather, including hurricanes, as well as plant
and animal life in the ocean. Like Earth's land surface,
sea surface temperatures are warmer near the equator and
colder near the poles. Currents like giant rivers move
warm and cold water around the world's oceans. Some of
these currents flow on the surface, and they are obvious
in sea surface temperature images. Special microwave
technology allows the AMSR-E sensor on NASA's Aqua satellite
to measure sea surface temperatures through clouds, something
no satellite sensor before it was able to do across the
whole globe.</p>

See Also WebMapServer | wmsfind | wmsinfo | WMSLayer | wmsread

3-1232

WMSMapRequest.boundImageSize

Purpose Bound size of raster map

Syntax mapRequest = boundImageSize(mapRequest, imageLength)

Description mapRequest = boundImageSize(mapRequest, imageLength) bounds
the size of the raster map based on the scalar imageLength. The scalar
mapRequest is a WMSMapRequest object. The double imageLength
indicates the length in pixels for the row (ImageHeight) or column
(ImageWidth) dimension. The boundImageSize method calculates
the row or column dimension length by using the aspect ratio of the
Latlim and Lonlim properties or the aspect ratio of the XLim and YLim
properties, if they are set.

The boundImageSizemethod measures image dimensions in geographic
or map coordinates. The method sets the longest image dimension
to imageLength, and the shortest to the nearest integer value that
preserves the aspect ratio, without changing the coordinate limits. The
maximum value of the MaximumHeight and MaximumWidth properties
becomes the maximum value of imageLength.

Examples Read and display a composite of multiple layers representing the
EGM96 geopotential model of the Earth, coastlines, and national
boundaries from the NASA Globe Visualization server. The rendered
map has a spatial resolution of 0.5 degree.

vizglobe = wmsfind('viz.globe', 'SearchField', 'serverurl');
coastlines = vizglobe.refine('coastline');
national_boundaries = vizglobe.refine('national*bound');
base_layer = vizglobe.refine('egm96');
layers = [base_layer;coastlines;national_boundaries];
request = WMSMapRequest(layers);
request.Transparent = true;
request = request.boundImageSize(720);
overlayImage = request.Server.getMap(request.RequestURL);

figure
worldmap('world')

3-1233

WMSMapRequest.boundImageSize

geoshow(overlayImage, request.RasterRef);
title(base_layer.LayerTitle)

�	������������	��	������	

Compare the map with the contoured data from 'geoid.mat'.

geoid = load('geoid');
coast = load('coast');
figure
worldmap('world')
contourfm(geoid.geoid, geoid.geoidrefvec, 15)
geoshow(coast.lat, coast.long)
title({'EGM96 Contoured Data', '(geoid.mat)'})

3-1234

WMSMapRequest.boundImageSize

 	!���
�������	
����"�#$%��������&��	�������������	������������
���	������	�������'������������������(���)

3-1235

WMSMapRequest.Time property

Purpose Requested time extent

Description The WMSMapRequest.Time property stores time as a string or a
double indicating the desired time extent of the requested map.
When you set the property, 'time' must be the value of the
Layer.Details.Dimension.Name field. The default value is ''.

Time is stored in the ISO® 8601:1988(E) extended format. In
general, the Time property is stored in a yyyy-mm-dd format or a
yyyy-mm-ddThh:mm:ssZ format, if the precision requires hours,
minutes, or seconds. You can use several different string and numeric
formats to set the Time property, according to the following table
(where dateform number is the number used by the Standard MATLAB
Date Format Definitions). Express all hours, minutes, and seconds in
Coordinated Universal Time (UTC).

Dateform
(number)

Input (string) Stored format

0 dd-mm-yyyy HH:MM:SS yyyy-mm-ddTHH:MM:SSZ

1 dd-mm-yyyy yyyy-mm-dd

2 mm/dd/yy yyyy-mm-dd

6 mm/dd yyyy-mm-dd (current
year)

10 yyyy yyyy

13 HH:MM:SS yyyy-mm-ddTHH:MM:SSZ

14 HH:MM:SS PM yyyy-mm-ddTHH:MM:SSZ

15 HH:MM yyyy-mm-ddTHH:MM:00Z

16 HH:MM PM yyyy-mm-ddTHH:MM:00Z

21 mmm.dd,yyyy HH:MM:SS yyyy-mm-ddTHH:MM:SSZ

22 mmm.dd,yyyy yyyy-mm-dd

23 mm/dd/yyyy yyyy-mm-dd

3-1236

WMSMapRequest.Time property

Dateform
(number)

Input (string) Stored format

26 yyyy/mm/dd yyyy-mm-dd

29 yyyy-mm-dd yyyy-mm-dd

30 yyyymmddTHHMMSS yyyy-mm-ddTHH:MM:SSZ

31 yyyy-mm-dd HH:MM:SS yyyy-mm-ddTHH:MM:SSZ

Inputs using the dateform numbers 13–16 return the date set to the
current year, month, and day. Use of other dateform formats, especially
19, 20, 24, and 25, results in erroneous output.

In addition to these standard MATLAB dateform formats, the
WMSMapRequest.Time property also accepts the following inputs.

Input (string) Description

'current' The current time holdings of the server

numeric datenum Numeric date value converted to
yyyy-mm-dd string (dateform 29
format)

Byyyy B.C.E. year

Use the prefixes K, M, and G, followed by a string number (thousand,
million, and billion years, respectively), for geologic data sets that refer
to the distant past.

3-1237

wmsread

Purpose Retrieve WMS map from server

Syntax [A, R] = wmsread(layer)
[A, R] = wmsread(mapRequestURL)
[A, R] = wmsread(layer, Name,Value, ...)
[A, R, mapRequestURL] = wmsread(...)

Description [A, R] = wmsread(layer) accesses the Internet to render and retrieve
a raster map from a Web Map Service (WMS) server. The ServerURL
property of the WMSLayer object, layer, specifies the server. If layer
has more than one element, then the server overlays each subsequent
layer on top of the base (first) layer, forming a single image. The server
renders multiple layers only if all layers share the same ServerURL
value.

The WMS server returns a raster map, either a color or grayscale image,
in the output A. The second output, a referencing matrix R, ties A to the
EPSG:4326 geographic coordinate system. The rows of A are aligned
with parallels, with even sampling in longitude. Likewise, the columns
of A are aligned with meridians, with even sampling in latitude.

The geographic limits of A span the full latitude and longitude extent
of layer. The wmsread function chooses the larger spatial size of
A to match its larger geographic dimension. The larger spatial size
is fixed at the value 512. In other words, assuming RGB output,
A is 512-by-N-by-3 if the latitude extent exceeds longitude extent
and N-by-512-by-3 otherwise. In both cases N <= 512. The wmsread
function sets N to the integer value that provides the closest possible
approximation to equal cell sizes in latitude and longitude. The map
spans the full extent supported for the layer.

[A, R] = wmsread(mapRequestURL) uses the input argument
mapRequestURL to define the request to the server. The mapRequestURL
string contains a WMS serverURL with additional WMS parameters.
The URL string includes the WMS parameters BBOX and GetMap and
the EPSG:4326 or CRS:84 keyword. Obtain a mapRequestURL from the
output of wmsread, the RequestURL property of a WMSMapRequest object,
or an Internet search.

3-1238

wmsread

[A, R] = wmsread(layer, Name,Value, ...) specifies
parameter-value pairs that modify the request to the server. You can
abbreviate parameter names, which are case-insensitive.

[A, R, mapRequestURL] = wmsread(...) returns a WMS GetMap
request URL in the string mapRequestURL. You can insert the
mapRequestURL into a browser to make a request to a server, which
then returns the raster map. The browser opens the returned map if its
mime type is understood, or saves the raster map to disk.

Tips • Establish an Internet connection to use wmsread. Periodically,
the WMS server is unavailable. Retrieving the map can take
several minutes. wmsread communicates with the server using a
WebMapServer handle object representing a WMS server. The handle
object acts as a proxy to a WMS server and resides physically on the
client side. The handle object retrieves the map from the server. The
handle object automatically times-out after 60 seconds if a connection
is not made to the server.

• To specify a proxy server to connect to the Internet, select
File > Preferences > Web and enter your proxy information. Use
this feature if you have a firewall.

• wmsread supports reading data in WMS versions 1.0.0, 1.1.1,
and 1.3.0. For version 1.3.0 only, the WMS specification states,
"EPSG:4326 refers to WGS 84 geographic latitude, then longitude.
That is, in this CRS the x-axis corresponds to latitude, and the y-axis
to longitude." Most servers provide data in this manner; however,
some servers conform to version 1.1.1, where the x-axis corresponds
to longitude and the y-axis to latitude.

wmsread attempts to validate whether a server is confirming to the
specification. It checks the EPSG:4326 bounding box, and if the XLim
values exceeds the range of latitude, then the axes are swapped to
conform to version 1.1.1 rather than 1.3.0. If wmsread does not detect
that the XLim values exceed the range of latitude and you notice
that the latitude and longitude limits are reversed, then you need
to swap them. You can either modify the bbox parameters in the

3-1239

wmsread

mapRequestURL or modify the Latlim and Lonlim parameter values,
if permissible.

Input
Arguments

layer

WMSLayer object that contains information about the layer you are
retrieving, such as the server URL. layer must contain either the
string 'EPSG:4326' or 'CRS:84' in the CoordRefSysCodes property.

mapRequestURL

String that defines the request to the server.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Latlim

Two-element vector that specifies the latitude limits of the output
image in the form [southern_limit northern_limit]. The limits
are in degrees and must be ascending. By default, 'Latlim'
is empty, and the full extent in latitude of layer is used. If
Layer.Details.Attributes.NoSubsets is true, then 'Latlim' may
not be modified.

Lonlim

Two-element vector that specifies the longitude limits of the output
image in the form [western_limit eastern_limit]. The limits
are in degrees and must be ascending. By default, 'Lonlim'
is empty and the full extent in longitude of layer is used. If
Layer.Details.Attributes.NoSubsets is true, then 'Lonlim' may
not be modified.

ImageHeight

3-1240

wmsread

Scalar, positive, integer-valued number that specifies the desired
height of the raster map in pixels. ImageHeight cannot exceed 8192. If
layer.Details.Attributes.
FixedHeight contains a positive number, then you cannot modify
'ImageHeight'.

ImageWidth

Scalar, positive, integer-valued number that specifies the desired
width of the raster map in pixels. ImageWidth cannot exceed 8192. If
Layer.Details.Attributes.FixedWidth contains a positive number,
then you cannot modify 'ImageWidth'.

CellSize

Scalar or two-element vector that specifies the target size of the output
pixels (raster cells) in units of degrees. If you specify a scalar, the value
applies to both height and width dimensions. If you specify a vector, use
the form [height width]. The wmsread function issues an error if you
specify both CellSize and ImageHeight or ImageWidth. The output
raster map must not exceed a size of [8192,8192].

RelTolCellSize

Scalar or two-element vector that specifies the relative tolerance for
'CellSize'. If you specify a scalar, the value applies to both height
and width dimensions. If you specify a vector, the tolerance appears in
the order [height width].

Default: .001

ImageFormat

String that specifies the desired image format for use in rendering
the map as an image. If specified, the format must match an entry
in the Layer.Details.ImageFormats cell array and must match one
of the following supported formats: 'image/jpeg', 'image/gif',
'image/png', 'image/tiff', 'image/geotiff', 'image/geotiff8',
'image/tiff8', 'image/png8', 'image/bil'. If not specified, the

3-1241

wmsread

format defaults to the first available format in the supported format
list. When the 'image/bil' format is specified, A is returned as a
two-dimensional array with a class type of int16 or int32.

StyleName

String or cell array of strings that specifies the style to use when
rendering the image. By default, the style is set to the empty string. The
StyleName must be a valid entry in the Layer.Details.Style.Name
field. If you request multiple layers, each with a different style, then
StyleName must be a cell array of strings.

Transparent

Logical that specifies if transparency is enabled. When you set
Transparent to true, all pixels not representing features or data values
are set to a transparent value. When you set Transparent to false,
non-data pixels are set to the value of the background color.

Default: false

BackgroundColor

Three-element vector that specifies the color of the background
(nondata) pixels of the map.

Default: [255,255,255]

Elevation

String that indicates the desired elevation extent of the requested
map. The layer must contain elevation data, which is indicated by the
'Name' field of the Layer.Details.Dimension structure. The 'Name'
field must contain the value 'elevation'. The 'Extent' field of the
Layer.Details.Dimension structure determines the permissible range
of values for the parameter.

Time

3-1242

wmsread

String or numeric date number that indicates the desired time extent
of the requested map. The layer must contain data with a time extent,
which is indicated by the 'Name' field of the Layer.Details.Dimension
structure. The 'Name' field must contain the value 'time'. The
'Extent' field of the Layer.Details.Dimension structure determines
the permissible range of values for the parameter. For more information
about setting this parameter, see the WMSMapRequest.Time property
reference page.

SampleDimension

Two-element cell array of strings that indicates the name of a sample
dimension (other than 'time' or 'elevation') and its string value.
The layer must contain data with a sample dimension extent, which
is indicated by the 'Name' field of the Layer.Details.Dimension
structure. The 'Name' field must contain the value of the first
element of 'SampleDimension'. The 'Extent' field of the
Layer.Details.Dimension structure determines the permissible range
of values for the second element of 'SampleDimension'.

TimeoutInSeconds

Integer-valued, scalar double that indicates the number of seconds
to elapse before a server time-out is issued. A value of 0 causes the
time-out mechanism to be ignored.

Default: 60 seconds

Output
Arguments

A

Color or grayscale image.

R

Referencing matrix that ties A to the EPSG:4326 geographic coordinate
system.

mapRequestURL

3-1243

wmsread

String that lists a WMS GetMap request URL.

Definitions The EPSG:4326 coordinate reference system is based on the WGS84
(1984 World Geodetic System) datum. Latitude and longitude are in
degrees and longitude is referenced to the Greenwich Meridian.

Examples Read and display a Blue Marble Next Generation layer from NASA:

nasa = wmsfind('nasa', 'SearchField', 'serverurl');
layer = nasa.refine('bluemarbleng', ...

'SearchField', 'layername', 'MatchType', 'exact');
[A, R] = wmsread(layer(1));
figure
axesm globe
axis off
geoshow(A, R)
title('Blue Marble')

3-1244

wmsread

�	�����������*+,�������

Read and display an orthoimage of the northern section of the Golden
Gate Bridge in San Francisco, California, using the USGS National
Map Seamless server.

Define region of interest.

latlim = [37.824928 37.829598];
lonlim = [-122.482373 -122.47768];

Find the USGS high-resolution ortho-imagery layer. The USGS
National Map provides ortho-imagery from various regions of the
United States. One method to obtain the high-resolution ortho-imagery
layer is to obtain the capabilities document from the server. The
ortho-imagery layer is the only layer from this server. Use multiple
attempts to connect to the server in case it is busy.

numberOfAttempts = 5;

3-1245

wmsread

attempt = 0;
info = [];
serverURL = 'http://isse.cr.usgs.gov/arcgis/services/Orthoimagery/USGS_ED
while(isempty(info))

try
info = wmsinfo(serverURL);
orthoLayer = info.Layer(1);

catch e

attempt = attempt + 1;
if attempt > numberOfAttempts

throw(e);
else

fprintf('Attempting to connect to server:\n"%s"\n', serverURL
end

end
end

Obtain the image.

imageLength = 1024;
[A, R] = wmsread(orthoLayer, 'Latlim', latlim, 'Lonlim', lonlim, ...

'ImageHeight', imageLength, 'ImageWidth', imageLength);

% Display the ortho-image in a UTM projection.
figure
axesm('utm', 'Zone', utmzone(latlim, lonlim), ...

'MapLatlimit', latlim, 'MapLonlimit', lonlim, ...
'Geoid', wgs84Ellipsoid)

geoshow(A,R)
axis off
title({'San Francisco','Northern Section of Golden Gate Bridge'})

3-1246

wmsread

Read and display a global monthly composite of sea surface temperature
for April 16, 2010 based on data from the AMSR-E sensor on board the
Aqua satellite. Include the coastline, landmask, and nation layers.

coastwatch = wmsfind('coastwatch', 'SearchField', 'serverurl');
layers = coastwatch.refine('erdAAsstamday', ...

'Searchfield','serverurl');

3-1247

wmsread

time = '2010-04-16T00:00:00Z';
[A, R] = wmsread(layers(end:-1:1), 'Time', time);
figure
axesm('pcarree', 'Maplonlimit', [0, 360], ...

'PLabelLocation', 45, 'MLabelLocation', 90, ...
'MLabelParallel', -90, 'MeridianLabel', 'on', ...
'ParallelLabel', 'on');

geoshow(A, R);
title({layers(end).LayerTitle, time})

�	�������-����	��.���/�.����	����	��

Read and display a single sequence image from the MODIS instruments
on the Aqua and Terra satellites that shows hurricane Katrina on
August 29, 2005:

% Find the hurricane Katrina sequence layer.
katrina = wmsfind('Hurricane Katrina (Sequence)');

3-1248

wmsread

katrina = wmsupdate(katrina(1));

% The Dimension.Extent field shows a sequence delimited
% by commas. The sequence starts on August 24 and ends
% on August 31. The commas start at August 25 and end
% after August 30. Select the sequence corresponding to
% August 29.
commas = strfind(katrina.Details.Dimension.Extent, ',');
extent = katrina.Details.Dimension.Extent;
sequence = extent(commas(end-2)+1:commas(end-1)-1);

% Obtain the time, latitude, and longitude limits
% from the values in the sequence. Split the sequence
% into a cell array of values by first finding
% all values between and including the parentheses,
% then remove the parentheses and split the values.
pat = '[(-.\d)]';
r = regexp(sequence, pat);
values = sequence(r);
values = strrep(values, '(', ' ');
values = strrep(values, ')', ' ');
values = regexp(values, '\s', 'split');
values = values(~cellfun('isempty', values));
time = values{1};
xmin = values{2};
ymin = values{3};
xmax = values{4};
ymax = values{5};

% Define latitude and longitude limits from the information
% in the sequence. The layer's geographic extent is assigned
% for the combined set of sequences. The requested map cannot
% be a subset of the layer's bounding box. In this rare case,
% set the layer's limits using the limits of the sequence.
latlim = [str2double(ymin) str2double(ymax)];
lonlim = [str2double(xmin) str2double(xmax)];
katrina.Latlim = latlim;

3-1249

wmsread

katrina.Lonlim = lonlim;

% Read and display the sequence map.
[A,R] = wmsread(katrina, 'SampleDimension', ...

{katrina.Details.Dimension.Name, sequence});
figure
usamap(katrina.Latlim,katrina.Lonlim);
geoshow(A,R)
coast = load('coast');
plotm(coast.lat, coast.long)
title({katrina.LayerTitle, time})

�	������������	��	������	

See Also WebMapServer | wmsfind | wmsinfo | WMSLayer | WMSMapRequest |
wmsupdate

3-1250

wmsupdate

Purpose Synchronize WMSLayer object with server

Syntax [updatedLayers, index] = wmsupdate(layers)
[...] = wmsupdate(layers, Name,Value, ...)

Description [updatedLayers, index] = wmsupdate(layers) returns a WMSLayer
array with its properties synchronized with values from the server. The
input layers contains only one unique ServerURL. Layers no longer
available on the server are removed. The logical array index contains
true for each available layer. Therefore, updatedLayers has the same
size as layers(index). Except for deletion, updatedLayers preserves
the same order of layers as layers.

[...] = wmsupdate(layers, Name,Value, ...) specifies
parameter-value pairs that modify the request. Parameter names can
be abbreviated and are case-insensitive.

The function accesses the Internet to update the properties.
Periodically, the WMS server is unavailable. Updating the layer can
take several minutes. The function times-out after 60 seconds if a
connection is not made to the server.

Tips • To specify a proxy server to connect to the Internet, select
File > Preferences > Web and enter your proxy information. Use
this feature if you have a firewall.

Input
Arguments

layers

WMSLayer array that contains WMSLayer objects.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

TimeoutInSeconds

3-1251

wmsupdate

Integer-valued, scalar double that indicates the number of seconds
before a server times out. A value of 0 causes the time-out mechanism
to be ignored.

Default: 60 seconds

AllowMultipleServers

Logical scalar that indicates whether the layer array may contain
elements from multiple servers. Use caution when setting the value
to true, since you are making a request to each unique server. Each
request can take several minutes to finish.

Default: false (indicates the array must contain elements from
the same server)

Output
Arguments

updatedLayers

WMSLayer array with its properties synchronized with values from the
server.

index

Logical array that contains true for each available layer.

Examples Update the layers from the NASA Goddard Space Flight Center WMS
SVS Image Server:

% Search the abstract field of the updated layers to find
% layers containing the term 'blue marble'. Read and display
% the first blue marble layer containing the term '512' and
% 'image' in its LayerTitle.
gsfc = wmsfind('svs.gsfc.nasa.gov', 'SearchField', 'serverurl');
gsfc = wmsupdate(gsfc);
blue_marble = gsfc.refine('blue marble', 'SearchField', ...

'abstract');
queryStr = '*512*image';
layers = blue_marble.refine(queryStr);

3-1252

wmsupdate

layer = layers(1);

% Display the layer and abstract.
[A, R] = wmsread(layer);
figure
worldmap world
plabel off; mlabel off
geoshow(A, R);
title(layer.LayerTitle)
disp(layer.Abstract)

�	������������	��	������	

Update the properties of all the layers from the NASA servers:

nasa = wmsfind('nasa', 'SearchField', 'serverurl');
nasa = wmsupdate(nasa, 'AllowMultipleServers', true);

See Also WebMapServer | wmsfind | wmsinfo | WMSLayer | wmsread

3-1253

worldFileMatrixToRefmat

Purpose Convert world file matrix to referencing matrix

Syntax refmat = worldFileMatrixToRefmat(W)

Description refmat = worldFileMatrixToRefmat(W) converts the 2-by-3 world file
matrix W to a 3-by-2 referencing matrix refmat.

Definitions Referencing Matrix

See makerefmat.

World File Matrix for Planar System

See spatialref.MapRasterReference.worldFileMatrix.

World File Matrix for Geographic System

See spatialref.GeoRasterReference.worldFileMatrix.

See Also refmatToWorldFileMatrix

3-1254

worldfileread

Purpose Read world file and return referencing object or matrix

Syntax R = worldfileread(worldFileName, coordinateSystemType,
rasterSize)

refmat = worldileread(worldFileName)

Description R = worldfileread(worldFileName, coordinateSystemType,
rasterSize) reads the world file, worldFileName, and constructs a
spatial referencing object, R. The type of referencing object is determined
by the coordinateSystemType string, which can be either 'planar'
(including projected map coordinate systems) or 'geographic' (for
latitude-longitude systems). The rasterSize input should match the
size of the image corresponding to the world file.

refmat = worldileread(worldFileName) reads the world file,
worldFileName, and constructs a 3-by-2 referencing matrix, refmat.

Examples Read an ortho image referenced to a projected coordinate system
(Massachusetts State Plane Mainland).

filename = 'concord_ortho_w.tif';
[X, cmap] = imread(filename);
worldFileName = getworldfilename(filename);
R = worldfileread(worldFileName, 'planar', size(X))

Read an image referenced to a geographic coordinate system.

filename = 'boston_ovr.jpg';
RGB = imread(filename);
worldFileName = getworldfilename(filename);
R = worldfileread(worldFileName, 'geographic', size(RGB))

See Also getworldfilename | map2pix | pix2map | worldfilewrite

3-1255

worldfilewrite

Purpose Write world file from referencing object or matrix

Syntax worldfilewrite(R, worldfilename)

Description worldfilewrite(R, worldfilename) calculates the world
file entries corresponding to referencing object or matrix R
and writes them into the file worldfilename. The argument
R can be a spatialref.MapRasterReference object, a
spatialref.GeoRasterReference object, or a 3-by-2 referencing matrix.

Examples Write out the information from a referencing object for the image file
concord_ortho_w.tif

info = imfinfo('concord_ortho_w.tif');
R = worldfileread('concord_ortho_w.tfw', ...

'planar', [info.Height info.Width])
worldfilewrite(R, 'concord_ortho_w_test.tfw');
type concord_ortho_w_test.tfw

See Also getworldfilename | map2pix | pix2map | worldfileread

3-1256

worldmap

Purpose Construct map axes for given region of world

Syntax worldmap region
worldmap(region)
worldmap
worldmap(latlim, lonlim)
worldmap(Z, R)
h = worldmap(...)

Description worldmap region or worldmap(region) sets up an empty map axes
with projection and limits suitable to the part of the world specified in
region. region can be a string or a cell array of strings. Permissible
strings include names of continents, countries, and islands as well as
'World', 'North Pole', 'South Pole', and 'Pacific'.

worldmap with no arguments presents a menu from which you can
select the name of a single continent, country, island, or region.

worldmap(latlim, lonlim) allows you to define a custom geographic
region in terms of its latitude and longitude limits in degrees. latlim
and lonlim are two-element vectors of the form [southern_limit
northern_limit] and [western_limit eastern_limit], respectively.

worldmap(Z, R) derives the map limits from the extent of a regular data
grid georeferenced by R. R can be a spatialref.GeoRasterReference
object, a referencing vector, or a referencing matrix.

If R is a spatialref.GeoRasterReference object, its RasterSize
property must be consistent with size(Z).

If R is a referencing vector, it must be a 1-by-3 with elements:

[cells/degree northern_latitude_limit western_longitude_limit]

If R is a referencing matrix, it must be 3-by-2 and transform raster row
and column indices to/from geographic coordinates according to:

[lon lat] = [row col 1] * R

3-1257

worldmap

If R is a referencing matrix, it must define a (non-rotational,
non-skewed) relationship in which each column of the data grid falls
along a meridian and each row falls along a parallel.

h = worldmap(...) returns the handle of the map axes.

All axes created with worldmap are initialized with a spherical Earth
model having a radius of 6,371,000 meters.

worldmap uses tightmap to adjust the axes limits around the map. If
you change the projection, or just want more white space around the
map frame, use tightmap again or auto axis

Examples Example 1

Set up a world map and draw coarse coastlines:

worldmap('World')
load coast
plotm(lat, long)

Example 2

Set up worldmap with land areas, major lakes and rivers, and cities
and populated places:

ax = worldmap('World');
setm(ax, 'Origin', [0 180 0])
land = shaperead('landareas', 'UseGeoCoords', true);
geoshow(ax, land, 'FaceColor', [0.5 0.7 0.5])
lakes = shaperead('worldlakes', 'UseGeoCoords', true);
geoshow(lakes, 'FaceColor', 'blue')
rivers = shaperead('worldrivers', 'UseGeoCoords', true);
geoshow(rivers, 'Color', 'blue')
cities = shaperead('worldcities', 'UseGeoCoords', true);
geoshow(cities, 'Marker', '.', 'Color', 'red')

3-1258

worldmap

Example 3

Draw a map of Antarctica:

worldmap('antarctica')
antarctica = shaperead('landareas', 'UseGeoCoords', true,...

'Selector',{@(name) strcmp(name,'Antarctica'), 'Name'});
patchm(antarctica.Lat, antarctica.Lon, [0.5 1 0.5])

3-1259

worldmap

Example 4

Draw a map of Africa and India with major cities and populated places:

worldmap({'Africa','India'})
land = shaperead('landareas.shp', 'UseGeoCoords', true);
geoshow(land, 'FaceColor', [0.15 0.5 0.15])
cities = shaperead('worldcities', 'UseGeoCoords', true);
geoshow(cities, 'Marker', '.', 'Color', 'red')

Example 5

Make a map of the geoid over South America and the central Pacific:

worldmap([-50 50],[160 -30])
load geoid
geoshow(geoid, geoidrefvec, 'DisplayType', 'texturemap');
load coast
geoshow(lat, long)

Example 6

Draw a map of terrain elevations in Korea:

load korea

3-1260

worldmap

h = worldmap(map, refvec);
set(h, 'Visible', 'off')
geoshow(h, map, refvec, 'DisplayType', 'texturemap')
demcmap(map)

Example 7

Make a map of the United States of America, coloring state polygons:

ax = worldmap('USA');
load coast
geoshow(ax, lat, long,...
'DisplayType', 'polygon', 'FaceColor', [.45 .60 .30])
states = shaperead('usastatelo', 'UseGeoCoords', true);
faceColors = makesymbolspec('Polygon',...

{'INDEX', [1 numel(states)], 'FaceColor', ...
polcmap(numel(states))}); % NOTE - colors are random

geoshow(ax, states, 'DisplayType', 'polygon', ...
'SymbolSpec', faceColors)

See Also axesm | framem | geoshow | gridm | mlabel | plabel | tightmap |
usamap

3-1261

wrapTo180

Purpose Wrap angle in degrees to [-180 180]

Syntax lonWrapped = wrapTo180(lon)

Description lonWrapped = wrapTo180(lon) wraps angles in lon, in degrees, to
the interval [-180 180] such that 180 maps to 180 and -180 maps to
-180. (In general, odd, positive multiples of 180 map to 180 and odd,
negative multiples of 180 map to -180.)

See Also wrapTo360 | wrapTo2Pi | wrapToPi

3-1262

wrapTo360

Purpose Wrap angle in degrees to [0 360]

Syntax lonWrapped = wrapTo360(lon)

Description lonWrapped = wrapTo360(lon) wraps angles in lon, in degrees, to
the interval [0 360] such that 0 maps to 0 and 360 maps to 360. (In
general, positive multiples of 360 map to 360 and negative multiples
of 360 map to zero.)

See Also wrapTo180 | wrapTo2Pi | wrapToPi

3-1263

wrapTo2Pi

Purpose Wrap angle in radians to [0 2*pi]

Syntax lambdaWrapped = wrapTo2Pi(lambda)

Description lambdaWrapped = wrapTo2Pi(lambda) wraps angles in lambda, in
radians, to the interval [0 2*pi], such that 0 maps to 0 and 2*pi
maps to 2*pi. (In general, positive multiples of 2*pi map to 2*pi and
negative multiples of 2*pi map to 0.)

See Also wrapTo180 | wrapTo360 | wrapToPi

3-1264

wrapToPi

Purpose Wrap angle in radians to [−pi pi]

Syntax lambdaWrapped = wrapToPi(lambda)

Description lambdaWrapped = wrapToPi(lambda) wraps angles in lambda, in
radians, to the interval [pi pi]. pi maps to pi and pi maps to pi.
(In general, odd, positive multiples of pi map to pi and odd, negative
multiples of pi map to pi.)

See Also wrapTo180 | wrapTo360 | wrapTo2Pi

3-1265

zdatam

Purpose Adjust z-plane of displayed map objects

Syntax zdatam
zdatam(hndl)
zdatam('str')
zdatam(hndl,zdata)
zdatam('str',zdata)

Description zdatam displays a GUI for selecting an object from the current axes
and modifying its ZData property.

zdatam(hndl) and zdatam('str') display a GUI to modify the ZData
of the object(s) specified by the input. str is any string recognized by
handlem.

zdatam(hndl,zdata) alters the z-plane position of displayed map
objects designated by the MATLAB graphics handle hndl. The z-plane
position may be the Z position in the case of text objects, or the ZData
property in the case of other graphic objects. The function behaves
as follows:

• If hndl is an hggroup handle, the ZData property of the children in
the hggroup are altered.

• If the handle is scalar, then ZData can be either a scalar (z-plane
definition), or a matrix of appropriate dimension for the displayed
object.

• If hndl is a vector, then ZData can be a scalar or a vector of the same
dimension as hndl.

• If ZData is a scalar, then all objects in hndl are drawn on the ZData
z-plane.

• If ZData is a vector, then each object in hndl is drawn on the plane
defined by the corresponding ZData element.

• If ZData is omitted, then a modal dialog box prompts for the ZData
entry.

3-1266

zdatam

zdatam('str',zdata) identifies the objects by the input str, where
str is any string recognized by handelm, and uses zdata as described
above to update their ZData property.

This function adjusts the z-plane position of selected graphics objects.
It accomplishes this by setting the objects’ ZData properties to the
appropriate values.

See Also handlem | setm

3-1267

zero22pi

Purpose Wrap longitudes to [0 360] degree interval

Note The zero22pi function has been replaced by wrapTo360 and
wrapTo2Pi.

Syntax newlon = zero22pi(lon)
newlon = zero22pi(lon,angleunits)

Description newlon = zero22pi(lon) wraps the input angle lon in degrees to the 0
to 360 degree range.

newlon = zero22pi(lon,angleunits) works in the units defined by
the string angleunits, which can be either 'degrees' or 'radians'.
angleunits can be abbreviated and is case-insensitive.

Examples zero22pi(567.5)

ans =
207.5

zero22pi(-567.5)

ans =
152.5

zero22pi(-7.5,'radian')

ans =
5.0664

See Also wrapTo2Pi | wrapTo360

3-1268

zerom

Purpose Construct regular data grid of 0s

Syntax [Z,refvec] = zerom(latlim,lonlim,scale)

Description [Z,refvec] = zerom(latlim,lonlim,scale) returns a full regular
data grid consisting entirely of 0s and a three-element referencing
vector for the returned Z. The two-element vectors latlim and lonlim
define the latitude and longitude limits of the geographic region. They
should be of the form [south north] and [west east], respectively.
The scalar scale specifies the number of rows and columns per degree
of latitude and longitude.

Examples [Z,refvec] = zerom([46,51],[-79,-75],1)

Z =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

refvec =
1 51 -79

See Also limitm | nanm | onem | sizem | spzerom

3-1269

axesmui

Purpose Define map axes and modify map projection and display properties

Activation Command Line Maptool Map Display

axesmui

c =
axesmui(...)

Display > Projection extend-click map
display

Description axesmui activates a Projection Control dialog box for the current map
axes. The dialog box allows map projection definition and property
modification.

c is an optional output argument that indicates whether the Projection
Control dialog box was closed by the cancel button. c = 1 if the cancel
button is pushed. Otherwise, c = 0.

Extend-clicking a map display brings up the Projection Control dialog
box for that map axes.

Controls

3-1270

axesmui

TheMap Projection pull-down menu is used to select a map projection.
The projections are listed by type, and each is preceded by a four-letter
type indicator:

Cyln = Cylindrical
Pcyl = Pseudocylindrical
Coni = Conic
Poly = Polyconic
Pcon = Pseudoconic
Azim = Azimuthal
Mazi = Modified Azimuthal
Pazi = Pseudoazimuthal

The Zone button and edit box are used to specify the UTM or UPS zone.
For non-UTM and UPS projections, the two are disabled.

The Geoid edit boxes and pull-down menu are used to specify the geoid.
Units must be in meters for the UTM and UPS projections, since this
is the standard unit for the two projections. For non-UTM and UPS
projections, the geoid unit can be anything, bearing in mind that the
resulting projected data will be in the same units as the geoid.

The Angle Units pull-down menu is used to specify the angle units
used on the map projection. All angle entries corresponding to the
current map projection must be entered in these units. Current angle
entries are automatically updated when new angle units are selected.

The Map Limits edit boxes are used to specify the extent of the map
data in geographic coordinates. The Latitude edit boxes contain the
southern and northern limits of the map. The Longitude edit boxes
contain the western and eastern limits of the map. The map limits
establish the extent of the meridian and parallel grid lines, regardless
of the display settings (see grid settings). Map limits are always in
geographic coordinates, regardless of the map origin and orientation
setting. In the normal aspect, the map display is trimmed to the
minimum of the map and frame limits.

The Frame Limits edit boxes are used to specify the location of the
map frame, measured from the center of the map projection in the base

3-1271

axesmui

coordinate system. The Latitude edit boxes contain the southern and
northern frame edge locations. The Longitude edit boxes contain
the western and eastern frame edge locations. Displayed map data
are trimmed at the frame limits. For azimuthal map projections, the
latitude limits should be set to inf and the desired trim distance from
the map origin. In the normal aspect, the map display is trimmed to the
minimum of the map and frame limits.

The Map Origin edit boxes are used to specify the origin and aspect
angle of the map projection. The Lat and Long boxes specify the map
origin in geographic coordinates. This is the point that is placed in the
center of the projection. If either box is left blank, 0 degrees is used.
The Orientation box specifies the azimuth angle of the North Pole
relative to the map origin. Azimuth is measured clockwise from the top
of the projection. If the Orientation box is disabled, then the selected
map projection requires a fixed orientation. See the Mapping Toolbox
User’s Guide for a complete description of the map origin.

The Cartesian Origin edit boxes are used to specify the x-y offset,
along with a desired scale factor of the map projection. The False E and
N boxes specify the false easting and northing in Cartesian coordinates.
These must be in the same units as the geoid. The Scalefactor box
specifies the scale factor used in the map projection calculations.

The Parallels edit boxes specify the standard parallels of the selected
map projection. A particular map projection may have one or two
standard parallels. If the edit boxes are disabled, then the selected
projection has no standard parallels or the standard parallels are fixed.

The Aspect pull-down menu is used to select a normal or transverse
display aspect. When the aspect is normal, north (on the base
projection) is up, and the map is displayed in a portrait setting. In a
transverse aspect, north (in the base projection) is to the right, and the
map is displayed in a landscape setting. This property does not control
the map projection aspect. The projection aspect is determined by the
map Origin property).

The Frame button brings up the Map Frame Properties dialog box,
which allows the map frame settings to be modified.

3-1272

axesmui

The Grid button brings up the Map Grid Properties dialog box, which
allows the map grid settings to be modified.

The Labels button brings up the Map Label Properties dialog box,
which allows the parallel and meridian label settings to be modified.

The Fill in button is used to compute projection and display settings
based on any currently specified map parameters. Only settings that
are left blank are affected when this button is pushed.

The Reset button is used to reset the default projection properties and
display settings of the current map. Default display settings include
frame, grid, and label properties set to 'off'.

The Apply button is used to apply the projection and display settings to
the current map, which results in the map being reprojected.

The Help button is used to bring up online help text for each control on
the Projection Control dialog box.

The Cancel button disregards any modified projection or display
settings and closes the Projection Control dialog box.

Map Frame Properties Dialog Box

This dialog box allows modification of the map frame settings. It is
accessed via the Frame button on the Projection Control dialog box.

3-1273

axesmui

The Frame selection buttons determine whether the map frame is
visible.

The Face Color pull-down menu is used to select the background
color of the map frame. Selecting none results in a transparent frame
background, i.e., the same as the axes color. Selecting custom allows a
custom RGB triple to be defined for the background color.

The Edge Color pull-down menu is used to select the color of the frame
edge. Selecting none hides the frame edge. Selecting custom allows a
custom RGB triple to be defined for the edge color.

The Edge Width edit box is used to enter the line width of the frame
edge, in points.

The Points per Edge edit box is used to enter the number of points
used to display each edge of the map frame.

The Accept button accepts any modifications made to the map frame
properties and returns to the Projection Control dialog box. Changes
are applied to the current map only when the Apply button on the
Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the map frame
properties and returns to the Projection Control dialog box.

Map Grid Properties Dialog Box

This dialog box allows modification of the map frame settings. It is
accessed via the Grid button on the Projection Control dialog box.

3-1274

axesmui

The Grid selection buttons determine whether the map grid is visible.

The Color pull-down menu is used to select the color of the map grid
lines. Selecting custom allows a custom RGB triple to be defined for
the grid line color.

The Style pull-down menu is used to select the line style of the map
grid lines.

The Line Width edit box is used to enter the width of the map grid
lines, in points.

The Grid Altitude edit box is used to enter z-axis location of the map
grid. This property can be used to place some mapped objects above or
below the map grid. The default map grid altitude is inf, which places
the grid above all other mapped objects.

TheMeridian and Parallel Settings button brings up theMeridian
and Parallel Properties dialog box, which allows the properties of the
meridian and parallel grid lines to be modified.

The Accept button accepts any modifications made to the map grid
properties and returns to the Projection Control dialog box. Changes
are applied to the current map only when the Apply button on the
Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the map grid
properties and returns to the Projection Control dialog box.

3-1275

axesmui

Meridian and Parallel Properties Dialog Box

This dialog box is used to modify the settings for meridian and parallel
grid lines. It is accessed via the Meridian and Parallel Settings
button on the Map Grid Properties dialog box.

TheMeridians selection buttons determine whether the meridian grid
lines are visible when the map grid is turned on.

The Longitude Location(s) edit box is used to specify which meridians
are to be displayed if the meridian lines are turned on. If a scalar
interval value is entered, meridian lines are displayed at that interval,
starting from the Prime Meridian and proceeding in east and west
directions. If a vector of values is entered, meridian lines are displayed
at locations given by each element of the vector.

The Latitude Limits edit box is used to specify the latitude limits
beyond which meridian lines do not extend. If this property is left
empty, all meridian lines extend to the map latitude limits (specified by
the Latitude Map Limits entry on the Projection Control dialog box).
This entry must be a two-element vector enclosed in brackets.

3-1276

axesmui

The Longitude Exceptions edit box is used to enter specific meridians
of the displayed grid that are to extend beyond the latitude limits, to
the map limits. This entry is a vector of longitude values.

The Parallels selection buttons determine whether the parallel grid
lines are visible when the map grid is turned on.

The Latitude Location(s) edit box is used to specify which parallels
are to be displayed if the parallel lines are turned on. If a scalar interval
value is entered, parallel lines are displayed at that interval, starting
from the Equator and proceeding in north and south directions. If
a vector of values is entered, parallel lines are displayed at locations
given by each element of the vector.

The Longitude Limits edit box is used to specify the longitude limits
beyond which parallel lines do not extend. If this property is left empty,
all parallel lines extend to the map longitude limits (specified by the
Longitude Map Limits entry on the Projection Control dialog box).
This entry must be a two-element vector enclosed in brackets.

The Latitude Exceptions edit box is used to enter specific parallels of
the displayed grid that are to extend beyond the longitude limits, to the
map limits. This entry is a vector of latitude values.

The Points per Line edit boxes are used to enter the number of points
used to plot each meridian and each parallel grid line. The default
value is 100 points.

The Accept button accepts any modifications that have been made to
the meridian and parallel grid line properties and return to the Map
Grid Properties dialog box. Changes are applied to the current map only
when the Apply button on the Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the meridian and
parallel grid lines and returns to the Map Grid Properties dialog box.

Map Label Properties Dialog Box

This dialog box is used to modify the settings of the meridian and
parallel labels. It is accessed via the Label button on the Projection
Control dialog box.

3-1277

axesmui

The Meridian and Parallel selection buttons determine whether the
meridian and parallel labels are visible.

The Format pull-down menu is used to specify the format of the grid
labels. If compass is selected, meridian labels are appended with E
for east and W for west, and parallel labels are appended with N for
north and S for south. If signed is chosen, meridian labels are prefixed
with + for east and - for west, and parallel labels are prefixed with +
for north and - for south. If none is selected, western meridian labels
and southern parallel labels are prefixed by -, but no symbol precedes
eastern meridian labels and northern parallel labels.

The label Units pull-down menu is used to specify the angle units
used to display the parallel and meridian labels. These units, used
for display purposes only, need not be the same as the angle units of
the map projection.

The Font edit box is used to specify the character font used to display
the parallel and meridian labels. If the font specified does not exist on
the computer, the default of Helvetica is used. Pressing the Font
button previews the selected font.

The font Size edit box is used to enter an integer value that specifies
the font size of the parallel and meridian labels. This value must be in
the units specified by the font Units pull-down menu.

3-1278

axesmui

The font Color pull-down menu is used to select the color of the parallel
and meridian labels. Selecting custom allows a custom RGB triple to
be defined for the labels.

The fontWeight pull-down menu is used to specify the character weight
of the parallel and meridian labels.

The font Units pull-down menu is used to specify the units used to
interpret the font size entry. When set to normalized, the value entered
in the Size edit box is interpreted as a fraction of the height of the
axes. For example, a normalized font size of 0.1 sets the label text to a
height of one tenth of the axes height.

The font Angle pull-down menu is used to select the character slant
of the parallel and meridian labels. normal specifies nonitalic font.
italic and oblique specify italic font.

The Meridian and Parallel Settings button brings up the Meridian
and Parallel Label Properties dialog box, which allows modification of
properties specific to the meridian and parallel grid labels.

The Accept button accepts any modifications that have been made to
the map label properties and returns to the Projection Control dialog
box. Changes are applied to the current map only when the Apply
button on the Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the map labels and
returns to the Projection Control dialog box.

Meridian and Parallel Label Properties Dialog Box

This dialog box is used to modify properties specific to the meridian
and parallel grid labels. It is accessed via the Meridian and Parallel
Settings button on the Map Label Properties dialog box.

3-1279

axesmui

The Longitude Location(s) edit box is used to specify which meridians
are to be labeled. Meridian labels need not coincide with displayed
meridian grid lines. If a scalar interval value is entered, labels are
displayed at that interval, starting from the Prime Meridian and
proceeding in east and west directions. If a vector of values is entered,
labels are displayed at longitude locations given by each element of
the vector.

The Display Parallel pull-down menu and edit box are used to specify
the latitude location of the meridian labels. If a scalar latitude value is
provided in the edit box, the meridian labels are placed at that parallel.
Alternatively, the pull-down menu can be used to select a latitude
location. If north is chosen, meridian labels are placed at the maximum
map latitude limit. If south is chosen, meridian labels are placed at
the minimum map latitude limit.

The Latitude Location(s) edit box is used to specify which parallels
are to be labeled. Parallel labels need not coincide with displayed
parallel grid lines. If a scalar interval value is entered, labels are
displayed at that interval, starting from the Equator and proceeding in
north and south directions. If a vector of values is entered, labels are
displayed at latitude locations given by each element of the vector.

The Display Meridian pull-down menu and edit box are used to
specify the longitude location of the parallel labels. If a scalar longitude
value is provided in the edit box, the parallel labels are placed at that

3-1280

axesmui

meridian. Alternatively, the pull-down menu can be used to specify a
longitude location. If east is chosen, parallel labels are placed at the
maximum map longitude limit. If west is chosen, parallel labels are
placed at the minimum map longitude limit.

The Decimal Round edit boxes are used to specify the power of ten
to which the meridian and parallel labels are rounded. For example, a
value of -1 results in labels displayed to the tenths decimal place.

The Accept button accepts any modifications that have been made
to the meridian and parallel label properties and return to the Map
Label Properties dialog box. Changes are applied to the current map
only when the Apply button on the Projection Control dialog box is
pushed.

The Cancel button disregards any modifications to the meridian and
parallel labels and returns to the Map Label Properties dialog box.

TheMap Geoid edit box is used to specify the geoid (ellipsoid) definition
for the current map axes. The geoid is defined by a two-element vector
of the form [semimajor-axis eccentricity]. Eccentricity must be
a value between 0 and 1, but not equal to 1. A nonzero eccentricity
represents an ellipsoid. The default geoid is a sphere with radius 1,
represented as [1 0]. If a scalar entry is provided, it is assumed to
be the radius of a sphere.

The Accept button accepts any modifications that have been made to
the map geoid and return to the Projection Control dialog box. Changes
are applied to the current map only when the Apply button on the
Projection Control dialog box is pushed.

The Cancel button disregards any modifications to the map geoid and
returns to the Projection Control dialog box.

See Also axesm

3-1281

clmo-ui

Purpose GUI to clear mapped objects

Activation Command Line Maptool

clmo Tools > Delete > Object

Description clmo brings up a Select Object dialog box for selecting mapped objects
to delete.

Controls The scroll box is used to select the desired objects from the list of
mapped objects.

Pushing the Select all button highlights all objects in the scroll box for
selection. Pushing the OK button deletes the selected objects from the
map. Pushing the Cancel button aborts the operation.

See Also clmo

3-1282

clrmenu

Purpose Add colormap menu to figure window

Activation Command Line

clrmenu

clrmenu(h)

Description clrmenu adds a colormap menu to the current figure.

clrmenu(h) adds a colormap menu to the figure specified by the handle
h.

Controls The following choices are included on the colormap menu:

Gray, Hsv, Hot, Pink, Cool, Bone, Jet, Copper, Spring, Summer,
Autumn, Winter, Flag, and Prism generate colormaps.

Rand is a random colormap.

Brighten increases the brightness.

Darken decreases the brightness.

Flipud inverts the order of the colormap entries.

Fliplr interchanges the red and blue components.

Permute permutes the colormap: red > blue, blue > green, green > red.

Spin spins the colormap.

Define allows a workspace variable to be specified for the colormap.

Remember stores the current colormap.

Restore reverts to the stored colormap (initially, the stored colormap is
the colormap in use when clrmenu is invoked).

Refresh redraws the current figure window.

Digital Elevation activates the DEM Colormap Input dialog box. Use
it to specify a colormap for a digital elevation map, and then apply the

3-1283

clrmenu

colormap to the current figure. The number of land and sea colors in
the colormap is appropriate for the maximum elevations and depths of
the data grid. The dialog box is shown and described below:

The Mode selection buttons are used to specify whether the length
of the colormap is specified or whether the altitude range increment
assigned to each color is specified.

The Map variable edit box is used to specify the data grid containing
the elevation data.

The Colormap Size edit box is used in Size mode. This entry defines
the length of the colormap. If omitted, a default length of 64 is used.
This entry must be a scalar value.

The Altitude Range edit box is used in Range mode. This entry
defines the altitude range increment assigned to each color. If omitted,
a default increment of 100 is used. This entry must be a scalar value.

The RGB Sea edit box is used to define colors for data with negative
values. The actual sea colors of the generated colormap are interpolated
from this matrix. This entry can be a matrix of any length (n by 3). The
colormap matrix of the current figure can be used by entering the string
'window' in this box. The demcmap function provides default sea colors,
which are used if this entry is left blank.

3-1284

clrmenu

The RGB Land edit box is used to define colors for data with
positive values. The actual land colors of the generated colormap are
interpolated from this matrix. This entry can be a matrix of any length
(n by 3). The colormap matrix of the current figure can be used by
entering the string 'window' in this box. The demcmap function provides
default sea colors, which are used if this entry is left blank.

Pressing the Apply button accepts the input data, creates the colormap,
and assigns it to the current figure.

Pressing the Cancel button disregards any input data and closes the
DEM Colormap Input dialog box.

See Also colorm | demcmap

3-1285

colorm

Purpose Create index map colormaps

Activation Command Line

colorm(datagrid,refvec)

Description colorm(datagrid,refvec) displays the data grid in a new figure
window and allows a colormap to be edited and saved to a new variable.
datagrid and refvec are the data grid and the referencing vector of
the surface. map must have positive index values into the colormap.

3-1286

colorm

Controls

The colorm tool displays the surface map data in a new figure window
with the current colormap. Zoom and Colormaps menus are activated
for that figure.

The Zoom On/Off menu toggles the panzoom box on and off. The box
can be moved by clicking the new location or by dragging the box to the
new location. The box size can be increased or decreased by dragging
a corner of the box. Pressing the Return key or double-clicking in the
center of the box zooms in.

3-1287

colorm

The Colormaps menu provided a variety of colormap options that can
be applied to the map. See clrmenu in this guide for a description of the
Colormaps menu options.

The Load button activates a dialog box, used to specify a colormap
variable to be applied to the displayed surface map. This colormap can
then be edited and saved.

The Select button activates the mouse cursor and allows a point on the
map to be selected. The value of that point then appears in the Codes
pull-down menu. The color of the selected point appears in the Color
pull-down menu and can then be edited.

The Codes pull-down menu is used to select a particular value in the
data grid. The color associated with that value then appears in the
Color pull-down menu and can be edited.

The Color pull-down menu is used to select a particular color to assign
to the value currently displayed in the Codes pull-down menu. A custom
color can be defined by selecting the custom option. This brings up a
custom color interface with which an RGB triple can be selected.

The Save button is used to save the modified colormap to the workspace.
A dialog box appears in which the colormap variable name is entered.

See Also encodem | getseeds | maptrim | panzoom | seedm

3-1288

demdataui

Purpose UI for selecting digital elevation data

Activation demdataui

Description demdataui is a graphical user interface to extract digital elevation map
data from a number of external data files. You can extract data to
MAT-files or the base workspace as regular data grids with referencing
vectors.

The demdataui panel lets you read data from a variety of high-resolution
digital elevation maps (DEMs). These DEMs range in resolution from
about 10 kilometers to 100 meters or less. The data files are available
over the Internet at no cost, or (in some cases) on CD-ROMs for varying
fees. demdataui reads ETOPO5, TerrainBase, GTOPO30, GLOBE,
satellite bathymetry, and DTED data. See the links under See Also
for more information on these data sets. demdataui looks for these
geospatial data files on the MATLAB path and, for some operating
systems, on CD-ROM disks.

You use the list to select the source of data and the map to select the
region of interest. When you click the Get button, data is extracted
and displayed on the map. Use the Save button to save the data in a
MAT-file or to the base workspace for later display. The Close button
closes the window.

3-1289

demdataui

Controls

The Map

The map controls the geographic extent of the data to be extracted.
demdataui extracts data for areas currently visible on the map. Use
the mouse to zoom in or out to the area of interest. See zoom for more
on zooming.

Some data sources divide the world up into tiles. When extracting,
data is concatenated across all visible tiles. The map shows the tiles
in light yellow with light gray edges. When data resolution is high,
extracting data for large area can take much time and memory. An
approximate count of the number of points is shown above the map. Use
the Samplefactor slider to reduce the amount of data.

3-1290

demdataui

The List

The list controls the source of data to be extracted. Click a name to see
the geographic coverage in light yellow. The sources list shows the data
sources found when demdataui started.

demdataui searches for data files on the MATLAB path. On some
computers, demdataui also checks for data files on the root level
of letter drives. demdataui looks for the following data: etopo5:
new_etopo5.bil or etopo5.northern.bat and etopo5.southern.bat
files. tbase: tbase.bin file. satbath: topo_6.2.img file. gtopo30:
a folder that contains subfolders with the data files. For example,
demdataui would detect gtopo30 data if a folder on the path
contained the folders E060S10 and E100S10, each of which holds the
uncompressed data files. globedem: a folder that contains data files and
in the subfolder /esri/hdr and the *.hdr header files. dted: a folder
that has a subfolder named DTED. The contents of the DTED folder are
more subfolders organized by longitude and, below that, the DTED
data files for each latitude tile. See the help for functions with the data
source names for more on the data attributes and internet locations.

The Samplefactor Slider

The Sample Factor slider allows you to reduce the density of the data.
A sample factor of 2 returns every second point. The current sample
factor is shown on the slider.

The Get Button

The Get button reads the currently selected data and displays it on the
map. Press the standard interrupt key combination for your platform to
interrupt the process.

The Clear Button

The Clear button removes any previously read data from the map.

The Save Button

The Save button saves the currently displayed data to a MAT-file or the
base workspace. If you choose to save to a file, you will be prompted for

3-1291

demdataui

a file name and location. If you choose to save to the base workspace,
you can choose the variable name under which the data will be stored.

Data are returned as Mapping Toolbox Version 1 display structures.
For information about display structure format, see “Version 1 Display
Structures” on page 3-177 in the reference page for displaym.

Use load and displaym to redisplay the data from a file on a map axes.
To display the data in the base workspace, use displaym. To gain
access to the data matrices, subscript into the structure (for example,
datagrid = demdata(1).map; refvec = demdata(1).maplegend).
Use worldmap to create easy displays of the elevation data (for
example, worldmap(datagrid,refvec)). Use meshm to add regular
data grids to existing displays, or surfm or a similar function for
geolocated data grids (for example, meshm(datagrid,refvec) or
surfm(latgrat,longrat,z)).

The Close Button

The Close button closes the demdataui panel.

See Also etopo | tbase | gtopo30 | globedem | dted | satbath | vmap0ui

3-1292

handlem-ui

Purpose GUI for handles of specified mapped objects

Activation Command Line

h = handlem

h = handlem('prompt')

Description h = handlem brings up a Select Object dialog box, which lists all
currently displayed objects. Objects can be selected and their handles
returned.

h = handlem('prompt') brings up a Specify Object dialog box, which
allows greater control of object selection.

Controls Select Object Dialog Box

The scroll box is used to select the desired objects from the list of mapped
objects. Pushing the Select all button highlights all objects in the scroll
box for selection. Pushing the OK button returns the object handles in
the variable h. Pushing the Cancel button aborts the operation.

3-1293

handlem-ui

Specify Object Dialog Box

The Object Controls are used to select an object type or tag. The Name
pull-down menu is used to select from a list of predefined object strings.
The Other Tag edit box is used to specify an object tag not listed in
the Name pull-down menu. Pushing the Select button brings up the
Select Object dialog box, which shows only the currently displayed
objects for selection.

The Match Controls are used when a Handle Graphics object type
(image, line, surface, patch, or text) is specified. The Untagged
Objects selection button is used to return the handles of only those
objects with empty tag properties. The All Objects selection button is
used to return all object handles of the specified type, regardless of
whether they are tagged.

Pushing the Apply button returns the handles of the specified objects.
Pushing the Cancel button aborts the operation.

See Also handlem

3-1294

hidem-ui

Purpose Hide specified mapped objects

Activation Command Line Maptool

hidem Tools > Hide > Object

Description hidem brings up a Select Object dialog box for selecting mapped objects
to hide (Visible property set to 'off').

Controls

The scroll box is used to select the desired objects from the list of mapped
objects. Pushing the Select all button highlights all objects in the scroll
box for selection. Pushing the OK button changes the Visible property
of the selected objects to 'off'. Pushing the Cancel button aborts the
operation without changing any properties of the selected objects.

See Also hidem

3-1295

lightmui

Purpose Control position of lights on globe or 3-D map

Syntax lightmui(hax)

Description lightmui(hax) creates a GUI to control the position of lights on a globe
or 3-D map in map axes hax. You can control the position of lights
by clicking and dragging the icon or by dialog boxes. Right-click the
appropriate icon in the GUI to invoke the corresponding dialog box. You
can change the light color by entering the RGB components manually or
by clicking the pushbutton.

See Also lightm

3-1296

maptool

Purpose Add menu-activated tools to map figure

Activation Command Line

maptool(PropertyName,PropertyValue)

maptool(ProjectionFile,...)

h = maptool(...)

Description maptool creates a figure window with a map axes and activates the
Projection Control dialog box for defining map projection and display
properties. The figure window features a special menu bar that provides
access to most of Mapping Toolbox GUIs.

maptool(PropertyName,PropertyValue,...) creates a figure
window with a map axes defined by the supplied map properties. The
MapProjection property must be the first input pair. maptool supports
the same map properties as axesm.

maptool(ProjectionFile,PropertyName, PropertyValue,...)
allows for the omission of the MapProjection property name.
ProjectionFile must be the identifying string of an available map
projection.

h = maptool(...) returns a two-element vector containing the handle
of the maptool figure window and the handle of the map axes.

3-1297

maptool

Controls

Session Menu

The Load option is used to load workspace data. Select from the
workspace names provided, or use the Specify Workspace option to
enter a different workspace.

The Layers option is used to load a map layers workspace and activate
the mlayers tool. Select from the workspace names provided, or use the
Other option to enter a different workspace. Choosing Workspace
loads all structure variables in the current workspace.

The Renderer option is used to set the renderer for the maptool figure
window. The Figure Renderer dialog box is activated when this option
is selected.

The Variables option is used to view the current workspace variables.

3-1298

maptool

The Command option brings up the Workspace Commands dialog box
for entering commands to operate on the current workspace.

The Clear option is used to clear variables and functions from memory.

Map Menu

The Lines option activates the Line Map Input dialog box for projecting
two- and three-dimensional line objects onto the map axes.

The Patches option activates the Patch Map Input dialog box for
projecting patch objects onto the map axes.

The Regular Surfaces option activates the Mesh Map Input dialog
box for projecting a regular data grid onto a graticule projected onto
the map axes.

The General Surfaces option activates the Surface Map Input dialog
box for projecting a geolocated data grid onto the map axes.

The Contours option activates the Contour Map Input dialog box for
projecting a two- or three-dimensional contour plot onto the map axes.

The Quiver 2D option activates the Quiver Map Input dialog box for
projecting a two-dimensional quiver plot onto the map axes.

The Quiver 3D option activates the Quiver3 Map Input dialog box for
projecting a three-dimensional quiver plot onto the map axes.

The Stem option activates the Stem Map Input dialog box for projecting
a stem plot onto the map axes.

The Scatter option activates the Scatter Map Input dialog box for
projecting a scatter plot onto the map axes.

The Text option activates the Text Map Input dialog box for projecting
text objects onto the map axes.

The Light option activates the Light Map Input dialog box for projecting
light objects onto the map axes.

3-1299

maptool

Display Menu

The Projection option activates the Projection Control dialog box for
editing map projection properties and map display settings.

The Graticule option is used to view and edit the graticule size for
surface maps.

The Legend option is used to display a contour map legend.

The Frame option is used to toggle the map frame on and off.

The Grid option is used to toggle the map grid on and off.

TheMeridian Labels option is used to toggle the meridian grid labels
on and off.

The Parallel Labels option is used to toggle the parallel grid labels
on and off.

The Tracks option activates the Define Tracks input box for calculating
and displaying Great Circle and Rhumb Line tracks on the map axes.

The Small Circles option activates the Define Small Circles input box
for calculating and displaying small circles on the map axes.

The Surface Distances option activates the Surface Distance dialog
box for distance, azimuth, and reckoning calculations.

Tools Menu

The Hide option is used to hide the mouse tool buttons.

The Off option is used to turn off the current mouse tool.

The Zoom Tool option is used to toggle Panzoom (panzoom) mode on
and off. It is used for zooming in on a two-dimensional map display.

The Set Limits option is used to define the zoom out limits to the
current settings on the axes.

The Full View option is used to zoom out to the current axes limit
settings.

3-1300

maptool

The Rotate option is used to toggle Rotate 3-D (rotate3d) mode on
and off. Rotate 3-D mode is used to interactively rotate the view of
a three-dimensional plot.

The Origin option is used to toggle Origin (originui) mode on and off.
Origin mode is used to interactively modify the map origin.

The 2D View option is used to set the default two-dimensional view
(azimuth=0, elevation=90).

The Objects option activates the Object Sets dialog box, which allows
for property manipulation of objects displayed on the map axes.

The Edit option activates the MATLAB Property Editor to manipulate
properties of a plotted object. Choose from the Current Object or Last
Object options, or choose the Object option to activate the Select
Object dialog box.

The Show option is used to set the Visible property of mapped objects
to 'on'. The All option shows all currently mapped objects. The Object
option activates the Select Object dialog box.

The Hide option is used to set the Visible property of mapped objects
to 'off'. Choose from the All or Map options, or choose the Object
option to activate the Select Object dialog box.

The Delete option is used to clear the selected objects. The All option
clears the current map, frame, and grid lines. The map definition is
left in the axes definition. The Map option clears the current map,
deleting objects plotted on the map but leaving the frame and grid lines
displayed. The Object option activates the Select Object dialog box.

The Axes option is used to manipulate the MATLAB Cartesian axes.
The Show option shows this axes, the Hide option hides this axes, and
the Color option allows for custom color selection for this axes.

Colormaps Menu

The Colormaps menu allows for manipulation of the colormap for
the current figure. See the clrmenu reference page for details on the
Colormaps menu options.

3-1301

maptool

The Zoom button toggles Zoom mode on and off. Zoom mode is used for
zooming in on a two-dimensional map display.

The Rotate button toggles Rotate 3-D mode on and off. Rotate 3-D
mode is used to interactively rotate the view of a three-dimensional plot.

The Origin button toggles Origin mode on and off. Origin mode is used
to interactively modify the map origin.

See Also axesm

3-1302

maptrim

Purpose Interactively trim and convert map data from vector to raster format

Activation Command Line

maptrim(lat,lon)

maptrim(lat,lon,linespec)

maptrim(datagrid,refvec)

maptrim(datagrid,refvec,PropertyName,PropertyValue,...)

Description maptrim(lat,lon) displays the supplied map data in a new figure
window and allows a region of the map to be selected and saved in the
workspace. lat and lon must be vector map data. The output can be
line, patch, or regular surface (matrix) data. If patch map output is
selected, the inputs lat and lon must originally be patch map data.

maptrim(lat,lon,linespec) displays the supplied map data using
the linespec string.

maptrim(datagrid,refvec) displays data grid data in a new figure
window and allows a subset of this map to be selected and saved. The
output is regular surface data.

maptrim(datagrid,refvec,PropertyName,PropertyValue) displays
the data grid using the surface properties provided. The object Tag,
EdgeColor, and UserData properties cannot be set.

3-1303

maptrim

Controls

The maptrim tool displays the supplied map data in a new figure window
and activates a Customizemenu for that figure. The Customizemenu
has three menu options: Zoom On/Off, Limits, and Save As.

The Zoom On/Off menu option toggles the panzoom box on and off.
The box can be moved by clicking the new location or by dragging the
box to the new location. The box size can be increased or decreased by
dragging a corner of the box. Pressing the Return key or double-clicking
in the center of the box zooms in.

The Limits menu option activates the Enter Map Limits dialog
box, which is used to enter the latitude and longitude limits of the
desired map subset. These entries are two-element vectors, enclosed in
brackets. Pressing the OK button zooms in to the new limits. Pressing

3-1304

maptrim

the Cancel button disregards the new limits and returns to the map
display.

The Save As menu option is used to specify the variable names in
which to save the map data subset. To save line and patch data, enter
the new latitude and longitude variable names, along with the map
resolution. For surface data, enter the new map and referencing vector
variable names, along with the scale of the map. Latitude and longitude
limits are optional.

See Also maptriml | maptrimp | maptrims | panzoom

3-1305

mlayers

Purpose GUI to control plotting of display structure elements

Activation Command Line Maptool

mlayers('filename')

mlayers('filename',h)

mlayers(cellarray)

mlayers(cellarray,h)

Session > Layers

Description mlayers('filename') associates all display structures, which in this
context are also called map layers, in the MAT-file filename with
the current map axes. The display structure variables are accessible
only through the mlayers tool, and not through the base workspace.
filename must be a string.

mlayers('filename',h) assigns the layers found in filename to the
map axes indicated by the handle h.

mlayers(cellarray) associates the layers specified by cellarray with
the current map axes. cellarray must be of size n by 2. Each row
of cellarray represents a map layer. The first column of cellarray
contains the layer structure, and the second column contains the name
of the layer structure. Such a cell array can be generated from data in
the current workspace with the function rootlayr. In this case, the
calling sequence would be rootlayr; mlayers(ans).

mlayers(cellarray,h) assigns the layers specified by cellarray to
the map axes specified by the handle h.

3-1306

mlayers

Controls

The scrollable list box displays all of the map layers currently associated
with the map axes. An asterisk next to the layer name indicates that
the layer is currently visible. An h next to the layer name indicates a
layer that is plotted, but currently hidden.

The Plot button plots the selected map layer. Once the selected layer
is plotted, the button toggles between Hide and Show, to turn the
Visible property of the plotted objects to 'off' and 'on', respectively.

The Zdata button activates the Specify Zdata dialog box, which is used
to enter the workspace variable containing the ZData for the selected
map layer. Pressing the List button produces a list of all current
workspace variables, from which the ZData variable can be selected.
This entry can also be a scalar.

3-1307

mlayers

The Highlight button is used to toggle the selected map layer between
highlighted and normal display.

The Members button brings up a list of members of the selected map
layer. Members of a layer are defined by their Tag property.

The Delete button deletes the selected map layer from the map.

The Property button activates the Define Layer Properties dialog box,
which is used to specify or change properties of all objects in the selected
map layer. String entries must be enclosed in single quotes.

The Purge button deletes the selected map layer from the mlayers
tool. Selecting Yes from the Confirm Purge dialog box deletes the map
layer from both the mlayers tool and the map display. Selecting Data
Only from the Confirm Purge dialog box deletes the map layer from the
mlayers tool, while retaining the plotted object on the map display.

See Also mobjects | rootlayr

3-1308

mobjects

Purpose Manipulate object sets displayed on map axes

Activation Command Line Maptool

mobjects

mobjects(h)

Tools > Objects

Description An object set is defined as all objects with identical tags. If no tags are
supplied, object sets are defined by object type.

mobjects allows manipulation of the object sets on the current map
axes.

mobjects(h) allows manipulation of the objects set on the map axes
specified by the handle h.

Controls

The scrollable list box displays all of the object sets associated with the
map axes. An asterisk next to an object set name indicates that the
object set is currently visible. An h next to an object set name indicates

3-1309

mobjects

an object set that is plotted, but currently hidden. The order shown in
the list indicates the stacking order of objects within the same plane.

The Hide/Show button toggles the Visible property of the selected
object set to 'off' and 'on', respectively, depending on the current
Visible status.

The Zdata button activates the Specify Zdata dialog box, which is
used to enter the workspace variable containing the ZData. The ZData
property is used to specify the plane in which the selected object set is
drawn. Pressing the List button produces a list of all current workspace
variables, from which the ZData variable can be selected. Alternatively,
a scalar value can be entered instead of a variable.

The Highlight button highlights all objects belonging to the selected
object set.

The Tag button brings up an Edit Tag dialog box, which allows the tag
of all members of the selected object set to be modified.

The Delete button clears all objects belonging to the selected object
set from the map. The cleared object set remains associated with the
map axes.

3-1310

mobjects

The Property button activates the Define Object Properties dialog
box, which is used to specify additional properties of all objects in the
selected object set. String entries must be enclosed in single quotes.

The Update button updates the list box display with current objects
sets.

The Stacking Order buttons are used to modify the drawing order
of the selected object set in relation to other plotted object sets in the
same plane. Objects drawn first appear at the bottom of the stack, and
objects drawn last appear at the top of the stack. The Top button places
the selected object set above all other object sets in its plane. The Up
and Dwn buttons move the selected object set up and down one place in
the stacking order, respectively. The Btm button places the selected
object set below all other object sets in its plane. Note that the ZData
property overrides stacking order, i.e., if an object is at the top of the
stacking order for its plane, it can still be covered by an object drawn in
a higher plane.

3-1311

mobjects

See Also mlayers

3-1312

originui

Purpose Interactively modify map origin

Activation Command Line Maptool

originui

originui on

originui off

Tools > Origin
(menu) > Origin(button)

Description originui provides a tool to modify the origin of a displayed map
projection. A marker (dot) is displayed where the origin is currently
located. This dot can be moved and the map reprojected with the
identified point as the new origin.

originui automatically toggles the current axes into a mode where
only actions recognized by originui are executed. Upon exit of this
mode, all prior ButtonDown functions are restored to the current axes
and its children.

originui on activates origin tool. originui off e-activates the tool.
originui will toggle between these two states.

Controls Keystrokes

originui recognizes the following keystrokes. Enter (or Return) will
reproject the map with the identified origin and remain in the originui
mode. Delete and Escape will exit the origin mode (same as originui
off). N,S,E,W keys move the marker North, South, East or West by
10.0 degrees for each keystroke. n,s,e,w keys move the marker in the
respective directions by 1 degree per keystroke.

Mouse Actions

originui recognizes the following mouse actions when the cursor is on
the origin marker.

3-1313

originui

• Single-click and hold moves the origin marker. Double-click the
marker reprojects the map with the specified map origin and remains
in the origin mode (same as originui Return).

• Extended-click moves the marker along the Cartesian X or Y
direction only (depending on the direction of greatest movement).

• Alternate-click exits the origin tool (same as originui off).

Macintosh Key Mapping

• Extend-click: Shift+click mouse button

• Alternate-click: Option+click mouse button

Microsoft Windows Key Mapping

• Extend-click: Shift+click left button or both buttons

• Alternate-click: Ctrl+click left button or right button

X-Windows Key Mapping

• Extend-click: Shift+click left button or middle button

• Alternate-click: Ctrl+click left button or right button

See Also axesm | setm

3-1314

panzoom

Purpose Pan and zoom on map axes

Activation Command Line Maptool

panzoom

panzoom on

panzoom off

panzoom setlimits

panzoom out

panzoom fullview

Tools > Zoom Tool
(menu) > Zoom (button)

Description panzoom toggles the pan and zoom tool on and off.

panzoom on activates the pan and zoom tool.

panzoom off deactivates the pan and zoom tool.

panzoom setlimits sets the zoom out limits to the current settings
on the map axes.

panzoom out zooms out to the current map axes limit settings.

panzoom fullview resets the axes to their full view range and resets
the pan and zoom tool with these settings.

The pan and zoom tool provides an interactive means of defining zoom
limits on a two-dimensional map display. A box that can be resized and
moved appears on the map display and is used to define the zoom area.
The box cannot be moved beyond the current axes limits.

Controls Mouse Interaction

With the cursor inside the zoom box, a single-click and drag moves the
box. The zoom box can be resized by dragging the corners of the box. A
double-click in the center of the box zooms in to the current boundaries
of the box. A single-click outside the zoom box moves the box to that

3-1315

panzoom

location. An extend-click inside or outside of the zoom box zooms out by
a factor of two. Alternate-click exits the pan and zoom tool.

Keyboard Interaction

The following keyboard interaction is enabled if the figure containing
the map axes is made the active window.

Pressing the Return key sets the axes to the current zoom box and
remains in pan and zoom mode. The Enter key sets the axes to the
current zoom box and exits pan and zoom mode. Pressing the Esc or
Delete keys exits pan and zoom mode.

See Also zoom

3-1316

parallelui

Purpose Interactively modify map parallels

Activation Command Line Maptool

parallelui

parallelui on

parallelui off

Tools > Parallels (menu)

Description parallelui toggles the parallel tool on and off.

parallelui on activates the parallel tool

parallelui off deactivates the parallel tool

The parallelui GUI provides a tool to modify the standard parallels of
a displayed map projection. One or two red lines are displayed where
the standard parallels are currently located. The parallel lines can be
dragged to new locations, and the map reprojected with the locations of
the parallel lines as the new standard parallels.

Controls Mouse Interaction

A single-click-and-drag moves the parallel lines. A double-click on one
of the standard parallels reprojects the map using the new parallel
locations.

See Also axesm | setm

3-1317

property editors

Purpose GUIs to edit properties of mapped objects

Activation map display: Alternate-click mapped object (for Click-and-Drag
Property Editor)

In plot edit mode, double-click mapped object
(to obtain MATLAB Property Editor; click the
More Properties... button to open the Property
Inspector)

maptool: Tools > Edit Plot menu item (for MATLAB
Property Editor)

Description Alternate (e.g., Ctrl+clicking a mapped object activates a property
editor, which allows modification of some basic properties of the object
through simple mouse clicks and drags. The objects supported by
this editor are map axes, lines, text, patches, and surfaces, and the
properties supported for each object type are shown below.

In plot edit mode, double-clicking a mapped object activates the
MATLAB Property Editor for that object. From the Property Editor you
can launch the Property Inspector, a GUI that lists the properties and
values of the selected object and allows you to modify them.

Controls Click-and-Drag Property Editor

The Click-and-Drag editor lists object properties and values. The object
tag appears at the top of the editor. Property names and values that
appear in blue are toggles. For example, clicking Frame in the axes
editor toggles the value of the Frame property between 'on' and 'off'.

3-1318

property editors

Click-and-Drag Editor for a map axes

Property values that appear on the right side of the editor box are
modified by clicking and dragging. For example, to change the
MarkerColor property of a line object, click and hold the dot next to
MarkerColor, and drag the cursor until the dot appears in the desired
color.

Click-and-Drag Editor for a line object

The Drag control in the text editor is used to reposition the text string.
In drag mode, use the mouse to move the text to a new location, and
click to reposition the text. The Edit control in the text editor activates
a Text Edit window, which is used to modify text.

3-1319

property editors

Click-and-Drag Editor for a text object

The Marker property name in the patch editor is used to toggle the
marker on and off. The property value to the right of Marker can be
modified by clicking and dragging until the desired marker symbol
appears.

Click-and-Drag Editor for a patch object

The Graticule control on the surface editor activates a Graticule Mesh
dialog box, which is used to alter the size of the graticule.

To move the property editor around the figure window, hold down
the Shift key while dragging the editor box. Alternate-clicking the
background of the property editor closes the Click-and-Drag editing
session.

Guide Property Editor

The MATLAB Property Inspector (the inspect function) allows you to
view and modify property values for most properties of the selected

3-1320

property editors

object. Use it to expand and collapse the hierarchy of objects, showing
an object’s parents and children. A plus sign (+) before a property
indicates that it can be expanded to show its components, for example
the axes AmbientLightColor applied to the surface object displayed
below. A minus sign (-) before an object indicates an object can be
collapsed to hide its components. To activate the Object Browser, check
the Show Object Browser check box. The Property List shows all
the property names of the selected object and their current values. To
activate the Property List, check the Show Property List check box.
To change a property value, use the edit boxes above the Property List.
Pressing the Close button closes the Guide Property Editor and applies
the property modifications to the object.

A lit surface object in a map axes

3-1321

property editors

Property Inspector view of axes object

See Also propedit | inspect | uimaptbx

3-1322

qrydata

Purpose GUI to interactively perform data queries

Activation Command Line

qrydata(cellarray)

qrydata(titlestr,cellarray)

qrydata(h,cellarray)

qrydata(h,titlestr,cellarray)

qrydata(...,cellarray1,cellarray2,...)

Description A data query is used to obtain the data corresponding to a particular
(x,y) or (lat,lon) point on a standard or map axes.

qrydata(cellarray) activates a data query dialog box for interactive
queries of the data set specified by cellarray (described below).
qrydata can be used on a standard axes or a map axes. (x,y) or
(lat,lon) coordinates are entered in the dialog box, and the data
corresponding to these coordinates is then displayed.

qrydata(titlestr,cellarray) uses the string titlestr as the title of
the query dialog box.

qrydata(h,cellarray) and qrydata(h,titlestr,cellarray)
associate the data queries with the axes specified by the handle h, which
in turn allows the input coordinates to be specified by clicking the axes.

The input cellarray is used to define the data set and the query. The
first cell must contain the string used to label the data display line. The
second cell must contain the type of query operation, either a predefined
operation or a valid user-defined function name. This input must be
a string. The predefined query operations are 'matrix', 'vector',
'mapmatrix', and 'mapvector'.

The 'matrix' query uses the MATLAB interp2 function
to find the value of the matrix Z at the input (x,y) point.
The format of the cellarray input for this query is:

3-1323

qrydata

{'label','matrix',X,Y,Z,method}. X and Y are matrices specifying
the points at which the data Z is given. The rows and columns of X and
Y must be monotonic. method is an optional argument that specifies
the interpolation method. Possible method strings are 'nearest',
'linear', or 'cubic'. The default is 'nearest'.

The 'vector' query uses the interp2 function to find the value of the
matrix Z at the input (x,y) point, then uses that value as an index to
a data vector. The value of the data vector at that index is returned
by the query. The format of cellarray for this type of query is:
{'label','vector',X,Y,Z, vector}. X and Y are matrices specifying
the points at which the data Z is given. The rows and columns of X and
Y must be monotonic. vector is the data vector.

The 'mapmatrix' query interpolates to find the value of the map at
the input (lat,lon) point. The format of cellarray for this query is:
{'label','mapmatrix',datagrid,refvec,method}. datagrid and
refvec are the data grid and the corresponding referencing vector.
method is an optional argument that specifies the interpolation method.
Possible method strings are 'nearest', 'linear', or 'cubic'. The
default is 'nearest'.

The 'mapvector' query interpolates to find the value of the map
at the input (lat,lon) point, then uses that value as an index to
a data vector. The value of the vector at that index is returned
by the query. The format of cellarray for this type of query is
{'label','mapvector',datagrid,refvec, vector}. datagrid and
refvec are the data grid and the corresponding referencing vector.
vector is the data vector.

User-defined query operations allow for functional operations using
the input (x,y) or (lat,lon) coordinates. The format of cellarray
for this type of query is {'label',function,other arguments...}
where the other arguments are the remaining elements of cellarray
as in the four predefined operations above. function is a user-created
function and must refer to a MATLAB function with the signature z =
fcn(x,y,other_arguments...).

3-1324

qrydata

qrydata(...,cellarray1,cellarray2,...) is used to input multiple
cell arrays. This allows more than one data query to be performed on a
given point.

Controls

Sample data query dialog box

If an axes handle h is not provided, or if the axes specified by h is not a
map axes, the currently selected point is labeled as Xloc and Yloc at
the top of the query dialog box. If h is a map axes, the current point is
labeled as Lat and Lon. Displayed below the current point are the
results from the queries, each labeled as specified by the 'label' input
arguments.

The Get button appears if an axes handle h is provided. Pressing this
button activates a mouse cursor, which is used to select the desired
point by clicking the axes. Once a point is selected, the queries are
performed and the results are displayed.

The Process button appears if the handle h is not provided. In this
case, the (x,y) coordinates of the desired point are entered into the
edit boxes. Pressing the Process button performs the data queries
and displays the results.

Pressing the Close button closes the query dialog box.

Examples This example illustrates use of a user-defined query to display city
names for map points specified by a mouse click. The query is evaluated
by a user-supplied file called qrytest.m, described below:

3-1325

qrydata

axesm miller
land = shaperead('landareas', 'UseGeoCoords', true);
geoshow(land, 'FaceColor', [0.5 0.7 0.5])
lakes = shaperead('worldlakes', 'UseGeoCoords', true);
geoshow(lakes, 'FaceColor', 'blue')
rivers = shaperead('worldrivers', 'UseGeoCoords', true);
geoshow(rivers, 'Color', 'blue')
cities = shaperead('worldcities', 'UseGeoCoords', true);
geoshow(cities, 'Marker', '.', 'Color', 'red')
tightmap
lat = [cities.Lat]';
lon = [cities.Lon]';
mat = char(cities.Name);
qrydata(gca,'City Data',{'City','qrytest',lat,lon,mat})

Create the file qrytest.m on your path, and in it put the following code:

function cityname = qrytest(lt, lg, lat, lon, mat)
% function QRYTEST returns city name for mouse click
% QRYTEST will find the closest city (min radius) from
% the mouse click, within an angle of 5 degrees.
%
latdiff = lt-lat;
londiff = lg-lon;
rad = sqrt(latdiff.^2+londiff.^2);
[minrad,index] = min(rad);
if minrad > 5

index = [];
end
switch length(index)

case 0, cityname = 'No city located near click';
case 1, cityname = mat(index,:);

end

3-1326

qrydata

Clicking the mouse over a city marker displays the name of the selected
city. Clicking the mouse in an area away from any city markers displays
the string 'No city located near click'.

See Also interp2

3-1327

scirclui

Purpose GUI to display small circles on map axes

Note scirclui is obsolete. Use scircleg instead.

Activation Command Line Maptool

scirclui

scirclui(h)

Display mall Circles

Description scirclui activates the Define Small Circles dialog box for adding small
circles to the current map axes.

scirclui(h) activates the Define Small Circles dialog box for adding
small circles to the map axes specified by the axes handle h.

3-1328

scirclui

Controls

Define Small Circles dialog box for one-point mode

The Style selection buttons are used to specify whether the circle radius
is a constant great circle distance or a constant rhumb line distance.

The Mode selection buttons are used to specify whether one point or
two points are to be used in defining the small circle. If one-point mode
is selected, a center point, radius, and azimuth are the required inputs.
If two-point mode is selected, a center point, and perimeter point on
the circle are the required inputs.

The Center Point controls are used in both one-point and two-point
mode. The Lat and Lon edit boxes are used to enter the latitude and
longitude of the center point of the small circle to be displayed. These
values must be in degrees. To display more than one small circle, a
vector of values can be entered, enclosed in brackets in each edit box.
Pushing the Lat or Lon button brings up an expanded edit box for
easier entry of long vectors. TheMouse Select button is used to select

3-1329

scirclui

a center point by clicking the displayed map. The coordinates of the
selected point then appear in the Lat and Lon edit boxes and can be
modified. The coordinates appear in degrees, regardless of the angle
units defined for the current map projection.

The Circle Point controls are used only in two-point mode. The Lat
and Lon edit boxes are used to enter the latitude and longitude of a
point on the perimeter of the small circle to be displayed. These values
must be in degrees. To display more than one small circle, a vector of
values can be entered, enclosed in brackets in each edit box. Pushing
the Lat or Lon button brings up an expanded edit box for easier entry
of long vectors. TheMouse Select button is used to select a perimeter
point by clicking the displayed map. The coordinates of the selected
point then appear in the Lat and Lon edit boxes and can be modified.
The coordinates appear in degrees, regardless of the angle units defined
for the current map projection.

The Size and Sector controls are used only in one-point mode. The
Radius Units button brings up a Define Radius Units dialog box,
which allows for modification of the small circle radius units and the
normalizing geoid. The Rad edit box is used to enter the radius of the
small circle in the proper units. The Arc edit box is used to specify
the sector azimuth, measured in degrees, clockwise from due north. If
the entry is omitted, a complete small circle is drawn. When entering
radius and arc data for more than one small circle, vectors of values,
enclosed in brackets, are entered in each edit box. Pushing the Rad or
Arc button brings up an expanded edit box for that entry, which is
useful for entering long vectors.

The Z Plane edit box is used to enter a scalar value that specifies the
plane in which to display the small circles.

The Other Properties edit box is used to specify additional properties
of the small circles to be projected, such as 'Color','b'. String entries
must be enclosed in quotes.

Pressing the Apply button accepts the input data and displays the
small circles on the current map axes.

3-1330

scirclui

Pressing the Cancel button disregards any input data and closes the
Define Small Circles dialog box.

Define Radius Units Dialog Box

This dialog box, available only in one-point mode, allows for modification
of the small circle radius units and the normalizing geoid.

The Radius Units pull-down menu is used to select the units of the
small circle radius. The unit selected is displayed near the top of the
Define Small Circles dialog box, and all latitude and longitude entries
must be entered in these units. Users must also be sure to specify
the normalizing geoid in the same units. If radians are selected, it is
assumed the radius entry is a multiple of the radius used to display the
current map, as defined by the map geoid property.

The Normalizing Geoid edit box is used modify the radius used to
normalize the small circle radius to a radian value, which is necessary
for proper calculations and map display. This entry must be in the
same units as the small circle radius. If the small circle radius units
are in radians, then the normalizing geoid must be the same as the
geoid used for the current map axes.

Pressing the Cancel button disregards any modifications and closes the
Define Radius Units dialog box.

Pressing the Apply button accepts any modifications and returns to the
Define Small Circles dialog box.

See Also scircle1 | scircle2

3-1331

seedm

Purpose GUI to fill data grids with seeded values

Activation Command Line

seedm(datagrid,refvec)

Description Encoding is the process of filling in specific values in regions of a data
grid up to specified boundaries, which are indicated by entries of 1 in
the variable map. Encoding entire regions at one time allows indexed
maps to be created quickly.

seedm(datagrid,refvec) displays the surface map in a new figure
window and allows for seeds to be specified and the encoded map
generated. The encoded map can then be saved to the workspace. map is
the data grid and must consist of positive integer index values. refvec
is the referencing vector of the surface.

3-1332

seedm

Controls

The Zoom On/Off menu toggles the zoom box on and off. The box can
be moved by clicking the new location or by dragging the box to the
new location. The box size can be increased or decreased by dragging
a corner of the box. Pressing the Return key or double-clicking in the
center of the box zooms in to the box limits.

The Colormaps menu provides a variety of colormap options that can
be applied to the map. See clrmenu in this guide for a description of the
Colormaps menu options.

The Get button allows mouse selection of points on the map to which
seeds are assigned. The number of points to be selected is entered in
the # of Seeds edit box. The value of the seed is entered in the Value

3-1333

seedm

edit box. This seed value is assigned to each point selected with the
mouse. The Get button is pressed to begin mouse selection. After all
the points have been selected, the Fill In button is pressed to perform
the encoding operation. The region containing the seed point is filled in
with the seed value. The Reset button is used to disregard all points
selected with the mouse before the Fill In button is pressed.

Alternatively, specific map values can be globally replaced by using the
From/To edit boxes. The value to be replaced is entered in the first
edit box, and the new value is entered in the second edit box. Pressing
the Change button replaces all instances of the From value to the
To value in the map.

Note Values of 1 represent boundaries and should not be changed.

The Save button is used to save the encoded map to the workspace. A
dialog box appears in which the map variable name is entered.

See Also colorm | encodem | getseeds | maptrim

3-1334

showm-ui

Purpose Show specified mapped objects

Activation Command Line Maptool

showm Tools > Show > Object

Description showm brings up a Select Object dialog box for selecting mapped objects
to show (Visible property set to 'on').

Controls

The scroll box is used to select the desired objects from the list of mapped
objects. Pushing the Select all button highlights all objects in the scroll
box for selection. Pushing the OK button changes the Visible property
of the selected objects to 'on'. Pushing the Cancel button aborts the
operation without changing any properties of the selected objects.

See Also showm

3-1335

surfdist

Purpose Interactive distance, azimuth, and reckoning calculations

Activation Command Line Maptool

surfdist

surfdist(h)

surfdist([])

Display > Surface > Distances

Description surfdist activates the Surface Distance dialog box for the current axes
only if the axes has a proper map definition. Otherwise, the Surface
Distance dialog box is activated, but is not associated with any axes.

surfdist(h) activates the Surface Distance dialog box for the axes
specified by the handle h. The axes must be a map axes.

surfdist([]) activates the Surface Distance dialog box and does not
associate it with any axes, regardless of whether the current axes has a
valid map definition.

3-1336

surfdist

Controls

The Style selection buttons are used to specify whether a great circle
or rhumb line is used to calculate the surface distance. When all other
entries are provided, selecting a style updates the surface distance
calculation.

The Mode selection buttons are used to specify whether one point or
two points are to be used in defining the track distance. If one-point
mode is selected, a starting point, azimuth, and range are the required
inputs, and the ending point is computed. If two-point mode is selected,
starting and ending points of the track are required, and the azimuth
and distance along this track are then computed.

The Show Track check box is used to indicate whether the track is
shown on the associated map display. The track is deleted when the
Surface Distance dialog box is closed, or when the Show Track check
box is unchecked and the surface distance calculations are recomputed.

3-1337

surfdist

The Starting Point controls are used for both one-point and two-point
mode. The Lat and Lon edit boxes are used to enter the latitude and
longitude of the starting point of the track. These values must be in
degrees. Only one starting point can be entered. The Mouse Select
button is used to select a starting point by clicking the displayed map.
The coordinates of the selected point then appear in the Lat and Lon
edit boxes and can be modified. The coordinates appear in degrees,
regardless of the angle units defined for the current map projection.

The Ending Point controls are enabled only for two-point mode. The
Lat and Lon edit boxes are used to enter the latitude and longitude of
the ending point of the track. These values must be in degrees. Only
one ending point can be entered. The Mouse Select button is used to
select an ending point by clicking the displayed map. The coordinates of
the selected point then appear in the Lat and Lon edit boxes and can
be modified. The coordinates appear in degrees, regardless of the angle
units defined for the current map projection. During one-point mode,
the Ending Point controls are disabled, but the ending point that results
from the surface distance calculation is displayed.

The Direction controls are enabled only for one-point mode. The
Range Units button brings up a Define Range Units dialog box which
allows for modification of the range units and the normalizing geoid.
The Az edit box is used to enter the azimuth, which sets the initial
direction of the track from the starting point. Azimuth is measured in
degrees clockwise from due north. The Rng edit box is used to specify
the reckoning range of the track, in the proper units. The azimuth and
reckoning range, along with the starting point, are used to compute the
ending point of the track in one-point mode. During two-point mode,
the Direction controls are disabled, but the azimuth and range values
resulting from the surface distance calculation are displayed.

Pressing the Close button disregards any input data, deletes any
surface distance tracks that have been plotted, and closes the Surface
Distance dialog box.

Pressing the Compute button accepts the input data and computes the
specified distances.

3-1338

surfdist

Define Range Units Dialog Box

This dialog box, available only for one-point mode, allows for
modification of the range units and the normalizing geoid.

The Range Units pull-down menu is used to select the units of the
reckoning range. The unit selected is displayed near the top of the
Surface Distance dialog box, and all latitude and longitude entries
must be entered in these units. Users must also be sure to specify
the normalizing geoid in the same units. If radians are selected, it is
assumed the range entry is a multiple of the radius of the normalizing
geoid. In this case, the normalizing geoid must be the same as the geoid
used to display the current map.

The Normalizing Geoid edit box is used modify the radius used to
normalize range entries to radian values, which is necessary for proper
calculations and map display. This entry must be in the same units as
the range units. If the range units are in radians, then the normalizing
geoid must be the same as the geoid used for the current map axes.

Pressing the Cancel button disregards any modifications and closes
the Define Range Units dialog box.

Pressing the Apply button accepts any modifications and returns to
the Surface Distance dialog box.

3-1339

tagm-ui

Purpose GUI to edit tag property of mapped object

Activation Command Line

tagm

tagm(h)

Description tagm brings up a Select Object dialog box for selecting mapped objects
and changing their Tag property. Upon selecting the objects, the Edit
Tag dialog box is activated, in which the new tag is entered.

tagm(h) activates the Edit Tag dialog box for the objects specified by
the handle h.

Controls
Select Object Dialog Box

The scroll box is used to select the desired objects from the list of
mapped objects. Pushing the Select all button highlights all objects in
the scroll box for selection. Pushing the Ok button activates the Edit
Tag dialog box. Pushing the Canel button aborts the operation without
changing any properties of the selected objects.

3-1340

tagm-ui

Edit Tag Dialog Box

The new tag string is entered in the edit box. Pressing the Apply
button changes the Tag property of all selected objected to the new tag
string. Pressing the Cancel button closes the Edit Tag dialog box
without changing the Tag property of the selected objects.

See Also tagm

3-1341

trackui

Purpose GUI to display great circles and rhumb lines on map axes

Note trackui is obsolete. Use trackg instead.

Activation Command Line Maptool

trackui

trackui(h)

Display > Tracks

Description trackui activates the Define Tracks dialog box for adding great circle
or rhumb line tracks to the current map axes.

trackui(h) activates the Define Tracks dialog box for adding great
circle or rhumb line tracks to the map axes specified by the axes handle
h.

3-1342

trackui

Controls

Define Tracks dialog box for two-point mode

The Style selection buttons are used to specify whether a great circle
or rhumb line track is displayed.

The Mode selection buttons are used to specify whether one point or
two points are to be used in defining the track. If one-point mode is
selected, a starting point, azimuth, and range are the required inputs.
If two-point mode is selected, starting and ending points are required.

The Starting Point controls are used for both one-point and two-point
mode. The Lat and Lon edit boxes are used to enter the latitude and
longitude of the starting point of the track to be displayed. These values
must be in degrees. To display more than one track, a vector of values
can be entered, enclosed in brackets in each edit box. Pushing the Lat
or Lon button brings up an expanded edit box for easier entry of long
vectors. The Mouse Select button is used to select a starting point
by clicking the displayed map. The coordinates of the selected point

3-1343

trackui

then appear in the Lat and Lon edit boxes and can be modified. The
coordinates appear in degrees, regardless of the angle units defined for
the current map projection.

The Ending Point controls are used only for two-point mode. The
Lat and Lon edit boxes are used to enter the latitude and longitude of
the ending point of the track to be displayed. These values must be
in degrees. To display more than one track, a vector of values can be
entered, enclosed in brackets, in each edit box. Pushing the Lat or Lon
button brings up an expanded edit box for easier entry of long vectors.
The Mouse Select button is used to select an ending point by clicking
the displayed map. The coordinates of the selected point then appear
in the Lat and Lon edit boxes and can be modified. The coordinates
appear in degrees, regardless of the angle units defined for the current
map projection.

The Direction controls are used only for one-point mode. The Range
Units button brings up a Define Range Units dialog box, which allows
for modification of the range units and the normalizing geoid. The Az
edit box is used to enter the azimuth, which sets the initial direction
of the track from the starting point. Azimuth is measured in degrees
clockwise from due north. The Rng edit box is used to specify the
range of the track, in the proper units. If the range entry is omitted, a
complete track is drawn. When inputting azimuth and range data for
more than one track, vectors of values, enclosed in brackets, are entered
in each edit box. Pushing the Az or Rng button brings up an expanded
edit box for that entry, which is useful for entering long vectors.

The Z Plane edit box is used to enter a scalar value that specifies the
plane in which to display the tracks.

The Other Properties edit box is used to specify additional properties
of the tracks to be projected, such as 'Color','b'. String entries must
be enclosed in quotes.

Pressing the Apply button accepts the input data and displays the
tracks on the current map axes.

Pressing the Cancel button disregards any input data and closes the
Define Tracks dialog box.

3-1344

trackui

Define Range Units Dialog Box

This dialog box, available only for one-point mode, allows for
modification of the range units and the normalizing geoid.

TheRange Units pull-down menu is used to select the units of the track
range. The unit selected is displayed near the top of the Define Tracks
dialog box, and all latitude and longitude entries must be entered in
these units. Users must also be sure to specify the normalizing geoid in
the same units. If radians are selected, it is assumed the range entry is
a multiple of the radius used to display the current map.

The Normalizing Geoid edit box is used to modify the radius used to
normalize range entries to radian values, which is necessary for proper
calculations and map display. This entry must be in the same units as
the range units. If the range units are in radians, then the normalizing
geoid must be the same as the geoid used for the current map axes.

Pressing the Cancel button disregards any modifications and closes
the Define Range Units dialog box.

Pressing the Apply button accepts any modifications and returns to the
Define Tracks dialog box.

See Also track1 | track2

3-1345

uimaptbx

Purpose Handle buttondown callbacks for mapped objects

Activation set the ButtonDownFcn property to 'uimaptbx'

Description uimaptbx processes mouse events for mapped objects. uimaptbx can be
assigned to an object by setting the ButtonDownFcn to 'uimaptbx'.
This is the default setting for all objects created with Mapping Toolbox
functions.

If uimaptbx is assigned to an object, the following mouse events are
recognized: A single-click and hold on an object displays the object tag.
If no tag is assigned, the object type is displayed. A double-click on an
object activates the MATLAB Property Editor. An extend-click on an
object activates the Projection Control dialog box, which allows the
map projection and display properties to be edited. An alternate-click
on an object allows basic properties to be edited using simple mouse
clicks and drags.

Definitions of extend-click and alternate-click on various platforms
are as follows:

For MS-Windows: Extend-click – Shift+click left button or both
buttons

Alternate-click – Ctrl+click left button or right
button

For X-Windows: Extend-click – Shift+click left button or middle
button

Alternate-click – Ctrl+ click left button or right
button

See Also axesm | axesmui | property editors

3-1346

utmzoneui

Purpose Choose or identify UTM zone by clicking map

Activation Command Line

utmzoneui

utmzoneui(InitZone)

Description zone = utmzoneui will create an interface for choosing a UTM zone on
a world display map. It allows for clicking an area for its appropriate
zone, or entering a valid zone to identify the zone on the map.

zone = utmzoneui(InitZone) will initialize the displayed zone to the
zone string given in InitZone.

To interactively pick a UTM zone, activate the interface, and then click
any rectangular zone on the world map to display its UTM zone. The
selected zone is highlighted in red and its designation is displayed in
the Zone edit field. Alternatively, type a valid UTM designation in
the Zone edit field to select and see the location of a zone. Valid zone
designations consist of an integer from 1 to 60 followed by a letter from
C to X.

Typing only the numeric portion of a zone designation will highlight
a column of cells. Clicking Accept returns a that UTM column
designation. You cannot return a letter (row designation) in such a
manner, however.

3-1347

utmzoneui

Controls

Tips The syntax of utmzoneui is similar to that of utmzone. If utmzone
is called with no arguments, the utmzoneui interface is displayed for
you to select a zone. Note that utmzone can return latitude-longitude
coordinates of a specified zone, but that utmzoneui only returns zone
names.

See Also ups | utm | utm | utmgeoid | utmzone

3-1348

vmap0ui

Purpose UI for selecting data from Vector Map Level 0

Description vmap0ui(dirname) launches a graphical user interface for interactively
selecting and importing data from a Vector Map Level 0 (VMAP0)
data base. Use the string dirname to specify the folder containing the
data base. For more on using vmap0ui, click the Help button after
the interface appears.

vmap0ui(devicename) or vmap0ui devicename uses the logical device
(volume) name specified in string devicename to locate CD-ROM drive
containing the VMAP0 CD-ROM. Under the Windows operating system
it could be 'F:', 'G:', or some other letter. Under Macintosh OS X
it should be '/Volumes/VMAP'. Under other UNIX systems it could
be '/cdrom/'.

vmap0ui can be used on Windows without any arguments. In this case it
attempts to automatically detect a drive containing a VMAP0 CD-ROM.
If vmap0ui fails to locate the CD-ROM device, then specify it explicitly.

3-1349

vmap0ui

Controls

The vmap0ui screen lets you read data from the Vector Map Level
0 (VMAP0). The VMAP0 is the most detailed world map database
available to the public.

You use the list to select the type of data and the map to select the
region of interest. When you click the Get button, data is extracted
and displayed on the map. Use the Save button to save the data in a
MAT-file or to the base workspace for later display. The Close button
closes the window.

The Map

The Map controls the geographic extent of the data to be extracted.
vmap0ui extracts data for areas currently visible on the map. Use the
mouse to zoom in or out to the area of interest. Type help zoom for
more on zooming.

3-1350

vmap0ui

The VMAP0 divides the world into tiles of about 5–by–5 degrees. When
extracting, data is returned for all visible tiles, including those parts of
the tile that are outside the current view. The map shows the VMAP0
tiles in light yellow with light gray edges. The data density is high, so
extracting data for a large number of tiles can take much time and
memory. A count of the number of visible tiles is above the map.

The List

The List controls the type of data to be extracted. The tree structure of
the list reflects the structure of the VMAP0 database. Upon starting
vmap0ui, the list shows the major categories of VMAP data, called
themes. Themes are subdivided into features, which consist of data
of common graphic types (patch, line, point, or text) or cultural types
(airport, roads, railroads). Double-click a theme to see the associated
features. Features can have properties and values, for example, a
railroad tracks property, with values single or multiple. Double-click
a feature to see the associated properties and values. Double-clicking
an open theme or feature closes it. When a theme is selected, vmap0ui
gets all the associated features. When a feature is selected, vmap0ui
gets all of that feature’s data. When properties and values are selected,
vmap0ui gets the data for any of the properties and values that match
(that is, the union operation).

The Get Button

The Get button reads the currently selected VMAP0 data and displays
it on the map. Use the Cancel button on the progress bar to interrupt
the process. For a quicker response, press the standard interrupt key
combination for your platform.

The Clear Button

The Clear button removes any previously read data from the map.

The Save Button

The Save button saves the currently displayed VMAP0 data to a
MAT-file or the base workspace. If you choose to save to a file, you
are prompted for a filename and location. If you choose to save to the

3-1351

vmap0ui

base workspace, you are notified of the variable names that will be
overwritten.

Data are returned as Mapping Toolbox display structures with variable
names based on theme and feature names. You can update vector
display structures to geographic data structures. For information
about display structure format, see “Version 1 Display Structures” on
page 3-177 in the reference page for displaym. The updategeostruct
function performs such conversions.

Use load and displaym to redisplay the data from a file on a map
axes. You can also use the mlayers GUI to read and display the data
from a file. To display the data in the base workspace, use displaym.
To display all the display structures, use rootlayr; displaym(ans).
To display all of the display structures using the mlayers GUI, type
rootlayr; mlayers(ans).

The Close Button

The Close button closes the vmap0ui panel.

Examples 1 Launch vmap0ui and automatically detect a CD-ROM on Microsoft
Windows:

vmap0ui

2 Launch vmap0ui on Macintosh OS X (need to specify volume name):

vmap0ui('Volumes/VMAP')

See also displaym, extractm, mlayers, vmap0data

3-1352

zdatam-ui

Purpose GUI to adjust z-plane of mapped objects

Activation Command Line

zdatam

zdatam(h)

zdatam(str)

Description zdatam brings up a Select Object dialog box for selecting mapped objects
and adjusting their ZData property. Upon selecting the objects, the
Specify Zdata dialog box is activated, in which the new ZData variable
is entered. Note that not all mapped objects have the ZData property
(for example text objects).

zdatam(h) activates the Specify Zdata dialog box for the objects
specified by the handle h.

zdatam(str) activates the Specify Zdata dialog box for the objects
identified by str, where str is any string recognized by handlem.

Controls

Select Object Dialog Box

3-1353

zdatam-ui

The scroll box is used to select the desired objects from the list of
mapped objects. Pushing the Select all button highlights all objects in
the scroll box for selection. Pushing the OK button activates another
Specify Zdata dialog box. Pushing the Cancel button aborts the
operation without changing any properties of the selected objects.

Specify ZData Dialog Box

The Zdata Variable edit box is used to specify the name of the
ZData variable. Pressing the List button produces a list of all current
workspace variables, from which the ZData variable can be selected.
A scalar value or a valid MATLAB expression can also be entered.
Pressing the Apply button changes the ZData property of all selected
objected to the new values. Pressing the Cancel button closes the
Specify ZData dialog box without changing the ZData property of the
selected objects.

See Also zdatam

3-1354

Index

IndexA
accuracy of map computations 3-256
almanac 3-16
angl2str 3-19
angle conversion

degrees to dm or dms 3-161 to 3-162
dm or dms to degrees 3-193 3-195
various units 3-22

angledim 3-22
angles

converting from degrees 3-286
converting to degrees 3-1100
converting to radians 3-1101
converting various units 3-22
converting with dgrees2dm 3-161
converting with dgrees2dms 3-162
converting with dm2degrees 3-193
converting with dms2degrees 3-195
normalizing to -pi-pi 3-862
normalizing to 0-2pi 3-1268
radians conversion 3-287
unwrapping 3-1120

annotation
north arrows 3-857

antipodal points
locating on globe 3-23

antipode 3-23
arcgridread 3-26
areaint 3-28
areamat 3-31
areaquad 3-34
ASCII file

converting delimiters to NaNs 3-830
ASCII geodata

reading space-delimited 3-1066
attribute specification

for KML formatting 3-614
auxiliary sphere

calculating radius 3-1008
avhrrgoode 3-37

avhrrlambert 3-43
axes

map. See map axes
axes, Cartesian. See Cartesian axes
axes2ecc 3-48
axesm 3-49
axesm GUI 3-1270
axesmui 3-1270
axesscale 3-67
azimuth 3-70

between track waypoints 3-596
calculating 3-70
calculating with GUI 3-1336
finding cross fix position 3-132

B
bearing. See azimuth
bufferm 3-73

C
camposm 3-82
camtargm 3-84
camupm 3-86
cart2grn 3-88
Cartesian axes

displaying 3-1058
Cartesian coordinates

conversion to geographic 3-88
circcirc 3-90
clabelm 3-91
clegendm 3-94
clipdata 3-98
clma 3-99
clmo 3-100

GUI 3-1282
clrmenu 3-1283
colorm 3-1286
colormaps

Index-1

Index

manipulation with clrmenu GUI 3-1283
regular data grids 3-1286
shaded relief map 3-1044

colorui 3-103
combinations

enumerating 3-104
combntns 3-104
comet3m 3-106
cometm 3-107
contour maps

adding legend 3-94
creating 2-D 3-120
creating 3-D 3-108
labeling 3-91

contour3m 3-108
contourcmap 3-114
contourfm 3-119
contourm 3-120
conversion

ASCII file delimiters 3-830
Cartesian to geographic coordinates 3-88
distance from degrees 3-158
distance to degrees 3-583
distance to string 3-180
ellipsoid axes to eccentricity 3-48
ellipsoid eccentricity to flattening 3-209
ellipsoid eccentricity to n

representation 3-210
ellipsoid flattening to eccentricity 3-280
ellipsoid n representation to

eccentricity 3-828
equal-area to geographic coordinates 3-257
from degrees 3-286
from radians 3-287
geographic to equal-area coordinates 3-538
to degrees 3-1100
to radians 3-1101

convertlat 3-128
coordinate system

transformations 3-1003

coordinates
equal-area conversion 3-257

creating ones data grids 3-864
cross fix positions 3-132
crossfix 3-132
current point from map axes 3-293

D
daspectm 3-137
data grids

constructing graticule mesh 3-811
conversion from geographic

coordinates 3-1042
conversion to geographic coordinates 3-1038
encoding geographic regions 3-241
NaNs 3-832
ones 3-864
projecting on graticule 3-877
projecting on plots 3-1076
projecting with lighting 3-1078
resizing 3-996
sparse zeros 3-1067
zeros 3-1269

dcwdata 3-139
dcwgaz 3-143
dcwrhead 3-150
dead reckoning 3-197
defaultm 3-152
deg2km 3-158
degrees2dm 3-161
degrees2dms 3-162
demdataui 3-1289
departure 3-174

between meridians 3-174
Digital Chart of the World (DCW)

reading gazette 3-143
reading headers 3-150
reading selected data 3-139

display structure

Index-2

Index

extracting data 3-269
display structures

interacting with objects 3-1306
displaying

surfaces 3-877
displaym 3-176
dist2str 3-180
distance 3-182

converting degrees to other units 3-158
converting to degrees 3-583
converting to string 3-180

distortcalc 3-186
dm2degrees 3-193
dms2degrees 3-195
dreckon 3-197
driftcorr 3-200
driftvel 3-202
dted 3-203
dteds 3-206

E
Earth 3-16

See also almanac
ecc2flat 3-209
ecc2n 3-210
eccentricity 3-48
egm96geoid 3-231
elevation 3-233
ellipse1 3-237
ellipsoid

approximating planetary geoid. See almanac
radius of curvature 3-933

ellipsoid parameters
converting axes to eccentricity 3-48
converting eccentricity to flattening 3-209
converting eccentricity to n

representation 3-210
converting flattening to eccentricity 3-280

converting n reopresentation to
eccentricity 3-828

ellipsoidal distances
along meridian 3-809

ellipsoidal reckoning
along meridian 3-810

encodem 3-241
epsm 3-256
eqa2grn 3-257
etopo5 3-265
ETOPO5 model 3-265
extractfield 3-267
extractm 3-269

F
Fifth Fundamental Catalog of Stars 3-939
fill3m 3-272
fillm 3-274
filterm 3-275
findm 3-277
fipsname 3-279
flat2ecc 3-280
flatearthpoly 3-281
framem 3-284
fromDegrees 3-286
fromRadians 3-287

G
gcm 3-290
gcpmap 3-293
gcwaypts 3-295
gcxgc 3-297
gcxsc 3-299
geographic coordinates

conversion from data grid 3-1038
conversion to data grid 3-1042
conversion to equal-area 3-538
selection with mouse 3-572

Index-3

Index

geographic data structure
creating input to mlayers 3-1002
displaying 3-176

geographic points
standard deviation 3-1070
standard distance 3-1068

geographic quadrangles
intersecting 3-566
locating points within 3-564
plotting 3-867

geoid vector
for planets. See almanac

geoloc2grid 3-332
geolocated data grids

projecting 3-877
projecting on plots 3-1076
projecting shaded relief 3-1080
projecting surfaces 3-1082
projecting with lighting 3-1078

geospatial data access
DCW data 3-139
DCW gazette 3-143
DCW headers 3-150
ETOPO5 model 3-265
Fifth Fundamental Catalog of Stars 3-939
shapefiles 3-1046 3-1048
TIGER FIPS name files 3-279
TIGER/Line data 3-1092
USGS 1-degree DEM data 3-1138
USGS 7.5-minute DEM data 3-1133
USGS DEM filenames 3-1140

geotiff2mstruct 3-475
geotiffinfo 3-477
geotiffread 3-486
getm 3-502
getseeds 3-503
getworldfilename 3-505
globedem 3-506
globedems 3-509
Google KML file format

writing to 3-587
gradientm 3-528
graticule mesh 3-811
great circle track

calculating from one point 3-1105
calculating from two points 3-1108
displaying 3-1342

great circles
intersection 3-297
intersection with small circles 3-299

grepfields 3-531
grid2image 3-536
gridm 3-534
grn2eqa 3-538
gshhs 3-540
gtextm 3-548
gtopo30 3-549
gtopo30s 3-553
GUIDE property editor 3-1318

H
handlem 3-554
handlem GUI 3-1293
hidem 3-556
hidem GUI 3-1295
hista 3-557
histograms

equal area geographic 3-557
equirectangular geographic 3-559

histr 3-559

I
imbedm 3-561
ind2rgb8 3-563
ingeoquad 3-564
inputm 3-572
interpm 3-573
intersectgeoquad 3-566

Index-4

Index

intersection
great circles 3-297
great circles and small circles 3-299
object sets 3-132
rhumb lines 3-1000
small circles 3-1032

intrplat 3-574
intrplon 3-576
ismap 3-578
ismapped 3-579
ispolycw 3-580

J
Jupiter. See almanac

K
km2deg 3-583
KML files

specifying attributes for 3-614
kmlwrite 3-587

L
latitude and longitude

finding corresponding time zone 3-1095
finding for map entries 3-277

latlon2pix 3-594
lcolorbar 3-595
legs 3-596
light objects 3-598
lightm 3-598
line objects 3-603

displaying on maps in 2-D 3-886
displaying on maps in 3-D 3-884

linecirc 3-602
linem 3-603
longitude wrapping

to [-180 180] 3-1262
to [-pi pi] 3-1265

to [0 360] 3-1263
to [0 pi] 3-1264

longitudes
unwrapping with NaNs 3-1120

los2 3-605
ltln2val 3-610

M
majaxis 3-613
makattribspec 3-614
makemapped 3-622
makerefmat 3-624
makesymbolspec 3-630
map

deleting 3-99
precision 3-256

map axes
defining map projection with GUI 3-1270
defining map projections 3-49
modifying properties 3-1040
retrieving map structure 3-290
retrieving properties 3-502
setting properties with axesm 3-49
setting properties with GUI 3-1270
testing 3-578

map data
querying with GUI 3-1323
. See raster geodata. See vector geodata

map display
light objects 3-598
lighted surfaces 3-1078
patches with fill3m 3-272
patches with fillm 3-274
patches with patchesm 3-873
patches with patchm 3-875
surfaces with meshm 3-817
surfaces with surfacem 3-1076
surfaces with surfm 3-1082
text 3-548

Index-5

Index

text objects 3-1089
map frame

displaying 3-284
modifying properties 3-1040
setting properties 3-49 3-284
setting properties with GUI 3-1270

map grid
displaying 3-534
modifying properties 3-1040
setting properties 3-49
setting properties with gridm 3-534
setting properties with GUI 3-1270

map grid labels
alternate 3-826
displaying meridians 3-825
displaying parallels 3-883
modifying properties 3-1040
setting properties with axesm 3-49

map layers
GUI for controlling 3-1306

map origin
computing from new pole 3-852
computing new 3-923

map projection
defining with GUI 3-1270
identification strings 3-717
inverse 3-822
names 3-717

map projections
changing 3-1040
defining 3-49
forward 3-819
planar 3-819
projecting objects 3-911

map text
placement via mouse 3-548
projecting 3-1089

map2pix 3-635
mapbbox 3-636
maplist 3-637

mapoutline 3-639
mapprofile 3-692
maps 3-717
mapshow 3-772
maptool 3-1297
maptrim GUI 3-1303
maptriml 3-789
maptrimp 3-790
maptrims 3-792
mapview 3-794
Mars. See almanac
matrix geodata. See raster geodata
matrix maps. See raster geodata
mdistort 3-802
mean geographic location 3-807
meanm 3-807
Mercury. See almanac
meridian labels 3-825

alternate 3-826
meridianarc 3-809
meridianfwd 3-810
meridians

distance along 3-809
reckoning position along 3-810

mesh. See graticule mesh
meshgrat 3-811
meshlsrm 3-814
meshm 3-817
mfwdtran 3-819
minaxis 3-821
minvtran 3-822
mlabel 3-825
mlabelzero22pi 3-826
mlayers 3-1306
mobjects 3-1309
Moon. See almanac
mouse interactions

defining small circles 3-1030
processing button-down callbacks 3-1346
selection of geographic coordinates 3-572

Index-6

Index

text on maps 3-548

N
n2ecc 3-828
namem 3-829
nanclip 3-830
nanm 3-832
NaNs

in data grids 3-832
navfix 3-833
navigational fixing

navfix 3-833
navigational tracks

calculating segments between
waypoints 3-1102

Neptune. See almanac
neworig 3-849
newpole 3-852
northarrow 3-857
npi2pi 3-862

O
objects

assigning tags 3-1086
assigning tags with GUI 3-1340
deleting 3-100
deleting with GUI 3-1282
displaying 3-1059
displaying with GUI 3-1335
editing properties of 3-1318
hiding 3-556
hiding with GUI 3-1295
interacting with GUI 3-1309
modifying zdata 3-1266
modifying zdata with GUI 3-1353
projecting to map axes 3-911
retrieving handle 3-554
retrieving handle with GUI 3-1293

retrieving name 3-829
testing if mapped 3-579

onem 3-864
org2pol 3-865
origin

interactive modification 3-1313
transformation 3-849

originui 3-1313
outlinegeoquad 3-867

P
panzoom GUI 3-1315
paperscale 3-870
parallel labels 3-883
parallelui 3-1317
patch 3-875
patch objects

filling 3-272
filling 2-D 3-274
filling 2-D and 3-D 3-875
filling separate 3-873

patchesm 3-873
pcolorm 3-877
pix2latlon 3-879
pix2map 3-880
pixcenters 3-881
plabel 3-883
planetary data 3-16
plot3m 3-884
plotm 3-886
Pluto. See almanac
polcmap 3-888
pole transformations 3-865
poly2ccw 3-890
poly2cw 3-891
poly2fv 3-892
polybool 3-894
polycut 3-899
polygon surface area 3-28

Index-7

Index

polyjoin 3-900
polymerge 3-901
polysplit 3-903
polyxpoly 3-904
positions

dead reckoning 3-197
reckoning 3-946

previewmap 3-909
project 3-911
projlist 3-921
property editors 3-1318
putpole 3-923

Q
qrydata 3-1323
quadrangle surface area 3-34
querying map data 3-1323
quiver3m 3-925
quiverm 3-927

R
radius of auxiliary sphere 3-1008
radius of curvature 3-933
radius of planets 3-16

See also almanac
range

angles 3-1268
finding cross fix position 3-132

raster geodata 3-996
displaying as lighted shaded relief 3-1080
displaying as mesh 3-817
displaying as shaded relief 3-814
displaying as surface 3-1082
resizing 3-996
trimming 3-792
trimming with GUI 3-1303
See also data grids

rcurve 3-933

readfields 3-935
readfk5 3-939
readmtx 3-942
reckon 3-946
reckoning 3-946

distances with GUI 3-1336
reducem 3-948
refmat2vec 3-982
refvec2mat 3-983
regular data grids

calculating required matrix size 3-1060
creating colormap 3-1286
encoding 3-561
encoding regions 3-1332
projecting shaded relief 3-814
projecting with meshm 3-817
retrieving values 3-610
seeds for encoding 3-503
surface area 3-31
transforming to new coordinate system map

origin 3-849
trimming 3-792

resizem 3-996
restack 3-999
rhumb line track

calculating from one point 3-1105
calculating from two points 3-1108
displaying 3-1342

rhumb lines intersection 3-1000
rhxrh 3-1000
rootlayr 3-1002
rotatem 3-1003
rotatetext 3-1005
rounding 3-1007
roundn 3-1007
rsphere 3-1008

S
satbath 3-1010

Index-8

Index

Saturn. See almanac
scaleruler 3-1013
scatterm 3-1022
scircle1 3-1024
scircle2 3-1027
scircleg 3-1030
scirclui 3-1328
scxsc 3-1032
sdtsdemread 3-1034
sdtsinfo 3-1035
sectorg 3-1037
seedm 3-1332
semimajor axis 3-613
semiminor axis 3-821
setltln 3-1038
setm 3-1040
setpostn 3-1042
shaded relief map

constructing cdata 3-1044
constructing colormap 3-1044
geolocated data grids 3-1080

shaded relief maps
regular data grids 3-814

shaderel 3-1044
shapefiles

information from 3-1046
reading with shaperead 3-1048
writing with shapewrite 3-1055

shapeinfo 3-1046
shaperead 3-1048
shapewrite 3-1055
showaxes 3-1058
showm 3-1059
showm GUI 3-1335
sizem 3-1060
small circles

calculating from center and perimeter
point 3-1027

calculating from center and radius 3-1024
defining with mouse 3-1030

displaying 3-1328
intersection 3-1032
intersection with great circles 3-299

spcread 3-1066
specifying attributes

for KML output 3-614
spzerom 3-1067
standard deviation of geographic points 3-1070
standard distance of geographic points 3-1068
stdist 3-1068
stdm 3-1070
stem3m 3-1072
str2angle 3-1074
Sun. See almanac
surface area

planets. See almanac
polygon 3-28
quadrangle 3-34
regular data grids 3-31

surface distance
along a parallel 3-174
between track waypoints 3-596
between two points 3-182
calculating with GUI 3-1336

surface objects
constructing graticule mesh 3-811
projecting lighted 3-1078
projecting on graticule 3-877
projecting with meshm 3-817
projecting with surfacem 3-1076
projecting with surfm 3-1082

surfacem 3-1076
surfdist 3-1336
surflm 3-1078
surflsrm 3-1080
surfm 3-1082

T
tagm 3-1086

Index-9

Index

tagm GUI 3-1340
tbase 3-1087
textm 3-1089
tgrline 3-1092
TIGER data

reading FIPS name files 3-279
TIGER/Line data 3-1092

tightmap 3-1094
time zones

determining from longitude 3-1095
timezone 3-1095
tissot 3-1097
tissot indicatrices

projecting 3-1097
toDegrees 3-1100
toRadians 3-1101
track 3-1102
track waypoints

azimuth 3-596
distance 3-596

track1 3-1105
track2 3-1108
trackg 3-1110
trackui 3-1342
transformation of coordinate system 3-1003
trimcart 3-1112
trimdata 3-1113
two-column ASCII geodata

reading 3-1066

U
uimaptbx 3-1346
undoclip 3-1114
undotrim 3-1115
units

testing for valid abbreviations 3-1118
testing for valid strings 3-1118

unitsratio 3-1116
unitstr 3-1118

unprojection
geographic data 3-822

unwrapMultipart 3-1120
updategeostruct 3-1123
Uranus. See almanac
usamap 3-1127
USGS 1-degree DEM data

reading files 3-1138
USGS DEM 7.5-minute data

reading files 3-1133
USGS DEM data

returning filenames 3-1140
usgs24kdem 3-1133
usgsdem 3-1138
usgsdems 3-1140
utmgeoid 3-1142
utmzone 3-1144

V
vec2mtx 3-1151
vector geodata

converting to grid 3-1303
displaying as lines with linem 3-603
displaying as lines with plot3m 3-884
displaying as lines with plotm 3-886
extracting from data structures 3-269
filtering 3-275
mean location 3-807
reducing 3-948
trimming lines 3-789
trimming polygons 3-790

Venus. See almanac
vfwdtran 3-1157
viewshed 3-1159
vinvtran 3-1166
vmap0data 3-1168
vmap0read 3-1172
vmap0rhead 3-1175
vmap0ui 3-1349

Index-10

Index

volume of planets 3-16
See also almanac

W
waypoints 3-1102

calculating on great circle 3-295
See also track waypoints

worldfileread 3-1255
worldfilewrite 3-1256
worldmap 3-1257
wrapTo180 3-1262

wrapTo2Pi 3-1264
wrapTo360 3-1263
wrapToPi 3-1265

Z
zdatam 3-1266

GUI 3-1353
zero22pi 3-1268
zerom 3-1269
zeros 3-1067
zooming in and out of map displays 3-1315

Index-11

	toc
	Function Reference
	Geospatial Data Import and Access
	Standard File Formats
	Gridded Terrain and Bathymetry Products
	Vector Map Products
	Miscellaneous Data Sets
	GUIs for Data Import
	File Reading Utilities

	Web Map Service
	WMS Server and Layer Information
	WMS Capabilities Information
	WMS Map Rendering

	Vector Map Data and Geographic Data Structures
	Geographic Data Representation
	geopoint Class

	Data Manipulation
	Utilities for NaN-Separated Polygons and Lines

	Georeferenced Images and Data Grids
	Spatial Referencing
	Spatial Referencing Objects
	GeoRasterReference Class
	MapRasterReference Class

	Terrain Analysis
	Other Analysis/Access
	Construction and Modification
	Initialization

	Map Projections and Coordinates
	Available Map Projections
	Map Projection Transformations
	Map Trimming
	Angles, Scales, and Distortions
	Visualizing Map Distortions
	UTM System
	Coordinate Rotation on the Sphere
	Trimming and Clipping

	Map Display and Interaction
	Map Creation and High-Level Display
	Vector Symbolization
	Lines and Contours
	Patch Data
	Data Grids
	Light Objects and Lighted Surfaces
	Thematic Maps
	Map Annotation
	Colormaps for Map Displays
	Interactive Map Positions
	Interactive Track and Circle Definition
	GUIs
	Map Object and Projection Properties
	Map Appearance
	Display Clearing

	Geographic Calculations
	Geometry of Sphere and Ellipsoid
	3-D Coordinates
	Reference Ellipsoids and Spheroids
	Geometric Object Overlay
	Geographic Statistics
	Navigation
	Spherical Distance Conversions

	Utilities
	Angle Unit Conversions
	Conversion Factors for Angles and Lengths
	Data Precision
	Length Unit Conversions
	Image Conversion
	String Formatters
	Longitude or Azimuth Wrapping
	Validation

	GUIs
	Map Definition Tools
	Mapping Tools
	Display Manipulation Tools
	Object Property Tools
	Track Tools
	Map Data Construction Tools

	Class Reference
	Reference Spheroids
	oblateSpheroid
	referenceSphere
	referenceEllipsoid

	Spatial Referencing
	spatialref.GeoRasterReference
	spatialref.MapRasterReference

	Vector Geographic Data
	geopoint

	Web Map Service
	WebMapServer
	WMSCapabilities
	WMSLayer
	WMSMapRequest

	Functions — Alphabetical List
	load topo
worldmap('world')
meshm(topo,topolegend)
Zlimits = [mi
	TiffTags Exceptions
	Automatic TIFF Tags
	ContactInformation Structure Array

	Index

	tables
	Supported ETOPO Data File Names
	Projection Parameter Identifiers
	Fields in ImagePoints Structure
	Fields in WorldPoints Structure
	Coordinates of the Outer Corners
	GeoTIFFCodes Fields
	GeoTIFF Tag Fields
	
	Details Structure
	Attributes Structure
	BoundingBox Structure
	Dimension Structure
	ScaleLimits Structure
	Style Structure Array
	LegendURL Structure

